|
| 1 | +# Copyright (c) 2023-2024 Datalayer, Inc. |
| 2 | +# |
| 3 | +# BSD 3-Clause License |
| 4 | + |
| 5 | +"""This module provides a base class agent to interact with collaborative Jupyter notebook.""" |
| 6 | + |
| 7 | +from __future__ import annotations |
| 8 | + |
| 9 | +from enum import IntEnum |
| 10 | +from typing import Any, Literal, cast |
| 11 | + |
| 12 | +from pycrdt import ArrayEvent, Map, MapEvent |
| 13 | + |
| 14 | +from .client import NbModelClient |
| 15 | + |
| 16 | + |
| 17 | +class AIMessageType(IntEnum): |
| 18 | + """Type of AI agent message.""" |
| 19 | + |
| 20 | + ACKNOWLEDGE = 0 |
| 21 | + """Prompt is being processed.""" |
| 22 | + SUGGESTION = 1 |
| 23 | + """Message suggesting a new cell content.""" |
| 24 | + EXPLANATION = 2 |
| 25 | + """Message explaining a content.""" |
| 26 | + |
| 27 | + |
| 28 | +# def _debug_print_changes(part: str, changes: Any) -> None: |
| 29 | +# print(f"{part}") |
| 30 | + |
| 31 | +# def print_change(changes): |
| 32 | +# if isinstance(changes, MapEvent): |
| 33 | +# print(f"{type(changes.target)} {changes.target} {changes.keys} {changes.path}") |
| 34 | +# elif isinstance(changes, ArrayEvent): |
| 35 | +# print(f"{type(changes.target)} {changes.target} {changes.delta} {changes.path}") |
| 36 | +# else: |
| 37 | +# print(changes) |
| 38 | + |
| 39 | +# if isinstance(changes, list): |
| 40 | +# for c in changes: |
| 41 | +# print_change(c) |
| 42 | +# else: |
| 43 | +# print_change(changes) |
| 44 | + |
| 45 | + |
| 46 | +class BaseNbAgent(NbModelClient): |
| 47 | + """Base class to react to user prompt and notebook changes based on CRDT changes. |
| 48 | +
|
| 49 | + Notes: |
| 50 | + - Agents are expected to extend this base class and override either |
| 51 | + - method:`_on_user_prompt(self, cell_id: str, prompt: str, username: str | None = None)`: |
| 52 | + Callback on user prompt |
| 53 | + - method:`_on_cell_source_changes(self, cell_id: str, new_source: str, old_source: str, username: str | None = None): |
| 54 | + Callback on cell source changes |
| 55 | + - The agent can leverage the helper functions to send a reply to the user: |
| 56 | + - method:`update_document(self, prompt: dict, message_type: AIMessageType, message: str, cell_id: str = "")`: |
| 57 | + Attach a message to the given cell (or to the notebook if no ``cell_id`` is provided). |
| 58 | +
|
| 59 | + Args: |
| 60 | + ws_url: Endpoint to connect to the collaborative Jupyter notebook. |
| 61 | + path: [optional] Notebook path relative to the server root directory; default None |
| 62 | + username: [optional] Client user name; default to environment variable USER |
| 63 | + timeout: [optional] Request timeout in seconds; default to environment variable REQUEST_TIMEOUT |
| 64 | + log: [optional] Custom logger; default local logger |
| 65 | +
|
| 66 | + Examples: |
| 67 | +
|
| 68 | + When connection to a Jupyter notebook server, you can leverage the get_jupyter_notebook_websocket_url |
| 69 | + helper: |
| 70 | +
|
| 71 | + >>> from jupyter_nbmodel_client import NbModelClient, get_jupyter_notebook_websocket_url |
| 72 | + >>> client = NbModelClient( |
| 73 | + >>> get_jupyter_notebook_websocket_url( |
| 74 | + >>> "http://localhost:8888", |
| 75 | + >>> "path/to/notebook.ipynb", |
| 76 | + >>> "your-server-token" |
| 77 | + >>> ) |
| 78 | + >>> ) |
| 79 | + """ |
| 80 | + |
| 81 | + # FIXME implement username retrieval |
| 82 | + |
| 83 | + def _on_notebook_changes( |
| 84 | + self, part: Literal["state"] | Literal["meta"] | Literal["cells"] | str, all_changes: Any |
| 85 | + ) -> None: |
| 86 | + # _debug_print_changes(part, all_changes) |
| 87 | + |
| 88 | + if part == "cells": |
| 89 | + for changes in all_changes: |
