Skip to content

Commit a77c5cc

Browse files
committed
texstuff
1 parent 8484737 commit a77c5cc

31 files changed

+1103
-1108
lines changed

basis_P1_2D.tex

Lines changed: 22 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -9,13 +9,21 @@
99
Velocities (or displacements) $(u^h,v^h)$ in the element are interpolated from nodal velocities
1010
$(u_i,v_i)$ using basis functions $\bN_i$ as follows,
1111
\[
12+
\vec\upnu^h=
1213
\left(
1314
\begin{array}{c}
1415
u^h(x,y) \\v^h(x,y)
1516
\end{array}
1617
\right)
1718
=
1819
\left(
20+
\begin{array}{c}
21+
\sum_{i=1}^3 \bN_i(x,y) u_i \\
22+
\sum_{i=1}^3 \bN_i(x,y) v_i
23+
\end{array}
24+
\right)
25+
=
26+
\left(
1927
\begin{array}{cccccc}
2028
\bN_1(x,y) & 0 & \bN_2(x,y) & 0 & \bN_3(x,y) & 0\\
2129
0 & \bN_1(x,y) & 0 & \bN_2(x,y) & 0 & \bN_3(x,y)\\
@@ -29,16 +37,10 @@
2937
\right)
3038
\]
3139
or simply
32-
\[
33-
u^h(x,y)=\sum_{i=1}^3 \bN_i(x,y) u_i
34-
\qquad
35-
\qquad
36-
v^h(x,y)=\sum_{i=1}^3 \bN_i(x,y) v_i
37-
\]
3840

3941
For this element, we have three nodes at the vertices of the triangle, which are
4042
numbered around the element in the counterclockwise direction.
41-
Each node has two degrees of freedom (can move in the $x$ and $y$ directions).
43+
Each node has two degrees of freedom (i.e. it can move in the $x$ and $y$ directions).
4244
The velocities $u^h$ and $v^h$ are assumed to be linear functions within the element, that is,
4345
\begin{eqnarray}
4446
u^h(x,y)&=&b_1 +b_2x+b_3y \nn\\
@@ -47,13 +49,14 @@
4749
where $b_i$ are constants to be determined and which depend on the triangle shape.
4850
Note that the strain rate components are then given by
4951
\begin{eqnarray}
50-
\dot\varepsilon_{xx}&=&b_2 \nn\\
51-
\dot\varepsilon_{yy}&=&b_6 \nn\\
52-
\dot\varepsilon_{xy}&=&(b_3+b_5)/2 \nn
52+
\dot\varepsilon_{xx}(\vec\upnu)&=&b_2 \nn\\
53+
\dot\varepsilon_{yy}(\vec\upnu)&=&b_6 \nn\\
54+
\dot\varepsilon_{xy}(\vec\upnu)&=&(b_3+b_5)/2 \nn
5355
\end{eqnarray}
5456
and are constant throughout the element.
5557

