-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathatari_dqn.py
152 lines (132 loc) · 5.77 KB
/
atari_dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DQNPolicy
from tianshou.env import SubprocVectorEnv
from net.discrete_net import DQN
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from atari_wrapper import wrap_deepmind, InverseReward
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='PongNoFrameskip-v4')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--eps_test', type=float, default=0.005)
parser.add_argument('--eps_train', type=float, default=1.)
parser.add_argument('--eps_train_final', type=float, default=0.05)
parser.add_argument('--buffer-size', type=int, default=100000)
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--n_step', type=int, default=3)
parser.add_argument('--target_update_freq', type=int, default=500)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step_per_epoch', type=int, default=10000)
parser.add_argument('--collect_per_step', type=int, default=10)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--training_num', type=int, default=16)
parser.add_argument('--test_num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--frames_stack', type=int, default=4)
parser.add_argument('--resume_path', type=str, default=None)
parser.add_argument('--watch', default=False, action='store_true',
help='watch the play of pre-trained policy only')
parser.add_argument('--invert_reward', default=False, action='store_true',
help="rew'=-rew")
return parser.parse_args()
def make_atari_env(args):
environment = wrap_deepmind(args.task, frame_stack=args.frames_stack)
if args.invert_reward:
environment = InverseReward(environment)
return environment
def make_atari_env_watch(args):
environment = wrap_deepmind(args.task, frame_stack=args.frames_stack,
episode_life=False, clip_rewards=False)
if args.invert_reward:
environment = InverseReward(environment)
return environment
def test_dqn(args=get_args()):
env = make_atari_env(args)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.env.action_space.shape or env.env.action_space.n
# should be N_FRAMES x H x W
print("Observations shape: ", args.state_shape)
print("Actions shape: ", args.action_shape)
# make environments
train_envs = SubprocVectorEnv([lambda: make_atari_env(args)
for _ in range(args.training_num)])
test_envs = SubprocVectorEnv([lambda: make_atari_env_watch(args)
for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# define model
net = DQN(*args.state_shape,
args.action_shape, args.device).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
# define policy
policy = DQNPolicy(net, optim, args.gamma, args.n_step,
target_update_freq=args.target_update_freq)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(args.resume_path))
print("Loaded agent from: ", args.resume_path)
buffer = ReplayBuffer(args.buffer_size, ignore_obs_next=True)
# collector
train_collector = Collector(policy, train_envs, buffer)
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(x):
if env.env.spec.reward_threshold:
return x >= env.spec.reward_threshold
elif 'Pong' in args.task:
return x >= 20
def train_fn(epoch, env_step):
# nature DQN setting, linear decay in the first 1M steps
if env_step <= 1e6:
eps = args.eps_train - env_step / 1e6 * \
(args.eps_train - args.eps_train_final)
else:
eps = args.eps_train_final
policy.set_eps(eps)
writer.add_scalar('train/eps', eps, global_step=env_step)
print("set eps =", policy.eps)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# watch agent's performance
def watch():
print("Testing agent ...")
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
pprint.pprint(result)
if args.watch:
watch()
exit(0)
# test train_collector and start filling replay buffer
train_collector.collect(n_step=args.batch_size * 4)
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
args.batch_size, train_fn=train_fn, test_fn=test_fn,
stop_fn=stop_fn, save_fn=save_fn, writer=writer, test_in_train=False)
pprint.pprint(result)
watch()
if __name__ == '__main__':
test_dqn(get_args())