-
Notifications
You must be signed in to change notification settings - Fork 526
/
Copy pathtrainer.py
484 lines (392 loc) · 17.3 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
import time
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel
from uer.initialize import init_env
from uer.model_loader import load_model
from uer.model_saver import save_model
from uer.model_builder import build_model
from uer.utils.logging import init_logger
from uer.utils.optimizers import *
from uer.utils import *
from uer.utils.vocab import Vocab
from uer.utils.seed import set_seed
def init_model(args):
# Build model.
model = build_model(args)
# Load or initialize parameters.
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model = load_model(model, args.pretrained_model_path)
else:
# Initialize with normal distribution.
if args.deep_init:
scaled_factor = 1 / math.sqrt(2.0 * args.layers_num)
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
if "linear_2.weight" in n or "final_linear.weight" in n:
p.data.normal_(0, 0.02 * scaled_factor)
elif "linear_2.bias" in n or "final_linear.bias" in n:
p.data.zero_()
else:
p.data.normal_(0, 0.02)
else:
for n, p in list(model.named_parameters()):
if "gamma" not in n and "beta" not in n:
p.data.normal_(0, 0.02)
return model
def init_optimizer(args, model):
# Build optimizer.
param_optimizer = list(model.named_parameters())
no_decay = ["bias", "gamma", "beta", "layer_norm"]
optimizer_grouped_parameters = [
{"params": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], "weight_decay": 0.01},
{"params": [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], "weight_decay": 0.0}
]
if args.optimizer in ["adamw"]:
custom_optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate, correct_bias=False)
else:
custom_optimizer = str2optimizer[args.optimizer](optimizer_grouped_parameters, lr=args.learning_rate, scale_parameter=False, relative_step=False)
if args.scheduler in ["constant"]:
custom_scheduler = str2scheduler[args.scheduler](custom_optimizer)
elif args.scheduler in ["constant_with_warmup"]:
custom_scheduler = str2scheduler[args.scheduler](custom_optimizer, args.total_steps*args.warmup)
elif args.scheduler in ["tri_stage"]:
custom_scheduler = str2scheduler[args.scheduler](custom_optimizer, args.total_steps*args.warmup, args.total_steps*args.lr_decay, args.total_steps)
else:
custom_scheduler = str2scheduler[args.scheduler](custom_optimizer, args.total_steps*args.warmup, args.total_steps)
return custom_optimizer, custom_scheduler
def train_and_validate(args):
set_seed(args.seed)
# Load vocabulary.
if args.data_processor == "mt":
args.tgt_tokenizer = str2tokenizer[args.tgt_tokenizer](args, is_src=False)
args.tgt_vocab = args.tgt_tokenizer.vocab
args.tokenizer = str2tokenizer[args.tokenizer](args)
args.vocab = args.tokenizer.vocab
if args.dist_train:
# Multiprocessing distributed mode.
mp.spawn(worker, nprocs=args.ranks_num, args=(args.gpu_ranks, args), daemon=False)
elif args.single_gpu:
# Single GPU mode.
worker(args.local_rank, None, args)
else:
# CPU mode.
worker(None, None, args)
class Trainer(object):
def __init__(self, args):
self.current_step = 1
self.total_steps = args.total_steps
self.accumulation_steps = args.accumulation_steps
self.report_steps = args.report_steps
self.save_checkpoint_steps = args.save_checkpoint_steps
self.output_model_path = args.output_model_path
self.start_time = time.time()
self.total_loss = 0.0
self.dist_train = args.dist_train
self.batch_size = args.batch_size
self.world_size = args.world_size
self.logger = args.logger
def forward_propagation(self, batch, model):
raise NotImplementedError
def report_and_reset_stats(self):
raise NotImplementedError
def train(self, args, local_rank, global_rank, loader, model, optimizer, scheduler):
model.train()
loader_iter = iter(loader)
while True:
if self.current_step == self.total_steps + 1:
break
batch = list(next(loader_iter))
self.seq_length = batch[0].size(1)
if local_rank is not None:
for i in range(len(batch)):
batch[i] = batch[i].cuda(local_rank)
loss = self.forward_propagation(batch, model)
loss.backward()
if self.current_step % self.accumulation_steps == 0:
optimizer.step()
scheduler.step()
model.zero_grad()
