From e5567a97219178c74a1ccfe2cf4ad72f49467988 Mon Sep 17 00:00:00 2001 From: github-actions Date: Tue, 4 Jun 2024 19:12:07 +0000 Subject: [PATCH] Generated by commit cf403b5582a4ed6fa1791917707bf38bf1d2de96, pushed by GitHub run 9372820799. --- .../datascience.tables.Table.__init__.html | 10 +- .../datascience.tables.Table.append.html | 10 +- ...atascience.tables.Table.append_column.html | 10 +- .../datascience.tables.Table.apply.html | 10 +- .../datascience.tables.Table.as_html.html | 10 +- .../datascience.tables.Table.as_text.html | 10 +- .../datascience.tables.Table.bar.html | 10 +- .../datascience.tables.Table.barh.html | 10 +- .../datascience.tables.Table.bin.html | 10 +- .../datascience.tables.Table.boxplot.html | 10 +- .../datascience.tables.Table.column.html | 10 +- ...datascience.tables.Table.column_index.html | 10 +- .../datascience.tables.Table.columns.html | 10 +- .../datascience.tables.Table.copy.html | 10 +- .../datascience.tables.Table.drop.html | 10 +- .../datascience.tables.Table.exclude.html | 10 +- .../datascience.tables.Table.first.html | 10 +- .../datascience.tables.Table.from_array.html | 10 +- ...cience.tables.Table.from_columns_dict.html | 10 +- .../datascience.tables.Table.from_df.html | 10 +- ...datascience.tables.Table.from_records.html | 10 +- .../datascience.tables.Table.group.html | 10 +- .../datascience.tables.Table.group_bar.html | 10 +- .../datascience.tables.Table.group_barh.html | 10 +- .../datascience.tables.Table.groups.html | 10 +- .../datascience.tables.Table.hist.html | 10 +- ...tascience.tables.Table.hist_of_counts.html | 10 +- .../datascience.tables.Table.index_by.html | 10 +- ...cience.tables.Table.interactive_plots.html | 10 +- .../datascience.tables.Table.join.html | 10 +- .../datascience.tables.Table.labels.html | 10 +- .../datascience.tables.Table.last.html | 10 +- .../datascience.tables.Table.move_column.html | 10 +- .../datascience.tables.Table.move_to_end.html | 10 +- ...atascience.tables.Table.move_to_start.html | 10 +- .../datascience.tables.Table.num_columns.html | 10 +- .../datascience.tables.Table.num_rows.html | 10 +- .../datascience.tables.Table.percentile.html | 10 +- .../datascience.tables.Table.pivot.html | 10 +- .../datascience.tables.Table.pivot_bin.html | 10 +- .../datascience.tables.Table.pivot_hist.html | 10 +- .../datascience.tables.Table.plot.html | 10 +- .../datascience.tables.Table.read_table.html | 10 +- .../datascience.tables.Table.relabel.html | 10 +- .../datascience.tables.Table.relabeled.html | 10 +- .../datascience.tables.Table.remove.html | 10 +- .../datascience.tables.Table.row.html | 10 +- .../datascience.tables.Table.rows.html | 10 +- .../datascience.tables.Table.sample.html | 10 +- ...tables.Table.sample_from_distribution.html | 10 +- .../datascience.tables.Table.scatter.html | 10 +- .../datascience.tables.Table.scatter3d.html | 10 +- .../datascience.tables.Table.select.html | 10 +- .../datascience.tables.Table.set_format.html | 10 +- .../datascience.tables.Table.show.html | 10 +- .../datascience.tables.Table.shuffle.html | 10 +- .../datascience.tables.Table.sort.html | 10 +- .../datascience.tables.Table.split.html | 10 +- .../datascience.tables.Table.stack.html | 10 +- ...datascience.tables.Table.static_plots.html | 10 +- .../datascience.tables.Table.stats.html | 10 +- .../datascience.tables.Table.take.html | 10 +- .../datascience.tables.Table.to_array.html | 10 +- .../datascience.tables.Table.to_csv.html | 10 +- .../datascience.tables.Table.to_df.html | 10 +- .../datascience.tables.Table.values.html | 10 +- .../datascience.tables.Table.where.html | 10 +- .../datascience.tables.Table.with_column.html | 10 +- ...datascience.tables.Table.with_columns.html | 10 +- .../datascience.tables.Table.with_row.html | 10 +- .../datascience.tables.Table.with_rows.html | 10 +- _images/barh.png | Bin 8838 -> 8838 bytes _images/hist.png | Bin 12724 -> 11461 bytes _images/hist_binned.png | Bin 11093 -> 10940 bytes _images/hist_overlay.png | Bin 11093 -> 10940 bytes _images/m_smoker_weights.png | Bin 9753 -> 9753 bytes _images/not_m_smoker_weights.png | Bin 11045 -> 11045 bytes _images/plot.png | Bin 46124 -> 49700 bytes _images/scatter.png | Bin 15296 -> 15143 bytes _images/scatter_line.png | Bin 16321 -> 19871 bytes _modules/datascience/formats.html | 10 +- _modules/datascience/maps.html | 10 +- _modules/datascience/predicates.html | 10 +- _modules/datascience/tables.html | 10 +- _modules/datascience/util.html | 10 +- _modules/index.html | 10 +- _static/basic.css | 2 +- _static/classic.css | 2 +- _static/doctools.js | 2 +- _static/language_data.js | 4 +- _static/searchtools.js | 165 +++++++++++------- _static/sidebar.js | 2 +- formats.html | 10 +- genindex.html | 10 +- index.html | 14 +- maps.html | 10 +- predicates.html | 10 +- py-modindex.html | 10 +- reference-nb/datascience-reference.html | 10 +- search.html | 16 +- searchindex.js | 2 +- tables.html | 10 +- tutorial.html | 58 +++--- util.html | 10 +- 104 files changed, 581 insertions(+), 536 deletions(-) diff --git a/_autosummary/datascience.tables.Table.__init__.html b/_autosummary/datascience.tables.Table.__init__.html index 8e88d0810..8d403de15 100644 --- a/_autosummary/datascience.tables.Table.__init__.html +++ b/_autosummary/datascience.tables.Table.__init__.html @@ -7,10 +7,10 @@ datascience.tables.Table.__init__ — datascience 0.17.6 documentation - + - + @@ -102,7 +102,7 @@

