|
| 1 | +""" |
| 2 | +Train a simple neural net for MNIST dataset with mixed precision training. |
| 3 | +
|
| 4 | +Examples |
| 5 | +-------- |
| 6 | +- Run with `torch.amp`: |
| 7 | + ```bash |
| 8 | + $ python mnist_with_amp.py --batch_size=32 --seed=42 --tqdm --amp_backend=torch |
| 9 | + ``` |
| 10 | +- Run without mixed precision training: |
| 11 | + ```bash |
| 12 | + $ python mnist_with_amp.py --batch_size=32 --seed=42 --tqdm --amp_backend="" |
| 13 | + ``` |
| 14 | +""" |
| 15 | + |
| 16 | +from argparse import ArgumentParser |
| 17 | +import random |
| 18 | +import sys |
| 19 | +import os |
| 20 | +import time |
| 21 | + |
| 22 | +import numpy as np |
| 23 | +import torch |
| 24 | +import torch.nn as nn |
| 25 | +import torch.nn.functional as F |
| 26 | +import torch.optim as optim |
| 27 | +from torch.utils.data import Subset, DataLoader |
| 28 | +from torchvision import datasets, transforms |
| 29 | + |
| 30 | +from torch_lr_finder import LRFinder |
| 31 | +from apex import amp |
| 32 | + |
| 33 | + |
| 34 | +SEED = 0 |
| 35 | + |
| 36 | +def reset_seed(seed): |
| 37 | + """ |
| 38 | + ref: https://forums.fast.ai/t/accumulating-gradients/33219/28 |
| 39 | + """ |
| 40 | + random.seed(seed) |
| 41 | + os.environ['PYTHONHASHSEED'] = str(seed) |
| 42 | + np.random.seed(seed) |
| 43 | + torch.manual_seed(seed) |
| 44 | + torch.cuda.manual_seed(seed) |
| 45 | + torch.backends.cudnn.deterministic = True |
| 46 | + |
| 47 | + |
| 48 | +def simple_timer(func): |
| 49 | + def wrapper(*args, **kwargs): |
| 50 | + st = time.time() |
| 51 | + func(*args, **kwargs) |
| 52 | + print('--- Time taken from {}: {} seconds'.format( |
| 53 | + func.__qualname__, time.time() - st |
| 54 | + )) |
| 55 | + return wrapper |
| 56 | + |
| 57 | + |
| 58 | +# redirect output from tqdm |
| 59 | +def conceal_stdout(enabled): |
| 60 | + if enabled: |
| 61 | + f = open(os.devnull, 'w') |
| 62 | + sys.stdout = f |
| 63 | + sys.stderr = f |
| 64 | + else: |
| 65 | + sys.stdout = sys.__stdout__ |
| 66 | + sys.stderr = sys.__stderr__ |
| 67 | + |
| 68 | + |
| 69 | +class ConvNet(nn.Module): |
| 70 | + def __init__(self): |
| 71 | + super(ConvNet, self).__init__() |
| 72 | + self.conv1 = nn.Conv2d(1, 16, kernel_size=5, stride=1) |
| 73 | + self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1) |
| 74 | + self.conv2_drop = nn.Dropout2d() |
| 75 | + self.net = nn.Sequential( |
| 76 | + self.conv1, # (24, 24, 16) |
| 77 | + nn.MaxPool2d(2), # (12, 12, 16) |
| 78 | + nn.ReLU(True), |
| 79 | + self.conv2, # (10, 10, 32) |
| 80 | + self.conv2_drop, |
| 81 | + nn.MaxPool2d(2), # (5, 5, 32) |
| 82 | + nn.ReLU(True), |
| 83 | + ) |
| 84 | + self.fc1 = nn.Linear(5*5*32, 64) |
| 85 | + self.fc2 = nn.Linear(64, 16) |
| 86 | + |
| 87 | + def forward(self, x): |
| 88 | + x = self.net(x) |
| 89 | + x = x.view(-1, 5*5*32) |
| 90 | + x = F.relu(self.fc1(x)) |
| 91 | + x = F.dropout(x, training=self.training) |
| 92 | + x = self.fc2(x) |
| 93 | + return F.log_softmax(x, dim=1) |
| 94 | + |
| 95 | + |
| 96 | +@simple_timer |
| 97 | +def warm_up(trainset): |
| 98 | + trainloader = DataLoader(trainset, batch_size=256, shuffle=True) |
| 99 | + |
| 100 | + device = torch.device('cuda') |
| 101 | + model = ConvNet() |
| 102 | + model = model.to(device) |
| 103 | + optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.5) |
| 104 | + criterion = nn.NLLLoss() |
| 105 | + |
| 106 | + conceal_stdout(True) |
| 107 | + lr_finder = LRFinder(model, optimizer, criterion, device='cuda') |
| 108 | + lr_finder.range_test(trainloader, end_lr=10, num_iter=10, step_mode='exp') |
| 109 | + conceal_stdout(False) |
| 110 | + |
| 111 | + |
| 112 | +@simple_timer |
| 113 | +def run_normal(trainset, batch_size, no_tqdm=True): |
| 114 | + trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True) |
| 115 | + |
| 116 | + device = torch.device('cuda') |
| 117 | + model = ConvNet() |
| 118 | + model = model.to(device) |
| 119 | + optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.5) |
| 120 | + criterion = nn.NLLLoss() |
| 121 | + |
| 122 | + conceal_stdout(no_tqdm) |
| 123 | + lr_finder = LRFinder(model, optimizer, criterion, device='cuda') |
| 124 | + lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp') |
| 125 | + lr_finder.plot() |