| 90 | + path_length = len(changes.path) |
| 91 | + if path_length == 0: |
| 92 | + # Change is on the cell list |
| 93 | + for delta in changes.delta: |
| 94 | + if "insert" in delta: |
| 95 | + # New cells got added |
| 96 | + for cell in delta["insert"]: |
| 97 | + if "metadata" in cell: |
| 98 | + new_metadata = cell["metadata"] |
| 99 | + datalayer_ia = new_metadata.get("datalayer", {}).get("ai", {}) |
| 100 | + prompts = datalayer_ia.get("prompts", []) |
| 101 | + prompt_ids = {prompt["id"] for prompt in prompts} |
| 102 | + new_prompts = prompt_ids.difference( |
| 103 | + message["parent_id"] |
| 104 | + for message in datalayer_ia.get("messages", []) |
| 105 | + ) |
| 106 | + if new_prompts: |
| 107 | + for prompt in filter( |
| 108 | + lambda p: p.get("id") in new_prompts, prompts |
| 109 | + ): |
| 110 | + self._on_user_prompt(cell["id"], prompt["prompt"]) |
| 111 | + if "source" in cell: |
| 112 | + self._on_cell_source_changes(cell["id"], cell["source"], "") |
| 113 | + elif path_length == 1: |
| 114 | + # Change is on one cell |
| 115 | + for key, change in changes.keys.items(): |
| 116 | + if key == "source": |
| 117 | + if change["action"] == "add": |
| 118 | + self._on_cell_source_changes( |
| 119 | + changes.target["id"], |
| 120 | + change["newValue"], |
| 121 | + change.get("oldValue", ""), |
| 122 | + ) |
| 123 | + elif change["action"] == "update": |
| 124 | + self._on_cell_source_changes( |
| 125 | + changes.target["id"], change["newValue"], change["oldValue"] |
| 126 | + ) |
| 127 | + elif change["action"] == "delete": |
| 128 | + self._on_cell_source_changes( |
| 129 | + changes.target["id"], change.get("newValue"), change["oldValue"] |
| 130 | + ) |
| 131 | + elif key == "metadata": |
| 132 | + new_metadata = change.get("newValue", {}) |
| 133 | + datalayer_ia = new_metadata.get("datalayer", {}).get("ai", {}) |
| 134 | + prompts = datalayer_ia.get("prompts", []) |
| 135 | + prompt_ids = {prompt["id"] for prompt in prompts} |
| 136 | + new_prompts = prompt_ids.difference( |
| 137 | + message["parent_id"] for message in datalayer_ia.get("messages", []) |
| 138 | + ) |
| 139 | + if new_prompts and change["action"] in {"add", "update"}: |
| 140 | + for prompt in filter(lambda p: p.get("id") in new_prompts, prompts): |
| 141 | + self._on_user_prompt(changes.target["id"], prompt["prompt"]) |
| 142 | + # elif change["action"] == "delete": |
| 143 | + # ... |
| 144 | + # elif key == "outputs": |
| 145 | + # # TODO |
| 146 | + # ... |
| 147 | + elif ( |
| 148 | + path_length == 2 |
| 149 | + and isinstance(changes.path[0], int) |
| 150 | + and changes.path[1] == "metadata" |
| 151 | + ): |
| 152 | + # Change in cell metadata |
| 153 | + for key, change in changes.keys.items(): |
| 154 | + if key == "datalayer": |
| 155 | + new_metadata = change.get("newValue", {}) |
| 156 | + datalayer_ia = new_metadata.get("ai", {}) |
| 157 | + prompts = datalayer_ia.get("prompts") |
| 158 | + prompt_ids = {prompt["id"] for prompt in prompts} |
| 159 | + new_prompts = prompt_ids.difference( |
| 160 | + message["parent_id"] for message in datalayer_ia.get("messages", []) |
| 161 | + ) |
| 162 | + if new_prompts and change["action"] in {"add", "update"}: |
| 163 | + for prompt in filter(lambda p: p.get("id") in new_prompts, prompts): |
| 164 | + self._on_user_prompt( |
| 165 | + self._doc.ycells[changes.path[0]]["id"], prompt["prompt"] |
| 166 | + ) |
| 167 | + # elif change["action"] == "delete": |
| 168 | + # ... |
| 169 | + |
| 170 | + # elif part == "meta": |
| 171 | + # # FIXME handle notebook metadata |
| 172 | + |
| 173 | + def _reset_y_model(self) -> None: |
| 174 | + try: |
| 175 | + self._doc.unobserve() |
| 176 | + except AttributeError: |
| 177 | + pass |
| 178 | + finally: |