This Page

rel="nofollow">Show Source - + @@ -138,7 +138,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.append.html b/_autosummary/datascience.tables.Table.append.html index 34ac96d34..9a2179258 100644 --- a/_autosummary/datascience.tables.Table.append.html +++ b/_autosummary/datascience.tables.Table.append.html @@ -7,10 +7,10 @@ datascience.tables.Table.append — datascience 0.17.6 documentation - + - + @@ -124,7 +124,7 @@

This Page

rel="nofollow">Show Source - + @@ -160,7 +160,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.append_column.html b/_autosummary/datascience.tables.Table.append_column.html index 5d109c26d..ec13448a8 100644 --- a/_autosummary/datascience.tables.Table.append_column.html +++ b/_autosummary/datascience.tables.Table.append_column.html @@ -7,10 +7,10 @@ datascience.tables.Table.append_column — datascience 0.17.6 documentation - + - + @@ -147,7 +147,7 @@

This Page

rel="nofollow">Show Source - + @@ -183,7 +183,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.apply.html b/_autosummary/datascience.tables.Table.apply.html index aba405f86..23c18f1f2 100644 --- a/_autosummary/datascience.tables.Table.apply.html +++ b/_autosummary/datascience.tables.Table.apply.html @@ -7,10 +7,10 @@ datascience.tables.Table.apply — datascience 0.17.6 documentation - + - + @@ -140,7 +140,7 @@

This Page

rel="nofollow">Show Source - + @@ -176,7 +176,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.as_html.html b/_autosummary/datascience.tables.Table.as_html.html index 8b65c4130..f074bf944 100644 --- a/_autosummary/datascience.tables.Table.as_html.html +++ b/_autosummary/datascience.tables.Table.as_html.html @@ -7,10 +7,10 @@ datascience.tables.Table.as_html — datascience 0.17.6 documentation - + - + @@ -143,7 +143,7 @@

