-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_align_procrustes.py
377 lines (307 loc) · 12.8 KB
/
get_align_procrustes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import numpy as np
import torch
import ot
from sklearn.cluster import KMeans
from sklearn.preprocessing import normalize
from scipy.linalg import svd
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA
from tqdm import tqdm
import argparse
import os
import sys
import pickle as pk
import warnings
warnings.filterwarnings("ignore")
def parse_arguments(parser):
parser.add_argument("--emb_src", type=str, help="Path to source embeddings")
parser.add_argument("--emb_tgt", type=str, help="Path to target embeddings")
parser.add_argument("--label_src", type=str, help="Path to source labels")
parser.add_argument("--label_tgt", type=str, help="Path to target labels")
parser.add_argument("--wp", action="store_true", help="Use WP instead of P rotation estimation")
parser.add_argument("--rotation", type=str, help="Path to WP rotation to save")
parser.add_argument(
"--seed", default=1111, type=int, help="Random number generator seed"
)
parser.add_argument("--nepoch", default=15, type=int, help="Number of epochs")
parser.add_argument(
"--niter", default=1024, type=int, help="Initial number of iterations"
)
parser.add_argument("--bsz", default=40, type=int, help="Initial batch size")
# frontend args
parser.add_argument(
"--lda", action="store_true", help="apply LDA first and normalize"
)
parser.add_argument(
"--pca", action="store_true", help="apply PCA first and normalize"
)
parser.add_argument(
"--pca_n_dim", default=10, type=int, help="Number of components of the PCA"
)
parser.add_argument("--pca_load_path", type=str, help="PCA pickle")
parser.add_argument("--test", action="store_true", help="testing mode")
parser.add_argument(
"--kmeans", action="store_true", help="apply KMeans first otherwise normalize"
)
parser.add_argument(
"--kmeans_num_cluster", default=-1, type=int, help="Number of KMeans cluster"
)
# END Frontend args
parser.add_argument(
"--top_k", action="store_true", help="Display top 3,5,10.. Accuracy"
)
parser.add_argument("--lr", default=50, type=float, help="Learning rate")
parser.add_argument(
"--nmax",
default=-1,
type=int,
help="Max number of alignment points used",
)
parser.add_argument(
"--reg", default=0.05, type=float, help="Regularization parameter for sinkhorn"
)
parser.add_argument(
"--noverbose", action="store_true", help="No verbose"
)
args = parser.parse_args()
return args
def objective(X, Y, R, n=1000):
if n > len(X):
n = len(X)
Xn, Yn = X[:n], Y[:n]
C = -np.dot(np.dot(Xn, R), Yn.T)
P = ot.sinkhorn(np.ones(n), np.ones(n), C, 0.025, stopThr=1e-3)
return 1000 * np.linalg.norm(np.dot(Xn, R) - np.dot(P, Yn)) / n
def sqrt_eig(x):
U, s, VT = np.linalg.svd(x, full_matrices=False)
return np.dot(U, np.dot(np.diag(np.sqrt(s)), VT))
def align(X, Y, R, lr, bsz, nepoch, niter, corres, nmax, reg, verbose, last_iter):
for epoch in range(1, nepoch + 1):
for _it in (tqdm(range(1, niter + 1), desc="alignment n°" + str(epoch)) if verbose else range(1, niter + 1)):
# sample mini-batch
xt = X[np.random.permutation(nmax)[:bsz], :]
yt = Y[np.random.permutation(nmax)[:bsz], :]
# compute OT on minibatch
C = -np.dot(np.dot(xt, R), yt.T)
P = ot.sinkhorn(np.ones(bsz), np.ones(bsz), C, reg, stopThr=1e-3)
# compute gradient
G = -np.dot(xt.T, np.dot(P, yt))
R -= lr / bsz * G
# project on orthogonal matrices
U, s, VT = np.linalg.svd(R)
R = np.dot(U, VT)
bsz *= 2
bsz = min(bsz, min(len(X), len(Y)))
niter //= 2
if verbose:
print(
"epoch: %d\t batchSize: %d\t niter: %d\t Wass_dist: %.3f\t distance: %.4f"
% (epoch, bsz, niter, objective(X, Y, R), np.mean( [np.linalg.norm(X[i] - np.dot(Y[corres[i]], R)) for i in range(len(Y))] )),