56-
The velocities should satisfy the following six equations:
58+
The velocities should satisfy the following six equations (when it is evaluated at a node we should
59+
recover the nodal velocity):
5760
\begin{eqnarray}
5861
u_1 &=& u^h(x_1,y_1)= b_1 + b_2x_1+b_3y_1 \nn\\
5962
u_2 &=& u^h(x_2,y_2)= b_1 + b_2x_2+b_3y_2 \nn\\
@@ -87,7 +90,6 @@
8790
\]
8891
In order to obtain $b_1,b_2,b_3$ we need to solve this system, or simply to compute the
8992
inverse of the $3\times 3$ ${\bm M}$ matrix, as explained in Appendix~\ref{sec:inv3x3}.
90-
9193
We define $D={\rm det}({\bm M})$ and we get
9294
\[
9395
\left(
@@ -122,7 +124,7 @@
122124
%\end{array}
123125
%\right)
124126
\]
125-
The matrix $\tilde{\bm M}$ writes:
127+
The matrix $\tilde{\bm M}$ is given by:
126128
\[
127129
\tilde{\bm M}
128130
%=
@@ -166,13 +168,12 @@
166168
\bN_2(x,y) &=& \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x + (x_1-x_3)y] \nn\\
167169
\bN_3(x,y) &=& \frac{1}{D}[(x_1y_2-x_2y_1) + (y_1-y_2)x + (x_2-x_1)y] \nn
168170
\end{eqnarray}
169-
Importantly we can easily verify that for example
170-
\[
171-
\bN_2(x_1,y_1)= \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x_1 + (x_1-x_3)y_1] = 0
172-
\]
173-
\[
174-
\bN_2(x_2,y_2)= \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x_2 + (x_1-x_3)y_2] = 1
175-
\]
171+
We can then easily verify that for example
172+
\begin{eqnarray}
173+
\bN_2(x_1,y_1)&=& \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x_1 + (x_1-x_3)y_1] = 0 \\
174+
\bN_2(x_2,y_2)&=& \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x_2 + (x_1-x_3)y_2] = 1 \\
175+
\bN_2(x_3,y_3)&=& \frac{1}{D}[(x_3y_1-x_1y_3) + (y_3-y_1)x_3 + (x_1-x_3)y_3] = 0
176+
\end{eqnarray}
176177
Note that the area $A$ of the triangle is given by:
177178
\[
178179
A=\frac{1}{2}D = \frac{1}{2}
@@ -201,7 +202,7 @@
201202
\bN_2(r,s) &=& s
202203
\end{eqnarray}
203204
\end{mdframed}
204-
Once again we can verify that $\bN_i(x_j,y_j)=\delta_{ij}$ and $\sum_i \bN_i(r,s)=1$.
205+
Once again we can verify that $\bN_i(x_j,y_j)=\delta_{ij}$ and $\sum\limits_i \bN_i(r,s)=1$.
205206

206207

207208

basis_Q1_2D.tex

Lines changed: 1 addition & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,6 @@
1313
to the $(r,s)$ once and vice versa will be dealt with later on.
1414
The basis functions in the above reference element in the reduced
1515
coordinates system $(r,s)$ are given by:
16-
1716
\begin{mdframed}[backgroundcolor=blue!5]
1817
\begin{eqnarray}
1918
\bN_1(r,s)&=&0.25(1-r)(1-s) \nonumber\\
@@ -24,19 +23,15 @@
2423
\end{mdframed}
2524
These basis functions are the product of the linear basis functions of Section~\ref{sec:bf1}
2625
in the $r$ direction and the $s$ direction.
27-
2826
\begin{center}
2927
\includegraphics[width=4cm]{images/basis_Q1_2D/N1}
3028
\includegraphics[width=4cm]{images/basis_Q1_2D/N2}
3129
\includegraphics[width=4cm]{images/basis_Q1_2D/N3}
3230
\includegraphics[width=4cm]{images/basis_Q1_2D/N4}\\
33-
{\captionfont Surface representation of the basis functions on the reference element.\\
31+
{\captionfont Surface representation of the basis functions on the reference element.
3432
{\color{gray} in images/basis\_Q1\_2D/ }}
3533
\end{center}
36-
37-
3834
The partial derivatives of these functions with respect to $r$ ans $s$ automatically follow:
39-
4035
\begin{mdframed}[backgroundcolor=blue!5]
4136
\begin{align}
4237
\frac{\partial \bN_1}{\partial r}(r,s)&= - 0.25(1-s) &
@@ -49,7 +44,6 @@
4944
\frac{\partial \bN_4}{\partial s}(r,s)&= + 0.25(1-r) \nonumber
5045
\end{align}
5146
\end{mdframed}
52-
5347
Let us go back to Eq.~\eqref{bf01} and let us assume that the
5448
function $v(r,s)=C$ so that $v_i=C$ for $i=1,2,3,4$.
5549
It then follows that

basis_Q28_2D.tex

Lines changed: 3 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -2,9 +2,8 @@
22
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
33

44
The serendipity elements are those rectangular elements which have no
5-
interior nodes \cite[p65]{reddybook2}.
6-
7-
Inside an element the local numbering of the nodes is as follows:
5+
interior nodes (See for example Reddy \cite[p65]{reddybook2}).
6+
Inside an element a possible local numbering of the nodes is as follows:
87

98
\input{tikz/tikz_serendipity2D}
109

@@ -44,7 +43,7 @@
4443
\includegraphics[width=4cm]{images/basis_Q28_2D/N6}
4544
\includegraphics[width=4cm]{images/basis_Q28_2D/N7}
4645
\includegraphics[width=4cm]{images/basis_Q28_2D/N8}\\
47-
{\captionfont Surface representation of the basis functions on the reference element.\\
46+
{\captionfont Surface representation of the basis functions on the reference element.
4847
{\color{gray} in images/basis\_Q28\_2D/ }}
4948
\end{center}
5049