This Page

rel="nofollow">Show Source - + @@ -179,7 +179,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.as_text.html b/_autosummary/datascience.tables.Table.as_text.html index ee1b00a2f..62c9f2f90 100644 --- a/_autosummary/datascience.tables.Table.as_text.html +++ b/_autosummary/datascience.tables.Table.as_text.html @@ -7,10 +7,10 @@ datascience.tables.Table.as_text — datascience 0.17.6 documentation - + - + @@ -154,7 +154,7 @@

This Page

rel="nofollow">Show Source - + @@ -190,7 +190,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.bar.html b/_autosummary/datascience.tables.Table.bar.html index d9e5eef27..455448cb3 100644 --- a/_autosummary/datascience.tables.Table.bar.html +++ b/_autosummary/datascience.tables.Table.bar.html @@ -7,10 +7,10 @@ datascience.tables.Table.bar — datascience 0.17.6 documentation - + - + @@ -105,7 +105,7 @@

This Page

rel="nofollow">Show Source - + @@ -141,7 +141,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.barh.html b/_autosummary/datascience.tables.Table.barh.html index 9fda33b5d..8493216d0 100644 --- a/_autosummary/datascience.tables.Table.barh.html +++ b/_autosummary/datascience.tables.Table.barh.html @@ -7,10 +7,10 @@ datascience.tables.Table.barh — datascience 0.17.6 documentation - + - + @@ -135,7 +135,7 @@

This Page

rel="nofollow">Show Source - + @@ -171,7 +171,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.bin.html b/_autosummary/datascience.tables.Table.bin.html index 6fae2afce..003636481 100644 --- a/_autosummary/datascience.tables.Table.bin.html +++ b/_autosummary/datascience.tables.Table.bin.html @@ -7,10 +7,10 @@ datascience.tables.Table.bin — datascience 0.17.6 documentation - + - + @@ -115,7 +115,7 @@

This Page

rel="nofollow">Show Source - + @@ -151,7 +151,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.boxplot.html b/_autosummary/datascience.tables.Table.boxplot.html index 78bdd63b9..57ee05606 100644 --- a/_autosummary/datascience.tables.Table.boxplot.html +++ b/_autosummary/datascience.tables.Table.boxplot.html @@ -7,10 +7,10 @@ datascience.tables.Table.boxplot — datascience 0.17.6 documentation - + - + @@ -129,7 +129,7 @@

This Page

rel="nofollow">Show Source - + @@ -165,7 +165,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.column.html b/_autosummary/datascience.tables.Table.column.html index be7e3f5d0..5ddc02d70 100644 --- a/_autosummary/datascience.tables.Table.column.html +++ b/_autosummary/datascience.tables.Table.column.html @@ -7,10 +7,10 @@ datascience.tables.Table.column — datascience 0.17.6 documentation - + - + @@ -110,7 +110,7 @@

This Page

rel="nofollow">Show Source - + @@ -146,7 +146,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.column_index.html b/_autosummary/datascience.tables.Table.column_index.html index d13723403..6f5c19668 100644 --- a/_autosummary/datascience.tables.Table.column_index.html +++ b/_autosummary/datascience.tables.Table.column_index.html @@ -7,10 +7,10 @@ datascience.tables.Table.column_index — datascience 0.17.6 documentation - + - + @@ -105,7 +105,7 @@

This Page

rel="nofollow">Show Source - + @@ -141,7 +141,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.columns.html b/_autosummary/datascience.tables.Table.columns.html index 56c68ffcc..87ca74e0f 100644 --- a/_autosummary/datascience.tables.Table.columns.html +++ b/_autosummary/datascience.tables.Table.columns.html @@ -7,10 +7,10 @@ datascience.tables.Table.columns — datascience 0.17.6 documentation - + - + @@ -105,7 +105,7 @@

This Page

rel="nofollow">Show Source - + @@ -141,7 +141,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.copy.html b/_autosummary/datascience.tables.Table.copy.html index cd4a62306..1940d57e2 100644 --- a/_autosummary/datascience.tables.Table.copy.html +++ b/_autosummary/datascience.tables.Table.copy.html @@ -7,10 +7,10 @@ datascience.tables.Table.copy — datascience 0.17.6 documentation - + - + @@ -164,7 +164,7 @@

