-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
98 lines (85 loc) · 4.05 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import os
import random
import torch
import torch.distributed as dist
# given a message object, convert to prompt and response
PROMPT_USER: str = 'User: {input}\n\n'
PROMPT_ASSISTANT: str = 'Assistant:' # should not have a space at the end
ASSISTANT_RESPONSE: str = ' {input}'
def get_formatted_question(line):
return PROMPT_USER.format(input=str(line).strip()) + PROMPT_ASSISTANT
def get_formatted_answer(line):
return ASSISTANT_RESPONSE.format(input=str(line).strip())
def get_formatted_input_and_target(messages, tokenizer, IGNORE_TOKEN_ID=-100, mask_prompt=True):
input_ids = []
target_ids = []
for idx, message in enumerate(messages):
if idx == 0:
input_ids.extend([tokenizer.bos_token_id])
target_ids.extend([tokenizer.bos_token_id])
if message['role'] == "user":
formatted_question = get_formatted_question(message['content'])
tokenized_line = tokenizer.encode(formatted_question, add_special_tokens=False)
input_ids.extend(tokenized_line)
if mask_prompt:
target_ids.extend([IGNORE_TOKEN_ID] * len(tokenized_line))
else:
target_ids.extend(tokenized_line)
elif message['role'] == "assistant":
formatted_answer = get_formatted_answer(message['content'])
tokenized_line = tokenizer.encode(formatted_answer, add_special_tokens=False) + [tokenizer.eos_token_id]
input_ids.extend(tokenized_line)
if message.get('mask', 0) == 1:
target_ids.extend([IGNORE_TOKEN_ID] * len(tokenized_line))
else:
target_ids.extend(tokenized_line)
else:
assert False, f"Unknown role: {message['role']}"
return [input_ids, target_ids]
def get_examples_from_buffer_pad(buffer, seq_length, tokenizer, random_concat_ratio, IGNORE_TOKEN_ID=-100):
all_input_ids_list, all_target_ids_list = [], []
all_input_ids, all_target_ids = [], []
for input_ids, target_ids in buffer:
if len(input_ids) > seq_length - len(all_input_ids):
input_ids = input_ids[-(seq_length - len(all_input_ids)):]
target_ids = target_ids[-(seq_length - len(all_target_ids)):]
if len(all_input_ids) > 0 and random.random() < random_concat_ratio:
input_ids = input_ids[1:]
target_ids = target_ids[1:]
all_input_ids.extend(input_ids)
all_target_ids.extend(target_ids)
if len(all_input_ids) >= seq_length:
assert len(all_input_ids) == seq_length, f"{len(all_input_ids)=}, {seq_length=}, {len(buffer)=}"
all_input_ids_list.append(all_input_ids)
all_target_ids_list.append(all_target_ids)
all_input_ids, all_target_ids = [], []
all_input_ids = all_input_ids + [tokenizer.pad_token_id for i in range(seq_length - len(all_input_ids))]
all_target_ids = all_target_ids + [IGNORE_TOKEN_ID for i in range(seq_length - len(all_target_ids))]
all_input_ids_list.append(all_input_ids)
all_target_ids_list.append(all_target_ids)
if len(all_input_ids) <= 0:
return None
return {
"input_ids": torch.tensor(all_input_ids_list, dtype=torch.long),
"labels": torch.tensor(all_target_ids_list, dtype=torch.long)
}
def init_parallel_groups(ep_size=1):
dist.init_process_group("nccl")
world_size = int(os.getenv("WORLD_SIZE", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
torch.cuda.set_device(local_rank)
ep_group = edp_group = None
for i in range(0, world_size, ep_size):
ranks = list(range(i, i + ep_size))
group = dist.new_group(ranks)
if local_rank in ranks:
ep_group = group
edp_group = None
for i in range(ep_size):
ranks = list(range(i, world_size, ep_size))
group = dist.new_group(ranks)
if local_rank in ranks:
edp_group = group
dist.all_reduce(torch.zeros(1, device="cuda"), group=ep_group)
dist.all_reduce(torch.zeros(1, device="cuda"), group=edp_group)
return world_size, local_rank, ep_group, edp_group