@@ -77,5 +76,4 @@
7776
\frac{\partial \bN_7}{\partial s}(r,s)&=& (r-1)s
7877
\end{eqnarray}
7978
\end{mdframed}
80-
8179
These basis functions are used in \stone 52.

basis_Q2_2D.tex

Lines changed: 5 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -3,12 +3,12 @@
33

44
This element is part of the so-called Lagrange family \cite{raki00}.
55
Inside an element the local numbering of the nodes is as follows\footnote{I have adopted here
6-
a numbering scheme starting at zero!}:
6+
a numbering scheme starting at zero! Also, it is a numbering among many other possible choices!}:
77

88
\input{tikz/tikz_q22d}
99

1010
Note that this numbering is also employed in Li \cite[p56]{li06}.
11-
The polynomial representation of the function $\phi$ over this element is then
11+
The polynomial representation of the function $\phi$ over this element is then taken to be biquadratic:
1212
\[
1313
\phi^h(r,s) = a + br + cs + drs + er^2 + fs^2 + gr^2s + hrs^2 + i r^2s^2 = \sum_{i=0}^8 \bN_i(r,s) \phi_i
1414
\]
@@ -26,8 +26,7 @@
2626
\bN_8(r,s)&=& (1-r^2) (1-s^2)\nonumber
2727
\end{eqnarray}
2828
\end{mdframed}
29-
30-
Note that we have $\bN_i(r_j,s_j)=\delta_{ij}$ and $\bN_i(r_i,s_i)=1$.
29+
Note that we have $\bN_i(r_j,s_j)=\delta_{ij}$ and then obviously $\bN_i(r_i,s_i)=1$.
3130

3231
\begin{center}
3332
\includegraphics[width=4cm]{images/basis_Q2_2D/N1}
@@ -39,11 +38,9 @@
3938
\includegraphics[width=4cm]{images/basis_Q2_2D/N7}
4039
\includegraphics[width=4cm]{images/basis_Q2_2D/N8}
4140
\includegraphics[width=4cm]{images/basis_Q2_2D/N9}\\
42-
{\captionfont Surface representation of the basis functions on the reference element.\\
41+
{\captionfont Surface representation of the basis functions on the reference element.
4342
{\color{gray} in images/basis\_Q2\_2D/ }}
4443
\end{center}
45-
46-
4744
Their derivatives are given by:
4845
\begin{mdframed}[backgroundcolor=blue!5]
4946
\begin{align}
@@ -67,5 +64,4 @@
6764
\frac{\partial \bN_8}{\partial s}&= (1-r^2) (-2s)\nonumber
6865
\end{align}
6966
\end{mdframed}
70-
71-
These basis functions are used in \stone 18.
67+
These basis functions are used for example in \stone 18.

basis_Q3_2D.tex

Lines changed: 21 additions & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -1,38 +1,37 @@
11
\begin{flushright} {\tiny {\color{gray} basis\_Q3\_2D.tex}} \end{flushright}
22
%~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
33

4-
Inside an element the local numbering of the nodes is as follows:
4+
Inside an element a possible local numbering of the nodes is as follows:
55

66
\input{tikz/tikz_q32d}
77

8-
The 1D cubic basis functions are given by:
8+
As shown in Section~\ref{sec:bf3} the 1D cubic basis functions are given by:
99
\begin{align}
10-
\bN_1(r)&=(-1 +r +9r^2 - 9r^3)/16 & \bN_1(t)&=(-1 +t +9t^2 - 9t^3)/16 \nonumber\\
11-
\bN_2(r)&=(+9 -27r -9r^2 +27r^3)/16 & \bN_2(t)&=(+9 -27t -9t^2 +27t^3)/16 \nonumber\\
12-
\bN_3(r)&=(+9 +27r -9r^2 -27r^3)/16 & \bN_3(t)&=(+9 +27t -9t^2 -27t^3)/16 \nonumber\\
13-
\bN_4(r)&=(-1 -r +9r^2 + 9r^3)/16 & \bN_4(t)&=(-1 -t +9t^2 + 9t^3)/16 \nonumber
10+
\bN_1(r)&=(-1 +r +9r^2 - 9r^3)/16 & \bN_1(s)&=(-1 +s +9s^2 - 9s^3)/16 \nonumber\\
11+
\bN_2(r)&=(+9 -27r -9r^2 +27r^3)/16 & \bN_2(s)&=(+9 -27s -9s^2 +27s^3)/16 \nonumber\\
12+
\bN_3(r)&=(+9 +27r -9r^2 -27r^3)/16 & \bN_3(s)&=(+9 +27s -9s^2 -27s^3)/16 \nonumber\\
13+
\bN_4(r)&=(-1 -r +9r^2 + 9r^3)/16 & \bN_4(s)&=(-1 -s +9s^2 + 9s^3)/16 \nonumber
1414
\end{align}
15-
16-
The resulting basis functions are simply the tensor product of the above 1D ones:
15+
and the resulting 2D basis functions are simply the tensor product of the above 1D ones:
1716