This Page

rel="nofollow">Show Source - + @@ -200,7 +200,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.drop.html b/_autosummary/datascience.tables.Table.drop.html index 8a0996314..6a08c102a 100644 --- a/_autosummary/datascience.tables.Table.drop.html +++ b/_autosummary/datascience.tables.Table.drop.html @@ -7,10 +7,10 @@ datascience.tables.Table.drop — datascience 0.17.6 documentation - + - + @@ -140,7 +140,7 @@

This Page

rel="nofollow">Show Source - + @@ -176,7 +176,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.exclude.html b/_autosummary/datascience.tables.Table.exclude.html index 49e4baeef..be4fa8270 100644 --- a/_autosummary/datascience.tables.Table.exclude.html +++ b/_autosummary/datascience.tables.Table.exclude.html @@ -7,10 +7,10 @@ datascience.tables.Table.exclude — datascience 0.17.6 documentation - + - + @@ -157,7 +157,7 @@

This Page

rel="nofollow">Show Source - + @@ -193,7 +193,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.first.html b/_autosummary/datascience.tables.Table.first.html index f9b27a442..78a85f1f9 100644 --- a/_autosummary/datascience.tables.Table.first.html +++ b/_autosummary/datascience.tables.Table.first.html @@ -7,10 +7,10 @@ datascience.tables.Table.first — datascience 0.17.6 documentation - + - + @@ -105,7 +105,7 @@

This Page

rel="nofollow">Show Source - + @@ -141,7 +141,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.from_array.html b/_autosummary/datascience.tables.Table.from_array.html index 914bd4bd3..672557c4e 100644 --- a/_autosummary/datascience.tables.Table.from_array.html +++ b/_autosummary/datascience.tables.Table.from_array.html @@ -7,10 +7,10 @@ datascience.tables.Table.from_array — datascience 0.17.6 documentation - + - + @@ -119,7 +119,7 @@

This Page

rel="nofollow">Show Source - + @@ -155,7 +155,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.from_columns_dict.html b/_autosummary/datascience.tables.Table.from_columns_dict.html index deae850af..31000fcff 100644 --- a/_autosummary/datascience.tables.Table.from_columns_dict.html +++ b/_autosummary/datascience.tables.Table.from_columns_dict.html @@ -7,10 +7,10 @@ datascience.tables.Table.from_columns_dict — datascience 0.17.6 documentation - + - + @@ -89,7 +89,7 @@

This Page

rel="nofollow">Show Source - + @@ -125,7 +125,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.from_df.html b/_autosummary/datascience.tables.Table.from_df.html index 7d8117f60..5c9cb3a83 100644 --- a/_autosummary/datascience.tables.Table.from_df.html +++ b/_autosummary/datascience.tables.Table.from_df.html @@ -7,10 +7,10 @@ datascience.tables.Table.from_df — datascience 0.17.6 documentation - + - + @@ -123,7 +123,7 @@

This Page

rel="nofollow">Show Source - + @@ -159,7 +159,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.from_records.html b/_autosummary/datascience.tables.Table.from_records.html index 4b807983e..e424676d8 100644 --- a/_autosummary/datascience.tables.Table.from_records.html +++ b/_autosummary/datascience.tables.Table.from_records.html @@ -7,10 +7,10 @@ datascience.tables.Table.from_records — datascience 0.17.6 documentation - + - + @@ -112,7 +112,7 @@

This Page

rel="nofollow">Show Source - + @@ -148,7 +148,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.group.html b/_autosummary/datascience.tables.Table.group.html index ce8e6f601..cb8cb312b 100644 --- a/_autosummary/datascience.tables.Table.group.html +++ b/_autosummary/datascience.tables.Table.group.html @@ -7,10 +7,10 @@ datascience.tables.Table.group — datascience 0.17.6 documentation - + - + @@ -134,7 +134,7 @@

This Page

rel="nofollow">Show Source - + @@ -170,7 +170,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.group_bar.html b/_autosummary/datascience.tables.Table.group_bar.html index 9d2fcfb6f..a8c20998d 100644 --- a/_autosummary/datascience.tables.Table.group_bar.html +++ b/_autosummary/datascience.tables.Table.group_bar.html @@ -7,10 +7,10 @@ datascience.tables.Table.group_bar — datascience 0.17.6 documentation - + - + @@ -112,7 +112,7 @@