)
if niter == 0 or ((not last_iter) and bsz >= min(len(X), len(Y))):
print("Stopping alignment batchSize %d > total labels" % bsz)
break
if verbose:
print("Alignment Done")
return R
def convex_init(X, Y, niter=100, reg=0.05, apply_sqrt=False):
n, d = X.shape
if apply_sqrt:
X, Y = sqrt_eig(X), sqrt_eig(Y)
K_X, K_Y = np.dot(X, X.T), np.dot(Y, Y.T)
K_Y *= np.linalg.norm(K_X) / np.linalg.norm(K_Y)
K2_X, K2_Y = np.dot(K_X, K_X), np.dot(K_Y, K_Y)
P = np.ones([n, n]) / float(n)
for it in range(1, niter + 1):
G = np.dot(P, K2_X) + np.dot(K2_Y, P) - 2 * np.dot(K_Y, np.dot(P, K_X))
q = ot.sinkhorn(np.ones(n), np.ones(n), G, reg, stopThr=1e-3)
alpha = 2.0 / float(2.0 + it)
P = alpha * q + (1.0 - alpha) * P
# obj = np.linalg.norm(np.dot(P, K_X) - np.dot(K_Y, P))
# print(obj)
return procrustes(np.dot(P, X), Y).T
def procrustes(X_src, Y_tgt):
U, s, V = np.linalg.svd(np.dot(Y_tgt.T, X_src))
return np.dot(U, V)
def compute_optimal_corresp(X, Y, R):
size = min(len(X), len(Y))
if len(X) != size or len(Y) != size:
if len(X) != size:
X = X[:size]
if len(Y) != size:
Y = Y[:size]
C = -np.dot(np.dot(X, R), Y.T)
P = ot.sinkhorn(np.ones(size), np.ones(size), C, 0.025, stopThr=1e-3)
Xn, Yn = np.dot(X, R), np.dot(P, Y)
n_emb = len(Xn)
L = np.zeros(n_emb).astype(int)
for i in range(n_emb):
distances = torch.sum(
(
torch.FloatTensor(Xn[i]).unsqueeze(0).repeat(n_emb, 1)
- torch.FloatTensor(Yn)
)
** 2,
dim=1,
).numpy()
L[i] = np.argmin(distances)
return np.array(L).astype(int)
def KMeans_reshape(Emb, User, K):
lab = KMeans(n_clusters=K, init=Emb[np.arange(K)]).fit(Emb).labels_
nE, nU = np.zeros((K, Emb.shape[1])), np.zeros(K)
u = 0
for i in range(K):
args = np.argwhere(lab == i)[:, 0]
# print(args)
if len(args) == 1:
nE[i] = Emb[args]
nU[i] = User[args]
u += 1
else:
nE[i] = np.mean(Emb[args], axis=0)
nU[i] = User[args][0]
print(u, K, len(Emb))
return nE, nU
def frontend(args, Emb_U_, User_U, Emb_L_, User_L):
# TODO add LDA and kmeans param loading
if args.test:
if args.pca:
print("Loading pca from:", args.pca_load_path)
pca_reload_u = pk.load(open(args.pca_load_path + "/pca_emb_u.pkl", "rb"))
Emb_U = pca_reload_u.transform(Emb_U_)
pca_reload_l = pk.load(open(args.pca_load_path + "/pca_emb_l.pkl", "rb"))
Emb_L = pca_reload_l.transform(Emb_L_)
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U)
Emb_L = normalize(Emb_L)
return Emb_U, User_U, Emb_L, User_L
if args.lda or args.kmeans:
print("ERROR not implemented!!!!")
sys.exit(1)
# DO LDA
if args.lda:
Emb_U = LDA().fit_transform(Emb_U_, User_U)
Emb_L = LDA().fit_transform(Emb_L_, User_L)
print("Computed LDA", Emb_U.shape, Emb_L.shape)
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U)
Emb_L = normalize(Emb_L)
return Emb_U, User_U, Emb_L, User_L
# DO PCA
if args.pca:
d = args.pca_n_dim
expdir = os.path.dirname(args.emb_src)
print("Computing PCA,", d, "dimensions")
pca = PCA(n_components=d).fit(Emb_U_)
pk.dump(pca, open(expdir + "/pca_emb_u.pkl", "wb"))
Emb_U = pca.transform(Emb_U_)
print(
"Output shape after PCA:",
Emb_U.shape,
"with a total explained variance ratio on clear data:",
np.sum(pca.explained_variance_ratio_),
)
pca = PCA(n_components=d).fit(Emb_L_)
pk.dump(pca, open(expdir + "/pca_emb_l.pkl", "wb"))
Emb_L = pca.transform(Emb_L_)
print(
"Output shape after PCA:",
Emb_L.shape,
"total explained variance ratio on target(anonymized) data:",
np.sum(pca.explained_variance_ratio_),
)
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U)
Emb_L = normalize(Emb_L)
return Emb_U, User_U, Emb_L, User_L
# DO Kmeans
if args.kmeans and args.kmeans_num_cluster == -1:
if len(Emb_U) < len(Emb_L):
Emb_L, User_L = KMeans_reshape(Emb_L, User_L, len(Emb_U))
elif len(Emb_U) > len(Emb_L):