1817
\begin{mdframed}[backgroundcolor=blue!5]
1918
\begin{eqnarray}
20-
\bN_{01}(r,s)&=&\bN_1(r)\bN_1(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (-1 +t +9s^2 - 9s^3)/16 \nonumber\\
21-
\bN_{02}(r,s)&=&\bN_2(r)\bN_1(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (-1 +t +9s^2 - 9s^3)/16 \nonumber\\
22-
\bN_{03}(r,s)&=&\bN_3(r)\bN_1(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (-1 +t +9s^2 - 9s^3)/16 \nonumber\\
23-
\bN_{04}(r,s)&=&\bN_4(r)\bN_1(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (-1 +t +9s^2 - 9s^3)/16 \nonumber\\
19+
\bN_{01}(r,s)&=&\bN_1(r)\bN_1(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (-1 +s +9s^2 - 9s^3)/16 \nonumber\\
20+
\bN_{02}(r,s)&=&\bN_2(r)\bN_1(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (-1 +s +9s^2 - 9s^3)/16 \nonumber\\
21+
\bN_{03}(r,s)&=&\bN_3(r)\bN_1(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (-1 +s +9s^2 - 9s^3)/16 \nonumber\\
22+
\bN_{04}(r,s)&=&\bN_4(r)\bN_1(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (-1 +s +9s^2 - 9s^3)/16 \nonumber\\
2423
\bN_{05}(r,s)&=&\bN_1(r)\bN_2(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (9 -27s -9s^2 +27s^3)/16 \nonumber\\
2524
\bN_{06}(r,s)&=&\bN_2(r)\bN_2(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (9 -27s -9s^2 +27s^3)/16 \nonumber\\
2625
\bN_{07}(r,s)&=&\bN_3(r)\bN_2(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (9 -27s -9s^2 +27s^3)/16 \nonumber\\
2726
\bN_{08}(r,s)&=&\bN_4(r)\bN_2(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (9 -27s -9s^2 +27s^3)/16 \nonumber\\
28-
\bN_{09}(r,s)&=&\bN_1(r)\bN_3(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (9 +27t -9t^2 -27t^3)/16 \nn\\
29-
\bN_{10}(r,s)&=&\bN_2(r)\bN_3(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (9 +27t -9t^2 -27t^3)/16 \nn\\
30-
\bN_{11}(r,s)&=&\bN_3(r)\bN_3(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (9 +27t -9t^2 -27t^3)/16 \nn\\
31-
\bN_{12}(r,s)&=&\bN_4(r)\bN_3(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (9 +27t -9t^2 -27t^3)/16 \nn\\
32-
\bN_{13}(r,s)&=&\bN_1(r)\bN_4(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (-1 -t +9t^2 + 9t^3)/16\nn\\
33-
\bN_{14}(r,s)&=&\bN_2(r)\bN_4(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (-1 -t +9t^2 + 9t^3)/16\nn\\
34-
\bN_{15}(r,s)&=&\bN_3(r)\bN_4(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (-1 -t +9t^2 + 9t^3)/16\nn\\
35-
\bN_{16}(r,s)&=&\bN_4(r)\bN_4(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (-1 -t +9t^2 + 9t^3)/16
27+
\bN_{09}(r,s)&=&\bN_1(r)\bN_3(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (9 +27s -9s^2 -27s^3)/16 \nn\\
28+
\bN_{10}(r,s)&=&\bN_2(r)\bN_3(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (9 +27s -9s^2 -27s^3)/16 \nn\\
29+
\bN_{11}(r,s)&=&\bN_3(r)\bN_3(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (9 +27s -9s^2 -27s^3)/16 \nn\\
30+
\bN_{12}(r,s)&=&\bN_4(r)\bN_3(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (9 +27s -9s^2 -27s^3)/16 \nn\\
31+
\bN_{13}(r,s)&=&\bN_1(r)\bN_4(s) = (-1 +r +9r^2 - 9r^3)/16 \cdot (-1 -s +9s^2 + 9s^3)/16\nn\\
32+
\bN_{14}(r,s)&=&\bN_2(r)\bN_4(s) = (+9 -27r -9r^2 +27r^3)/16 \cdot (-1 -s +9s^2 + 9s^3)/16\nn\\
33+
\bN_{15}(r,s)&=&\bN_3(r)\bN_4(s) = (+9 +27r -9r^2 -27r^3)/16 \cdot (-1 -s +9s^2 + 9s^3)/16\nn\\
34+
\bN_{16}(r,s)&=&\bN_4(r)\bN_4(s) = (-1 -r +9r^2 + 9r^3)/16 \cdot (-1 -s +9s^2 + 9s^3)/16
3635
\end{eqnarray}
3736
\end{mdframed}
3837