This Page

rel="nofollow">Show Source - + @@ -148,7 +148,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.group_barh.html b/_autosummary/datascience.tables.Table.group_barh.html index 7a44a457b..5fcfa3859 100644 --- a/_autosummary/datascience.tables.Table.group_barh.html +++ b/_autosummary/datascience.tables.Table.group_barh.html @@ -7,10 +7,10 @@ datascience.tables.Table.group_barh — datascience 0.17.6 documentation - + - + @@ -113,7 +113,7 @@

This Page

rel="nofollow">Show Source - + @@ -149,7 +149,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.groups.html b/_autosummary/datascience.tables.Table.groups.html index c093852bd..5cf1cd326 100644 --- a/_autosummary/datascience.tables.Table.groups.html +++ b/_autosummary/datascience.tables.Table.groups.html @@ -7,10 +7,10 @@ datascience.tables.Table.groups — datascience 0.17.6 documentation - + - + @@ -132,7 +132,7 @@

This Page

rel="nofollow">Show Source - + @@ -168,7 +168,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.hist.html b/_autosummary/datascience.tables.Table.hist.html index 1279ed2c1..e6f2cbc2c 100644 --- a/_autosummary/datascience.tables.Table.hist.html +++ b/_autosummary/datascience.tables.Table.hist.html @@ -7,10 +7,10 @@ datascience.tables.Table.hist — datascience 0.17.6 documentation - + - + @@ -171,7 +171,7 @@

This Page

rel="nofollow">Show Source - + @@ -207,7 +207,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.hist_of_counts.html b/_autosummary/datascience.tables.Table.hist_of_counts.html index 9358387d8..e2acd6ce8 100644 --- a/_autosummary/datascience.tables.Table.hist_of_counts.html +++ b/_autosummary/datascience.tables.Table.hist_of_counts.html @@ -7,10 +7,10 @@ datascience.tables.Table.hist_of_counts — datascience 0.17.6 documentation - + - + @@ -151,7 +151,7 @@

This Page

rel="nofollow">Show Source - + @@ -187,7 +187,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.index_by.html b/_autosummary/datascience.tables.Table.index_by.html index 88c642410..fbe42b09c 100644 --- a/_autosummary/datascience.tables.Table.index_by.html +++ b/_autosummary/datascience.tables.Table.index_by.html @@ -7,10 +7,10 @@ datascience.tables.Table.index_by — datascience 0.17.6 documentation - + - + @@ -124,7 +124,7 @@

This Page

rel="nofollow">Show Source - + @@ -160,7 +160,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.interactive_plots.html b/_autosummary/datascience.tables.Table.interactive_plots.html index 8206186a7..3acc9e86a 100644 --- a/_autosummary/datascience.tables.Table.interactive_plots.html +++ b/_autosummary/datascience.tables.Table.interactive_plots.html @@ -7,10 +7,10 @@ datascience.tables.Table.interactive_plots — datascience 0.17.6 documentation - + - + @@ -110,7 +110,7 @@

This Page

rel="nofollow">Show Source - + @@ -146,7 +146,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.join.html b/_autosummary/datascience.tables.Table.join.html index 411232e05..75b8f4853 100644 --- a/_autosummary/datascience.tables.Table.join.html +++ b/_autosummary/datascience.tables.Table.join.html @@ -7,10 +7,10 @@ datascience.tables.Table.join — datascience 0.17.6 documentation - + - + @@ -159,7 +159,7 @@

This Page

rel="nofollow">Show Source - + @@ -195,7 +195,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.labels.html b/_autosummary/datascience.tables.Table.labels.html index 1d597f7fc..bca54fc41 100644 --- a/_autosummary/datascience.tables.Table.labels.html +++ b/_autosummary/datascience.tables.Table.labels.html @@ -7,10 +7,10 @@ datascience.tables.Table.labels — datascience 0.17.6 documentation - + - + @@ -103,7 +103,7 @@

This Page

rel="nofollow">Show Source - + @@ -139,7 +139,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.last.html b/_autosummary/datascience.tables.Table.last.html index 310d95655..c48f65b71 100644 --- a/_autosummary/datascience.tables.Table.last.html +++ b/_autosummary/datascience.tables.Table.last.html @@ -7,10 +7,10 @@ datascience.tables.Table.last — datascience 0.17.6 documentation - + - + @@ -105,7 +105,7 @@