| 126 | + conceal_stdout(no_tqdm and False) |
| 127 | + |
| 128 | + |
| 129 | +@simple_timer |
| 130 | +def run_amp_apex(trainset, batch_size, no_tqdm=True, opt_level='O1'): |
| 131 | + trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True) |
| 132 | + |
| 133 | + device = torch.device('cuda') |
| 134 | + model = ConvNet() |
| 135 | + model = model.to(device) |
| 136 | + optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.5) |
| 137 | + criterion = nn.NLLLoss() |
| 138 | + |
| 139 | + model, optimizer = amp.initialize(model, optimizer, opt_level=opt_level) |
| 140 | + |
| 141 | + conceal_stdout(no_tqdm) |
| 142 | + lr_finder = LRFinder(model, optimizer, criterion, device='cuda', amp_backend='apex') |
| 143 | + lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp') |
| 144 | + lr_finder.plot() |
| 145 | + conceal_stdout(no_tqdm and False) |
| 146 | + |
| 147 | +@simple_timer |
| 148 | +def run_amp_torch(trainset, batch_size, no_tqdm=True): |
| 149 | + trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True) |
| 150 | + |
| 151 | + device = torch.device('cuda') |
| 152 | + model = ConvNet() |
| 153 | + model = model.to(device) |
| 154 | + optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.5) |
| 155 | + criterion = nn.NLLLoss() |
| 156 | + |
| 157 | + amp_config = { |
| 158 | + 'device_type': 'cuda', |
| 159 | + 'dtype': torch.float16, |
| 160 | + } |
| 161 | + grad_scaler = torch.cuda.amp.GradScaler() |
| 162 | + |
| 163 | + conceal_stdout(no_tqdm) |
| 164 | + lr_finder = LRFinder( |
| 165 | + model, optimizer, criterion, |
| 166 | + amp_backend='torch', amp_config=amp_config, grad_scaler=grad_scaler |
| 167 | + ) |
| 168 | + lr_finder.range_test(trainloader, end_lr=10, num_iter=100, step_mode='exp') |
| 169 | + lr_finder.plot() |
| 170 | + conceal_stdout(no_tqdm and False) |
| 171 | + |
| 172 | +def parse_args(): |
| 173 | + parser = ArgumentParser(add_help=True) |
| 174 | + parser.add_argument('--amp_backend', type=str, default='', |
| 175 | + help='Backend for auto-mixed precision training, available: ' |
| 176 | + '[torch, apex]. If not specified, amp is disabled.') |
| 177 | + parser.add_argument('--batch_size', type=int, default=32) |
| 178 | + parser.add_argument('--seed', type=int, default=0, help='Random seed.') |
| 179 | + parser.add_argument('--data_folder', type=str, default='./data', |
| 180 | + help='Location of MNIST dataset.') |
| 181 | + parser.add_argument('--cudnn_benchmark', action='store_true', |
| 182 | + help='Add this flag to make cudnn auto-tuner able to find ' |
| 183 | + 'the best algorithm on your machine. This may improve the ' |
| 184 | + 'performance when you are running script of mixed precision ' |
| 185 | + 'training.') |
| 186 | + parser.add_argument('--tqdm', action='store_true', |
| 187 | + help='Add this flag to show the output from tqdm.') |
| 188 | + parser.add_argument('--warm_up', action='store_true', |
| 189 | + help='Add this flag to run a warm-up snippet.') |
| 190 | + parser.add_argument('--opt_level', type=str, default='O1', |
| 191 | + help='Optimization level for amp. (works only for `apex`)') |
| 192 | + return parser.parse_args() |
| 193 | + |
| 194 | + |
| 195 | +if __name__ == '__main__': |
| 196 | + args = parse_args() |
| 197 | + |
| 198 | + # turn this mode on may improve the performance on some GPUs |
| 199 | + torch.backends.cudnn.benchmark = args.cudnn_benchmark |
| 200 | + |
| 201 | + transform = transforms.Compose([ |
| 202 | + transforms.ToTensor(), |
| 203 | + transforms.Normalize((0.1307,), (0.3081,)) |
| 204 | + ]) |
| 205 | + trainset = datasets.MNIST(args.data_folder, train=True, download=True, transform=transform) |
| 206 | + |
| 207 | + reset_seed(args.seed) |
| 208 | + if args.warm_up: |
| 209 | + warm_up(trainset) |
| 210 | + |
| 211 | + if args.amp_backend == '': |
| 212 | + run_normal(trainset, args.batch_size, no_tqdm=not args.tqdm) |
| 213 | + elif args.amp_backend == 'apex': |
| 214 | + run_amp_apex(trainset, args.batch_size, no_tqdm=not args.tqdm, opt_level=args.opt_level) |
| 215 | + elif args.amp_backend == 'torch': |
| 216 | + run_amp_torch(trainset, args.batch_size, no_tqdm=not args.tqdm) |
| 217 | + else: |
| 218 | + print('Unknown amp backend: {}'.format(args.amp_backend)) |
| 219 | + |
0 commit comments