This repository has been archived by the owner on Dec 10, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtransportationDataBook.py
145 lines (115 loc) · 5.67 KB
/
transportationDataBook.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import pandas
import psycopg2
import sqlite3
from matplotlib import pyplot
from scipy.stats.kde import gaussian_kde
import rpy2.robjects as robjects
import numpy
import scipy.stats as stats
import statsmodels.api as sm
from math import sqrt
import datetime
from os import system
system('ls')
system('pwd')
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/route19march07.csv")
pyplot.scatter(df.stop_time,df.est_load)
pyplot.scatter(df.index,df.est_load)
df.service_day.value_counts(sort=True,ascending=True).plot(kind='bar')
pyplot.scatter(df.x_coord,df.y_coord)
pyplot.show()
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/wimaug10_14.csv")
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/wimaug8.csv")
df[(df['type'] == 11) & (df['timestamp'] >= '2009-08-08') & (df['timestamp'] <= '2009-08-09')]
dataToExplore = df[(df['type'] == 11) & (df['timestamp'] >= '2009-08-08') & (df['timestamp'] <= '2009-08-09')]['spc2']
dataToExplore.mean()
dataToExplore.median()
dataToExplore.mode()
dataToExplore.std()
dataToExplore.var()
dataToExplore.skew()
dataToExplore.kurtosis()
dataToExplore.value_counts()
dataToExplore.describe()
pyplot.boxplot(dataToExplore)
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/incidents.csv")
pyplot.scatter(df['Unnamed: 0'],df['incidenttypeid'])
df['incidenttypeid'].value_counts
for i in df:
try:
pyplot.close()
pyplot.scatter(df['Unnamed: 0'],df[i])
pyplot.savefig('figure-' + i + '.png')
except:
pass
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/wimaug8.csv")
df['axl1'].value_counts()
x = numpy.linspace(0,20,1000)
pyplot.plot(x,gaussian_kde(df['axl1'])(x))
pyplot.hist(df['axl1'],normed=1,alpha=.3)
rvector = robjects.IntVector(np.array(df['axl1']))
rhist = robjects.r['hist']
r.X11()
rhist = robjects.r['hist']
x = numpy.arange(-10, 10, .01)
rv1 = stats.norm(loc = 0., scale = 2.0)
rv2 = stats.norm(loc = 1., scale = 2.0)
rv3 = stats.norm(loc = 1., scale = 1.0)
rv4 = stats.norm(loc = 0., scale = 1.0)
pyplot.plot(x,rv1.pdf(x))
pyplot.plot(x,rv2.pdf(x))
pyplot.plot(x,rv3.pdf(x))
pyplot.plot(x,rv4.pdf(x))
pyplot.plot(x,rv1.cdf(x))
qqdata = numpy.random.normal(0,1, 1000)
sm.qqplot(qqdata, line='s')
b = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/bicycle.csv")
set1 = pandas.Series(b[(b['grade'] == 0)]['avgspeed'].tolist())
set2 = pandas.Series(b[(b['grade'] == 1)]['avgspeed'].tolist())
summary = []
for set in [set1,set2]:
summary.append((set.mean(),set.var(),set.std(),set.skew(),set.kurtosis()))
summaryDF = pandas.DataFrame(summary,index=['Grade','No Grade'],columns=['mean','var','std','skew','kurtosis'])
x = numpy.linspace(0,10,1000)
for (set, color) in zip([set1,set2],['red','blue']):
pyplot.plot(x,stats.gaussian_kde(set)(x),color=color)
pyplot.axvline(x=set.mean(),dashes=[10,10],color=color)
for (set, color) in zip([set1,set2],['red','blue']):
ecdf = sm.distributions.ECDF(set)
pyplot.plot(ecdf.x,ecdf.y,color=color)
pyplot.boxplot([set1,set2])
sm.qqplot(set1, line='s')
sm.qqplot(set2, line='s')
stat = stats.norm.ppf(.8)
error1 = stat*set1.std()/sqrt(len(set1))
error2 = stat*set2.std()/sqrt(len(set2))
pyplot.scatter(1,set1.mean(),color='blue')
pyplot.scatter(1,set1.mean()+error1,marker='2',color='blue',s=100)
pyplot.scatter(1,set1.mean()-error1,marker='1',color='blue',s=100)
pyplot.axhline(y=set1.mean()-error1,dashes=[10,10],color='blue')
pyplot.scatter(2,set2.mean(),color='red')
pyplot.scatter(2,set2.mean()+error2,marker='2',color='red',s=100)
pyplot.scatter(2,set2.mean()-error2,marker='1',color='red',s=100)
pyplot.axhline(y=set2.mean()+error2,dashes=[10,10],color='red')
stats.ttest_ind(set1,set2)
stats.ttest_ind(set1,set2,equal_var=False)
df = pandas.read_csv("http://web.cecs.pdx.edu/~monserec/t.data/resources/data/incidents.csv")
df['dur'] = df['duration'].map(lambda x: datetime.datetime.strptime(x, '%H:%M:%S')-datetime.datetime(1900,1,1))
nolane = df[(df['numlanesaffected'] == 0)]
onelane = df[(df['numlanesaffected'] == 1)]
twolane = df[(df['numlanesaffected'] == 2)]
morelane = df[(df['numlanesaffected'] >= 3)]
pyplot.boxplot([(nolane['dur'] / numpy.timedelta64(1, 's')).tolist(),(onelane['dur'] / numpy.timedelta64(1, 's')).tolist(),(twolane['dur'] / numpy.timedelta64(1, 's')).tolist(),(morelane['dur'] / numpy.timedelta64(1, 's')).tolist()])
stats.ttest_ind(nolane['dur'] / numpy.timedelta64(1, 's'),onelane['dur'] / numpy.timedelta64(1, 's'))
stats.ttest_ind(nolane['dur'] / numpy.timedelta64(1, 's'),twolane['dur'] / numpy.timedelta64(1, 's'))
stats.ttest_ind(nolane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
stats.ttest_ind(onelane['dur'] / numpy.timedelta64(1, 's'),twolane['dur'] / numpy.timedelta64(1, 's'))
stats.ttest_ind(onelane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
stats.ttest_ind(twolane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(nolane['dur'] / numpy.timedelta64(1, 's'),onelane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(nolane['dur'] / numpy.timedelta64(1, 's'),twolane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(nolane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(onelane['dur'] / numpy.timedelta64(1, 's'),twolane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(onelane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
stats.f_oneway(twolane['dur'] / numpy.timedelta64(1, 's'),morelane['dur'] / numpy.timedelta64(1, 's'))
# big difference between 0 and 1 or 2 lanes affected. not a big differnece between 1,2,3+ lanes affected