This Page

rel="nofollow">Show Source - + @@ -141,7 +141,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.move_column.html b/_autosummary/datascience.tables.Table.move_column.html index 1df77bed7..2c17ba192 100644 --- a/_autosummary/datascience.tables.Table.move_column.html +++ b/_autosummary/datascience.tables.Table.move_column.html @@ -7,10 +7,10 @@ datascience.tables.Table.move_column — datascience 0.17.6 documentation - + - + @@ -120,7 +120,7 @@

This Page

rel="nofollow">Show Source - + @@ -156,7 +156,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.move_to_end.html b/_autosummary/datascience.tables.Table.move_to_end.html index 9d37f9eb7..7db3257a6 100644 --- a/_autosummary/datascience.tables.Table.move_to_end.html +++ b/_autosummary/datascience.tables.Table.move_to_end.html @@ -7,10 +7,10 @@ datascience.tables.Table.move_to_end — datascience 0.17.6 documentation - + - + @@ -116,7 +116,7 @@

This Page

rel="nofollow">Show Source - + @@ -152,7 +152,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.move_to_start.html b/_autosummary/datascience.tables.Table.move_to_start.html index d1f16c651..61be4418a 100644 --- a/_autosummary/datascience.tables.Table.move_to_start.html +++ b/_autosummary/datascience.tables.Table.move_to_start.html @@ -7,10 +7,10 @@ datascience.tables.Table.move_to_start — datascience 0.17.6 documentation - + - + @@ -116,7 +116,7 @@

This Page

rel="nofollow">Show Source - + @@ -152,7 +152,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.num_columns.html b/_autosummary/datascience.tables.Table.num_columns.html index b3e4c420d..992bc007a 100644 --- a/_autosummary/datascience.tables.Table.num_columns.html +++ b/_autosummary/datascience.tables.Table.num_columns.html @@ -7,10 +7,10 @@ datascience.tables.Table.num_columns — datascience 0.17.6 documentation - + - + @@ -89,7 +89,7 @@

This Page

rel="nofollow">Show Source - + @@ -125,7 +125,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.num_rows.html b/_autosummary/datascience.tables.Table.num_rows.html index 7649b5bbf..61c281b70 100644 --- a/_autosummary/datascience.tables.Table.num_rows.html +++ b/_autosummary/datascience.tables.Table.num_rows.html @@ -7,10 +7,10 @@ datascience.tables.Table.num_rows — datascience 0.17.6 documentation - + - + @@ -103,7 +103,7 @@

This Page

rel="nofollow">Show Source - + @@ -139,7 +139,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.percentile.html b/_autosummary/datascience.tables.Table.percentile.html index 881c87fb1..7c9694b96 100644 --- a/_autosummary/datascience.tables.Table.percentile.html +++ b/_autosummary/datascience.tables.Table.percentile.html @@ -7,10 +7,10 @@ datascience.tables.Table.percentile — datascience 0.17.6 documentation - + - + @@ -109,7 +109,7 @@

This Page

rel="nofollow">Show Source - + @@ -145,7 +145,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.pivot.html b/_autosummary/datascience.tables.Table.pivot.html index 9e51ab387..3f4163367 100644 --- a/_autosummary/datascience.tables.Table.pivot.html +++ b/_autosummary/datascience.tables.Table.pivot.html @@ -7,10 +7,10 @@ datascience.tables.Table.pivot — datascience 0.17.6 documentation - + - + @@ -158,7 +158,7 @@

This Page

rel="nofollow">Show Source - + @@ -194,7 +194,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.pivot_bin.html b/_autosummary/datascience.tables.Table.pivot_bin.html index db7fcc54f..0afb12425 100644 --- a/_autosummary/datascience.tables.Table.pivot_bin.html +++ b/_autosummary/datascience.tables.Table.pivot_bin.html @@ -7,10 +7,10 @@ datascience.tables.Table.pivot_bin — datascience 0.17.6 documentation - + - + @@ -190,7 +190,7 @@

This Page

rel="nofollow">Show Source - + @@ -226,7 +226,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.pivot_hist.html b/_autosummary/datascience.tables.Table.pivot_hist.html index bef75a596..cd150c37c 100644 --- a/_autosummary/datascience.tables.Table.pivot_hist.html +++ b/_autosummary/datascience.tables.Table.pivot_hist.html @@ -7,10 +7,10 @@ datascience.tables.Table.pivot_hist — datascience 0.17.6 documentation - + - + @@ -90,7 +90,7 @@