| 179 | + super()._reset_y_model() |
| 180 | + self._doc.observe(self._on_notebook_changes) |
| 181 | + |
| 182 | + def _on_user_prompt(self, cell_id: str, prompt: str, username: str | None = None) -> None: |
| 183 | + username = username or self._username |
| 184 | + self._log.debug("New AI prompt sets by user [%s] in [%s]: [%s].", username, cell_id, prompt) |
| 185 | + |
| 186 | + def _on_cell_source_changes( |
| 187 | + self, cell_id: str, new_source: str, old_source: str, username: str | None = None |
| 188 | + ) -> None: |
| 189 | + username = username or self._username |
| 190 | + self._log.debug("New cell source sets by user [%s] in [%s].", username, cell_id, new_source) |
| 191 | + |
| 192 | + # def _on_cell_outputs_changes(self, *args) -> None: |
| 193 | + # print(args) |
| 194 | + |
| 195 | + def get_cell(self, cell_id: str) -> Map | None: |
| 196 | + """Find the cell with the given ID. |
| 197 | +
|
| 198 | + If the cell cannot be found it will return ``None``. |
| 199 | +
|
| 200 | + Args: |
| 201 | + cell_id: str |
| 202 | + Returns: |
| 203 | + Cell or None |
| 204 | + """ |
| 205 | + for cell in self._doc.ycells: |
| 206 | + if cell["id"] == cell_id: |
| 207 | + return cast(Map, cell) |
| 208 | + |
| 209 | + return None |
| 210 | + |
| 211 | + def get_cell_index(self, cell_id: str) -> int: |
| 212 | + """Find the cell with the given ID. |
| 213 | +
|
| 214 | + If the cell cannot be found it will return ``-1``. |
| 215 | +
|
| 216 | + Args: |
| 217 | + cell_id: str |
| 218 | + Returns: |
| 219 | + Cell index or -1 |
| 220 | + """ |
| 221 | + for index, cell in enumerate(self._doc.ycells): |
| 222 | + if cell["id"] == cell_id: |
| 223 | + return index |
| 224 | + |
| 225 | + return -1 |
| 226 | + |
| 227 | + def update_document( |
| 228 | + self, prompt: dict, message_type: AIMessageType, message: str, cell_id: str = "" |
| 229 | + ) -> None: |
| 230 | + """Update the document. |
| 231 | +
|
| 232 | + Args: |
| 233 | + prompt: User prompt |
| 234 | + message_type: Type of message to insert in the document |
| 235 | + message: Message to insert |
| 236 | + cell_id: Cell targeted by the update; if empty, the notebook is the target |
| 237 | + """ |
| 238 | + message_dict = {"parent_id": prompt["id"], "message": message, "type": message_type} |
| 239 | + |
| 240 | + def set_message(metadata: Map, message: dict): |
| 241 | + if "datalayer" not in metadata: |
| 242 | + metadata["datalayer"] = {"ai": {"prompts": [], "messages": []}} |
| 243 | + elif "ai" not in metadata["datalayer"]: |
| 244 | + metadata["datalayer"] = {"ai": {"prompts": [], "messages": []}} |
| 245 | + elif "messages" not in metadata["datalayer"]["ai"]: |
| 246 | + metadata["datalayer"]["ai"] = {"messages": []} |
| 247 | + |
| 248 | + metadata["datalayer"]["ai"]["messages"].append(message) |
| 249 | + |
| 250 | + metadata["datalayer"] = metadata["datalayer"].copy() |
| 251 | + |
| 252 | + if cell_id: |
| 253 | + cell = self.get_cell(cell_id) |
| 254 | + if not cell: |
| 255 | + raise ValueError(f"Cell [{cell_id}] not found.") |
| 256 | + if "metadata" not in cell: |
| 257 | + cell["metadata"] = Map({"datalayer": {"ai": {"prompts": [], "messages": []}}}) |
| 258 | + set_message(cell["metadata"], message_dict) |
| 259 | + |
| 260 | + else: |
| 261 | + notebook_metadata = self._doc._ymeta["metadata"] |
| 262 | + set_message(notebook_metadata, message_dict) |
| 263 | + |
| 264 | + # def notify(self, message: str, cell_id: str = "") -> None: |
| 265 | + # """Send a transient message to users. |
| 266 | + |
| 267 | + # Args: |
| 268 | + # message: Notification message |
| 269 | + # cell_id: Cell targeted by the notification; if empty the notebook is the target |
| 270 | + # """ |
0 commit comments