if self.current_step % self.report_steps == 0 and \
(not self.dist_train or (self.dist_train and global_rank == 0)):
self.report_and_reset_stats()
self.start_time = time.time()
if self.current_step % self.save_checkpoint_steps == 0 and \
(not self.dist_train or (self.dist_train and global_rank == 0)):
save_model(model, self.output_model_path + "-" + str(self.current_step))
self.current_step += 1
class MlmTrainer(Trainer):
def __init__(self, args):
super(MlmTrainer, self).__init__(args)
self.total_correct = 0.0
self.total_denominator = 0.0
def forward_propagation(self, batch, model):
src, tgt, seg = batch
loss_info = model(src, tgt, seg)
loss, correct, denominator = loss_info
self.total_loss += loss.item()
self.total_correct += correct.item()
self.total_denominator += denominator.item()
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| acc: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_correct / self.total_denominator))
self.total_loss = 0.0
self.total_correct = 0.0
self.total_denominator = 0.0
class BertTrainer(Trainer):
def __init__(self, args):
super(BertTrainer, self).__init__(args)
self.total_loss_sp = 0.0
self.total_correct_sp = 0.0
self.total_instances = 0.0
self.total_loss_mlm = 0.0
self.total_correct_mlm = 0.0
self.total_denominator = 0.0
def forward_propagation(self, batch, model):
src, tgt_mlm, tgt_sp, seg = batch
tgt = {"mlm": tgt_mlm, "sp": tgt_sp}
loss_info = model(src, tgt, seg)
loss_mlm, correct_mlm, denominator = loss_info["mlm"]
loss_sp, correct_sp = loss_info["sp"]
loss = loss_mlm + loss_sp
self.total_loss += loss.item()
self.total_loss_mlm += loss_mlm.item()
self.total_loss_sp += loss_sp.item()
self.total_correct_mlm += correct_mlm.item()
self.total_correct_sp += correct_sp.item()
self.total_denominator += denominator.item()
self.total_instances += src.size(0)
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| loss_mlm: {:3.3f}"
"| loss_sp: {:3.3f}"
"| acc_mlm: {:3.3f}"
"| acc_sp: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_loss_mlm / self.report_steps,
self.total_loss_sp / self.report_steps,
self.total_correct_mlm / self.total_denominator,
self.total_correct_sp / self.total_instances))
self.total_loss, self.total_loss_mlm, self.total_loss_sp = 0.0, 0.0, 0.0
self.total_correct_mlm, self.total_denominator = 0.0, 0.0
self.total_correct_sp, self.total_instances = 0.0, 0.0
class AlbertTrainer(BertTrainer):
pass
class LmTrainer(MlmTrainer):
pass
class BilmTrainer(Trainer):
def __init__(self, args):
super(BilmTrainer, self).__init__(args)
self.total_loss_forward, self.total_loss_backward = 0.0, 0.0
self.total_correct_forward, self.total_correct_backward = 0.0, 0.0
self.total_denominator = 0.0
def forward_propagation(self, batch, model):
src, tgt_forward, tgt_backward, seg = batch
loss_info = model(src, (tgt_forward, tgt_backward), seg)
loss_forward, loss_backward, correct_forward, correct_backward, denominator = loss_info
loss = loss_forward + loss_backward
self.total_loss += loss.item()
self.total_loss_forward += loss_forward.item()
self.total_loss_backward += loss_backward.item()
self.total_correct_forward += correct_forward.item()
self.total_correct_backward += correct_backward.item()
self.total_denominator += denominator.item()
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| loss_forward {:3.3f}"
"| loss_backward {:3.3f}"
"| acc_forward: {:3.3f}"
"| acc_backward: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_loss_forward / self.report_steps,
self.total_loss_backward / self.report_steps,
self.total_correct_forward / self.total_denominator,
self.total_correct_backward / self.total_denominator))
self.total_loss, self.total_loss_forward, self.total_loss_backward = 0.0, 0.0, 0.0
self.total_correct_forward, self.total_correct_backward, self.total_denominator = 0.0, 0.0, 0.0
class ClsTrainer(Trainer):
def __init__(self, args):
super(ClsTrainer, self).__init__(args)
self.total_correct = 0.0
self.total_instances = 0.0
def forward_propagation(self, batch, model):
src, tgt, seg = batch
loss_info = model(src, tgt, seg)
loss, correct = loss_info
self.total_loss += loss.item()
self.total_correct += correct.item()
self.total_instances += src.size(0)