This Page

rel="nofollow">Show Source - + @@ -126,7 +126,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.plot.html b/_autosummary/datascience.tables.Table.plot.html index 0e062bf2d..86f6435db 100644 --- a/_autosummary/datascience.tables.Table.plot.html +++ b/_autosummary/datascience.tables.Table.plot.html @@ -7,10 +7,10 @@ datascience.tables.Table.plot — datascience 0.17.6 documentation - + - + @@ -131,7 +131,7 @@

This Page

rel="nofollow">Show Source - + @@ -167,7 +167,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.read_table.html b/_autosummary/datascience.tables.Table.read_table.html index 7967f3ad0..15a91776a 100644 --- a/_autosummary/datascience.tables.Table.read_table.html +++ b/_autosummary/datascience.tables.Table.read_table.html @@ -7,10 +7,10 @@ datascience.tables.Table.read_table — datascience 0.17.6 documentation - + - + @@ -115,7 +115,7 @@

This Page

rel="nofollow">Show Source - + @@ -151,7 +151,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.relabel.html b/_autosummary/datascience.tables.Table.relabel.html index da85fea1a..a2ed7df00 100644 --- a/_autosummary/datascience.tables.Table.relabel.html +++ b/_autosummary/datascience.tables.Table.relabel.html @@ -7,10 +7,10 @@ datascience.tables.Table.relabel — datascience 0.17.6 documentation - + - + @@ -129,7 +129,7 @@

This Page

rel="nofollow">Show Source - + @@ -165,7 +165,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.relabeled.html b/_autosummary/datascience.tables.Table.relabeled.html index f8f26c9cd..0d15dcf35 100644 --- a/_autosummary/datascience.tables.Table.relabeled.html +++ b/_autosummary/datascience.tables.Table.relabeled.html @@ -7,10 +7,10 @@ datascience.tables.Table.relabeled — datascience 0.17.6 documentation - + - + @@ -134,7 +134,7 @@

This Page

rel="nofollow">Show Source - + @@ -170,7 +170,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.remove.html b/_autosummary/datascience.tables.Table.remove.html index ae9a36d99..a392b0c90 100644 --- a/_autosummary/datascience.tables.Table.remove.html +++ b/_autosummary/datascience.tables.Table.remove.html @@ -7,10 +7,10 @@ datascience.tables.Table.remove — datascience 0.17.6 documentation - + - + @@ -120,7 +120,7 @@

This Page

rel="nofollow">Show Source - + @@ -156,7 +156,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.row.html b/_autosummary/datascience.tables.Table.row.html index e657fd28a..4e8a6b488 100644 --- a/_autosummary/datascience.tables.Table.row.html +++ b/_autosummary/datascience.tables.Table.row.html @@ -7,10 +7,10 @@ datascience.tables.Table.row — datascience 0.17.6 documentation - + - + @@ -91,7 +91,7 @@

This Page

rel="nofollow">Show Source - + @@ -127,7 +127,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.rows.html b/_autosummary/datascience.tables.Table.rows.html index 5d6488705..7523245f2 100644 --- a/_autosummary/datascience.tables.Table.rows.html +++ b/_autosummary/datascience.tables.Table.rows.html @@ -7,10 +7,10 @@ datascience.tables.Table.rows — datascience 0.17.6 documentation - + - + @@ -107,7 +107,7 @@

This Page

rel="nofollow">Show Source - + @@ -143,7 +143,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.sample.html b/_autosummary/datascience.tables.Table.sample.html index 711eb57d7..bc3ceb332 100644 --- a/_autosummary/datascience.tables.Table.sample.html +++ b/_autosummary/datascience.tables.Table.sample.html @@ -7,10 +7,10 @@ datascience.tables.Table.sample — datascience 0.17.6 documentation - + - + @@ -152,7 +152,7 @@

