forked from siddharthbhonge/Face_Recognition_with_jetson_TX2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Face_recognition_with _Jetson.py
62 lines (47 loc) · 2.25 KB
/
Face_recognition_with _Jetson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import face_recognition
import cv2
import numpy as np
# sTARTING THE nVIDIA jETSON ONBOARD CAMERA
video_capture = cv2.VideoCapture("nvcamerasrc ! video/x-raw(memory:NVMM), width=(int)640, height=(int)480, format=(string)I420, framerate=(fraction)30/1 ! nvvidconv ! video/x-raw, format=(string)BGRx ! videoconvert ! video/x-raw, format=(string)BGR ! appsink")
# Load a sample picture and learn how to recognize it.
sid_image = face_recognition.load_image_file("sid1.jpg")
print(np.shape(sid_image))
sid_face_encoding = face_recognition.face_encodings(sid_image)[0]
# Create arrays of known face encodings and their names
known_face_encodings = [
sid_face_encoding
]
known_face_names = [
"Siddharth"
]
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_frame = frame[:, :, ::-1]
# Find all the faces and face enqcodings in the frame of video
face_locations = face_recognition.face_locations(rgb_frame)
face_encodings = face_recognition.face_encodings(rgb_frame, face_locations)
# Loop through each face in this frame of video
for (top, right, bottom, left), face_encoding in zip(face_locations, face_encodings):
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(known_face_encodings, face_encoding)
name = "Unknown"
# If a match was found in known_face_encodings, just use the first one.
if True in matches:
first_match_index = matches.index(True)
name = known_face_names[first_match_index]
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()