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| acc: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_correct / self.total_instances))
self.total_loss = 0.0
self.total_correct = 0.0
self.total_instances = 0.0
class MtTrainer(Trainer):
def __init__(self, args):
super(MtTrainer, self).__init__(args)
self.total_correct = 0.0
self.total_denominator = 0.0
def forward_propagation(self, batch, model):
src, tgt_out, seg, tgt_in, tgt_seg = batch
loss_info = model(src, tgt_out, seg, tgt_in, tgt_seg)
loss, correct, denominator = loss_info
self.total_loss += loss.item()
self.total_correct += correct.item()
self.total_denominator += denominator.item()
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| acc: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_correct / self.total_denominator))
self.total_loss = 0.0
self.total_correct = 0.0
self.total_denominator = 0.0
class ClsMlmTrainer(Trainer):
def __init__(self, args):
super(ClsMlmTrainer, self).__init__(args)
self.total_loss_cls = 0.0
self.total_correct_cls = 0.0
self.total_instances = 0.0
self.total_loss_mlm = 0.0
self.total_correct_mlm = 0.0
self.total_denominator = 0.0
def forward_propagation(self, batch, model):
src, tgt_mlm, tgt_cls, seg = batch
tgt = {"mlm": tgt_mlm, "cls": tgt_cls}
loss_info = model(src, tgt, seg)
loss_mlm, correct_mlm, denominator = loss_info["mlm"]
loss_cls, correct_cls = loss_info["cls"]
loss = loss_mlm + loss_cls
self.total_loss += loss.item()
self.total_loss_mlm += loss_mlm.item()
self.total_loss_cls += loss_cls.item()
self.total_correct_mlm += correct_mlm.item()
self.total_correct_cls += correct_cls.item()
self.total_denominator += denominator.item()
self.total_instances += src.size(0)
loss = loss / self.accumulation_steps
return loss
def report_and_reset_stats(self):
done_tokens = self.batch_size * self.seq_length * self.report_steps
if self.dist_train:
done_tokens *= self.world_size
self.logger.info("| {:8d}/{:8d} steps"
"| {:8.2f} tokens/s"
"| loss {:7.2f}"
"| loss_mlm: {:3.3f}"
"| loss_cls: {:3.3f}"
"| acc_mlm: {:3.3f}"
"| acc_cls: {:3.3f}".format(
self.current_step,
self.total_steps,
done_tokens / (time.time() - self.start_time),
self.total_loss / self.report_steps,
self.total_loss_mlm / self.report_steps,
self.total_loss_cls / self.report_steps,
self.total_correct_mlm / self.total_denominator,
self.total_correct_cls / self.total_instances))
self.total_loss, self.total_loss_mlm, self.total_loss_cls = 0.0, 0.0, 0.0
self.total_correct_mlm, self.total_denominator = 0.0, 0.0
self.total_correct_cls, self.total_instances = 0.0, 0.0
class T5Trainer(MtTrainer):
pass
class GsgTrainer(MtTrainer):
pass
class BartTrainer(MtTrainer):
pass
class PrefixlmTrainer(MlmTrainer):
pass
str2trainer = {"bert": BertTrainer, "mlm": MlmTrainer, "lm": LmTrainer,
"albert": AlbertTrainer, "bilm": BilmTrainer, "cls": ClsTrainer,
"mt": MtTrainer, "t5": T5Trainer, "gsg": GsgTrainer,
"bart": BartTrainer, "prefixlm": PrefixlmTrainer, "cls_mlm": ClsMlmTrainer}
def worker(local_rank, gpu_ranks, args):
"""
Args:
local_rank: The id of GPU for single GPU mode;
The id of process (and GPU) for multiprocessing distributed mode.
gpu_ranks: List of ranks of each process.
"""
set_seed(args.seed)
# Get logger
args.logger = init_logger(args)
# Env initialize.
args.local_rank = local_rank
init_env(args)
global_rank = args.global_rank
# Build model.
model = init_model(args)
# Build optimizer.
custom_optimizer, custom_scheduler = init_optimizer(args, model)
if local_rank is not None:
model.cuda(local_rank)
optimizer = custom_optimizer
scheduler = custom_scheduler
if args.dist_train:
model = DistributedDataParallel(model, device_ids=[local_rank], find_unused_parameters=True)
args.logger.info("Worker %d is training ... " % global_rank)
else:
args.logger.info("Worker is training ...")
if args.dist_train:
train_loader = str2dataloader[args.data_processor](args, args.dataset_path, args.batch_size, global_rank, args.world_size, local_rank, True)
else:
train_loader = str2dataloader[args.data_processor](args, args.dataset_path, args.batch_size, 0, 1, local_rank, True)
trainer = str2trainer[args.data_processor](args)
trainer.train(args, local_rank, global_rank, train_loader, model, optimizer, scheduler)