@@ -53,18 +52,13 @@
5352
\includegraphics[width=4cm]{images/basis_Q3_2D/N14}
5453
\includegraphics[width=4cm]{images/basis_Q3_2D/N15}
5554
\includegraphics[width=4cm]{images/basis_Q3_2D/N16}\\
56-
{\captionfont Surface representation of the basis functions on the reference element.\\
55+
{\captionfont Surface representation of the basis functions on the reference element.
5756
{\color{gray} in images/basis\_Q3\_2D/ }}
5857
\end{center}
59-
6058
The derivatives are trivial to obtain from the derivatives of the 1D basis functions,
6159
e.g.
6260
\[
6361
\frac{\partial \bN_{13}}{\partial r} =
64-
\frac{\partial \bN_{1}}{\partial r} \bN_4(s)
62+
\frac{\partial \bN_{1}}{\partial r} \bN_3(s)
6563
\]
66-
6764
These basis functions are used in \stone 19.
68-
69-
70-

basis_QH8_2D.tex

Lines changed: 74 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,74 @@
1+
2+
This element is proposed in Zhang \& Xiang (2020) \cite{zhxi20}. Two remarks
3+
must be made: 1) Eq.~(29) of their publication which is the definition
4+
of the basis functions contains an error\footnote{
5+
Answer from the author: ``N5 to N8 is missing an A in the denominator and
6+
the calculation program does not have this problem''}.
7+
2) The authors use a rather
8+
uncommon and annoying rotated numbering:
9+
\begin{verbatim}
10+
y
11+
|
12+
2=====5=====1 3=====6=====2
13+
| | | | (r_0,s_0)=(-1,-1) (r_4,s_4)=( 0,-1)
14+
| | | | (r_1,s_1)=(+1,-1) (r_5,s_5)=(+1, 0)
15+
6 8--x 7 + 5 (r_2,s_2)=(+1,+1) (r_6,s_6)=( 0,+1)
16+
| | | | (r_3,s_3)=(-1,+1) (r_7,s_7)=(-1, 0)
17+
| | | |
18+
3=====7=====4 0=====4=====1
19+
Zhang & Xiang our numbering
20+
\end{verbatim}
21+
22+
For each element they define (their numbering):
23+
\begin{eqnarray}
24+
A &=& \frac{1}{2} [ (x_1-x_3)(y_2-y_4)-(x_2-x_4)(y_1-y_3) ] \nn\\
25+
m_x &=& (x_1-x_4)(y_2-y_3)-(x_2-x_3)(y_1-y_4) \nn\\
26+
m_y &=& (x_3-x_4)(y_1-y_2)-(x_1-x_2)(y_3-y_4) \nn
27+
\end{eqnarray}
28+
Note that $A$ is the area of the element, and that in the case when
29+
the element is a rectangle then $m_x=m_y=0$.
30+
\begin{eqnarray}
31+
\bN_1(r,s)&=& n_1(r,s) +(m_x^2 - m_xm_y + m_y^2)\frac{E(r,s)}{D} \nn\\
32+
\bN_2(r,s)&=& n_2(r,s) +(m_x^2 + m_xm_y + m_y^2)\frac{E(r,s)}{D} \nn\\
33+
\bN_3(r,s)&=& n_3(r,s) +(m_x^2 - m_xm_y + m_y^2)\frac{E(r,s)}{D} \nn\\
34+
\bN_4(r,s)&=& n_4(r,s) +(m_x^2 + m_xm_y + m_y^2)\frac{E(r,s)}{D} \nn\\
35+
\bN_5(r,s)&=& n_5(r,s) -m_x(2Am_x+m_y^2)\frac{E(r,s)}{AD} \nn\\
36+
\bN_6(r,s)&=& n_6(r,s) -m_y(2Am_y+m_x^2)\frac{E(r,s)}{AD} \nn\\