Emb_U, User_U = KMeans_reshape(Emb_U, User_U, len(Emb_L))
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U)
Emb_L = normalize(Emb_L)
return Emb_U, User_U, Emb_L, User_L
if args.kmeans and args.kmeans_num_cluster != -1:
Emb_L, User_L = KMeans_reshape(Emb_L, User_L, args.kmeans_num_cluster)
Emb_U, User_U = KMeans_reshape(Emb_U, User_U, args.kmeans_num_cluster)
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U)
Emb_L = normalize(Emb_L)
return Emb_U, User_U, Emb_L, User_L
# DO normalize by DEFAULT
Emb_U = normalize(Emb_U_)
Emb_L = normalize(Emb_L_)
return Emb_U, User_U, Emb_L, User_L
def Wasserstein_Procrustes_Alignment(args, Emb_L, Emb_U, verbose=False, last_iter=False):
corres = np.arange(min(len(Emb_L), len(Emb_U)))
ninit = min(len(Emb_U), 1000)
if args.nmax != -1:
N_pts_used = args.nmax
else:
N_pts_used = min(len(Emb_L), len(Emb_U))
np.random.seed(args.seed)
x_src = Emb_U
x_tgt = Emb_L
R0 = convex_init(
x_src[np.random.permutation(len(x_src))[:ninit], :],
x_tgt[np.random.permutation(len(x_tgt))[:ninit], :],
reg=args.reg,
apply_sqrt=True,
)
R = align(x_src, x_tgt, R0.copy(), bsz=args.bsz, lr=args.lr, niter=args.niter, corres=corres, nepoch=args.nepoch, reg=args.reg, nmax=N_pts_used, verbose=verbose, last_iter=last_iter)
# comparison bewteen X.R et P.Y
L = compute_optimal_corresp(x_src[corres], x_tgt, R )
R_final = procrustes(x_src[:N_pts_used], (x_tgt[:N_pts_used])[L])
return R_final
def top1(Xn, Yn, Ux, Uy):
compute_unit = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
n_emb = len(Xn)
L = np.zeros(n_emb).astype(int)
for i in range(n_emb):
distances = torch.sum((torch.FloatTensor(Xn[i]).to(compute_unit).unsqueeze(0).repeat(n_emb,1)-torch.FloatTensor(Yn).to(compute_unit))**2, dim=1).cpu().numpy()
L[i] = np.argmin(distances)
return (100*np.sum(Uy[L]==Ux)/len(Ux), 100*np.sum(L==np.arange(len(L)))/len(Ux))
def topn(Xn, Yn, Ux, Uy, n=1):
compute_unit = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
n_emb = len(Xn)
L = np.zeros((n_emb,n)).astype(int)
for i in range(n_emb):
distances = torch.sum((torch.FloatTensor(Xn[i]).to(compute_unit).unsqueeze(0).repeat(n_emb,1)-torch.FloatTensor(Yn).to(compute_unit))**2, dim=1).cpu().numpy()
L[i,:] = np.array([j[0] for j in sorted([(k,y) for k,y in enumerate(distances)], key = lambda x:x[1])])[:n]
user_stat = [1 if Ux[i] in Uy[L[i,:]] else 0 for i in range(len(Ux))]
seg_stat = [1 if i in L[i,:] else 0 for i in range(len(Ux))]
return (100*np.sum(user_stat)/len(Ux), 100*np.sum(seg_stat)/len(Ux))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Embedding Alignment using Wasserstein Procrustes or Procrustes"
)
args = parse_arguments(parser)
User_U = np.load(args.label_src)
User_L = np.load(args.label_tgt)
Emb_U = np.load(args.emb_src)
Emb_L = np.load(args.emb_tgt)
# print("Data Loaded : ", Emb_U.shape, Emb_L.shape, User_U.shape, User_L.shape)
Emb_U, User_U, Emb_L, User_L = frontend(args, Emb_U, User_U, Emb_L, User_L)
# print("Frontend applied :", Emb_U.shape, Emb_L.shape, User_U.shape, User_L.shape)
if not args.test:
if args.wp:
print("Wasserstein Procrustes rotation estimation")
WP_R = Wasserstein_Procrustes_Alignment(
args, Emb_L, Emb_U,
verbose=not args.noverbose)
else:
print("Procrustes rotation estimation")
WP_R = procrustes(Emb_U, Emb_L)
print("Compute done, rotation shape :", WP_R.shape)
np.save(args.rotation, WP_R)
else:
WP_R = np.load(args.rotation)
acc_U, acc_F = top1(Emb_U, np.dot(Emb_L, WP_R), User_U, User_L)
print("Top {:3}:\t{:.2f} (speaker accuracy)\t {:.2f} (segment accuracy)".format(1, acc_U, acc_F))
if args.top_k:
for n in [3,5,10,len(User_L)]:
acc_U, acc_F = topn(Emb_U, np.dot(Emb_L, WP_R), User_U, User_L, n=n)
print("Top {:3}:\t{:.2f} (speaker accuracy)\t {:.2f} (segment accuracy)".format(n, acc_U, acc_F))