-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_asv_eval_train.sh
executable file
·135 lines (109 loc) · 6.45 KB
/
run_asv_eval_train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/bin/bash
. ./cmd.sh
. ./path.sh
set -e
#ASV_eval training on LibriSpeech libri_train_clean_360_anon corpus
nj=$(nproc)
train_dir_slug=test
lrate=01709
epochs=10
shrink=10
stage=0
train_stage=-1
pseudo_speaker_test=
. ./utils/parse_options.sh
egs_dir=exp/retrain/$train_dir_slug/xvect_egs
echo "======="
echo $stage
echo "======="
mkdir -p exp/retrain/$train_dir_slug/
nnet_dir=exp/retrain/$train_dir_slug/xvect_${lrate}_${epochs}
if [ $stage -le 0 ]; then
for name in libri_train_clean_360-${pseudo_speaker_test}_anon; do
# NJ < num_spk
spk2utt=data/$name/spk2utt
[ ! -f $spk2utt ] && echo "File $spk2utt does not exist" && exit 1
num_spk=$(wc -l < $spk2utt)
[ $nj -gt $num_spk ] && nj=$num_spk
steps/make_mfcc.sh \
--write-utt2num-frames true \
--mfcc-config conf/mfcc.conf \
--nj $nj --cmd "$train_cmd" \
data/$name || exit 1
utils/fix_data_dir.sh data/$name || exit 1
sid/compute_vad_decision.sh \
--nj $nj --cmd "$train_cmd" \
--vad-config conf/vad.conf \
data/$name || exit 1
utils/fix_data_dir.sh data/$name || exit 1
done
fi
# Now we prepare the features to generate examples for xvector training.
if [ $stage -le 1 ]; then
# NJ < num_spk
spk2utt=data/libri_train_clean_360-${pseudo_speaker_test}_anon/spk2utt
[ ! -f $spk2utt ] && echo "File $spk2utt does not exist" && exit 1
num_spk=$(wc -l < $spk2utt)
[ $nj -gt $num_spk ] && nj=$num_spk
# This script applies CMVN and removes nonspeech frames. Note that this is somewhat
# wasteful, as it roughly doubles the amount of training data on disk. After
# creating training examples, this can be removed.
$KALDI_ROOT/egs/sre16/v2/local/nnet3/xvector/prepare_feats_for_egs.sh \
--nj $nj --cmd "$train_cmd" \
data/libri_train_clean_360-${pseudo_speaker_test}_anon data/train_clean_360-${pseudo_speaker_test}_anon_no_sil \
exp/retrain/$train_dir_slug/train_clean_360-${pseudo_speaker_test}_anon_no_sil || exit 1
utils/fix_data_dir.sh data/train_clean_360-${pseudo_speaker_test}_anon_no_sil || exit 1
fi
if [ $stage -le 2 ]; then
# Now, we need to remove features that are too short after removing silence
# frames. We want atleast 5s (500 frames) per utterance.
min_len=400
mv data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames.bak
awk -v min_len=${min_len} '$2 > min_len {print $1, $2}' data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames.bak > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames
utils/filter_scp.pl data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk.new
mv data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk.new data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk
utils/fix_data_dir.sh data/train_clean_360-${pseudo_speaker_test}_anon_no_sil || exit 1
# We also want several utterances per speaker. Now we'll throw out speakers
# with fewer than 8 utterances.
min_num_utts=8
awk '{print $1, NF-1}' data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2num
awk -v min_num_utts=${min_num_utts} '$2 >= min_num_utts {print $1, $2}' data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2num | utils/filter_scp.pl - data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt.new
mv data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt.new data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt
utils/spk2utt_to_utt2spk.pl data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/spk2utt > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk
utils/filter_scp.pl data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2spk data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames > data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames.new
mv data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames.new data/train_clean_360-${pseudo_speaker_test}_anon_no_sil/utt2num_frames
# Now we're ready to create training examples.
utils/fix_data_dir.sh data/train_clean_360-${pseudo_speaker_test}_anon_no_sil || exit 1
fi
# Stages 6 through 8 are handled in run_xvector.sh
if [ $stage -le 8 ]; then
./run_xvector.sh \
--stage $stage --train-stage $train_stage \
--data data/train_clean_360-${pseudo_speaker_test}_anon_no_sil --nnet-dir $nnet_dir \
--epochs $epochs --shrink $shrink --lrate $lrate --egs-dir $egs_dir || exit 1
fi
if [ $stage -le 9 ]; then
# Extract x-vectors for centering, LDA, and PLDA training.
sid/nnet3/xvector/extract_xvectors.sh \
--cmd "$train_cmd --mem 4G" --nj $nj \
$nnet_dir data/libri_train_clean_360-${pseudo_speaker_test}_anon \
$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon || exit 1
fi
if [ $stage -le 10 ]; then
# Compute the mean vector for centering the evaluation xvectors.
$train_cmd $nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/log/compute_mean.log \
ivector-mean scp:$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/xvector.scp \
$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/mean.vec || exit 1
# This script uses LDA to decrease the dimensionality prior to PLDA.
lda_dim=200
$train_cmd $nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/log/lda.log \
ivector-compute-lda --total-covariance-factor=0.0 --dim=$lda_dim \
"ark:ivector-subtract-global-mean scp:$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/xvector.scp ark:- |" \
ark:data/libri_train_clean_360-${pseudo_speaker_test}_anon/utt2spk $nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/transform.mat || exit 1
# Train the PLDA model.
$train_cmd $nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/log/plda.log \
ivector-compute-plda ark:data/libri_train_clean_360-${pseudo_speaker_test}_anon/spk2utt \
"ark:ivector-subtract-global-mean scp:$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/xvector.scp ark:- | transform-vec $nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/transform.mat ark:- ark:- | ivector-normalize-length ark:- ark:- |" \
$nnet_dir/xvect_train_clean_360-${pseudo_speaker_test}_anon/plda || exit 1
fi
echo Done