37+
\bN_7(r,s)&=& n_7(r,s) +m_x(-2Am_x+m_y^2)\frac{E(r,s)}{AD} \nn\\
38+
\bN_8(r,s)&=& n_8(r,s) +m_y(-2Am_y+m_x^2)\frac{E(r,s)}{AD} \nn
39+
\end{eqnarray}
40+
with
41+
\[
42+
E(r,s)=(1-r^2)(1-s^2)
43+
\qquad
44+
D=4(4A^2+m_x^2+m_y^2)
45+
\]
46+
and where the $n_i$ functions are the basis functions of the 'regular'
47+
8-node element (see Section~\ref{sec:serendipity2D}).
48+
49+
This is implemented in \stone 52.
50+
51+
\todo[inline]{not finished. SHOW CONSISTENCY !! like in paper
52+
email sent to author about mistake. }
53+
54+
Let us verify consistency:
55+
\begin{eqnarray}
56+
\sum_{i=1}^8 \bN_i(r,s)
57+
&=& \underbrace{\sum_{i=1}^8 n_i(r,s)}_{=0} + \frac{E(r,s)}{D}
58+
\left[
59+
(m_x^2 - m_xm_y + m_y^2)
60+
+(m_x^2 + m_xm_y + m_y^2)
61+
+(m_x^2 - m_xm_y + m_y^2)
62+
+(m_x^2 + m_xm_y + m_y^2) \right. \nn\\
63+
&& \left.
64+
-m_x(2Am_x+m_y^2)\frac{1}{A}
65+
-m_y(2Am_y+m_x^2)\frac{1}{A}
66+
+m_x(-2Am_x+m_y^2)\frac{1}{A}
67+
+m_y(-2Am_y+m_x^2)\frac{1}{A}
68+
\right] \nn\\
69+
&=& \frac{E(r,s)}{D}
70+
\left[(4m_x^2 + 4m_y^2) + \frac{1}{A} (-4Am_x^2 - 4A m_y^2) \right] \\
71+
&=& 0
72+
\end{eqnarray}
73+
74+

basis_functions_meaning.tex

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -12,7 +12,7 @@ \subsubsection{In one dimension}
1212

1313
The four cases a,b,c,d are examples of combinations of these basis functions:
1414
\[
15-
f_h(x)=\sum_{i=1}^4 \bN_i(x) f_i
15+
f^h(x)=\sum_{i=1}^4 \bN_i(x) f_i
1616
\]
1717
Where $f_i$ are the values associated to the four nodes.
1818
We assume that the distance $h$ between nodes is 1.
@@ -25,15 +25,15 @@ \subsubsection{In one dimension}
2525

2626
Example c) illustrates the fact that these linear basis functions can exactly represent a
2727
linear function. When $f(x)=x-2$, then $f_1=f(0)=-2$, $f_2=f(1)=-1$, $f_3=f(2)=0$ and $f_4=f(3)=+1$,
28-
then $f_h(x)$ is exactly $f(x)$ on the domain.
28+
then $f^h(x)$ is exactly $f(x)$ on the domain.
2929

3030
Example d) illustrates the fact that linear basis functions cannot represent a parabola. Smaller and
3131
smaller elements will do an increasingly better job and will get closer to the curve but a
3232
systematic error will subsist.
3333

3434

3535
Note that these drawings are trivial to produce since $\bN_i(x_j)=\delta_{ij}$ by definition, so that
36-
$f_h(x_j)=f_j$.
36+
$f^h(x_j)=f_j$.
3737

3838
%........................................................................
3939
\subsubsection{In two dimensions}

0 commit comments

Comments
 (0)