This Page

rel="nofollow">Show Source - + @@ -188,7 +188,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.sample_from_distribution.html b/_autosummary/datascience.tables.Table.sample_from_distribution.html index c5bfd8ab7..7592191e9 100644 --- a/_autosummary/datascience.tables.Table.sample_from_distribution.html +++ b/_autosummary/datascience.tables.Table.sample_from_distribution.html @@ -7,10 +7,10 @@ datascience.tables.Table.sample_from_distribution — datascience 0.17.6 documentation - + - + @@ -109,7 +109,7 @@

This Page

rel="nofollow">Show Source - + @@ -145,7 +145,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.scatter.html b/_autosummary/datascience.tables.Table.scatter.html index 81ad22692..ada2bd4f4 100644 --- a/_autosummary/datascience.tables.Table.scatter.html +++ b/_autosummary/datascience.tables.Table.scatter.html @@ -7,10 +7,10 @@ datascience.tables.Table.scatter — datascience 0.17.6 documentation - + - + @@ -153,7 +153,7 @@

This Page

rel="nofollow">Show Source - + @@ -189,7 +189,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.scatter3d.html b/_autosummary/datascience.tables.Table.scatter3d.html index 73643c34d..490cdf737 100644 --- a/_autosummary/datascience.tables.Table.scatter3d.html +++ b/_autosummary/datascience.tables.Table.scatter3d.html @@ -7,10 +7,10 @@ datascience.tables.Table.scatter3d — datascience 0.17.6 documentation - + - + @@ -153,7 +153,7 @@

This Page

rel="nofollow">Show Source - + @@ -189,7 +189,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.select.html b/_autosummary/datascience.tables.Table.select.html index 988b200e1..66c71088f 100644 --- a/_autosummary/datascience.tables.Table.select.html +++ b/_autosummary/datascience.tables.Table.select.html @@ -7,10 +7,10 @@ datascience.tables.Table.select — datascience 0.17.6 documentation - + - + @@ -135,7 +135,7 @@

This Page

rel="nofollow">Show Source - + @@ -171,7 +171,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.set_format.html b/_autosummary/datascience.tables.Table.set_format.html index 33beba171..1644ed3eb 100644 --- a/_autosummary/datascience.tables.Table.set_format.html +++ b/_autosummary/datascience.tables.Table.set_format.html @@ -7,10 +7,10 @@ datascience.tables.Table.set_format — datascience 0.17.6 documentation - + - + @@ -276,7 +276,7 @@

This Page

rel="nofollow">Show Source - + @@ -312,7 +312,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.show.html b/_autosummary/datascience.tables.Table.show.html index c49003ad1..6866426e1 100644 --- a/_autosummary/datascience.tables.Table.show.html +++ b/_autosummary/datascience.tables.Table.show.html @@ -7,10 +7,10 @@ datascience.tables.Table.show — datascience 0.17.6 documentation - + - + @@ -121,7 +121,7 @@

This Page

rel="nofollow">Show Source - + @@ -157,7 +157,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.shuffle.html b/_autosummary/datascience.tables.Table.shuffle.html index 3a38193c3..1b789a9e8 100644 --- a/_autosummary/datascience.tables.Table.shuffle.html +++ b/_autosummary/datascience.tables.Table.shuffle.html @@ -7,10 +7,10 @@ datascience.tables.Table.shuffle — datascience 0.17.6 documentation - + - + @@ -94,7 +94,7 @@

This Page

rel="nofollow">Show Source - + @@ -130,7 +130,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.sort.html b/_autosummary/datascience.tables.Table.sort.html index 4dc15b753..f6cc1c173 100644 --- a/_autosummary/datascience.tables.Table.sort.html +++ b/_autosummary/datascience.tables.Table.sort.html @@ -7,10 +7,10 @@ datascience.tables.Table.sort — datascience 0.17.6 documentation - + - + @@ -148,7 +148,7 @@

This Page

rel="nofollow">Show Source - + @@ -184,7 +184,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.split.html b/_autosummary/datascience.tables.Table.split.html index 04c8ddcac..ff423fae8 100644 --- a/_autosummary/datascience.tables.Table.split.html +++ b/_autosummary/datascience.tables.Table.split.html @@ -7,10 +7,10 @@ datascience.tables.Table.split — datascience 0.17.6 documentation - + - + @@ -121,7 +121,7 @@

This Page

rel="nofollow">Show Source - + @@ -157,7 +157,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.stack.html b/_autosummary/datascience.tables.Table.stack.html index 0995e8c47..6dfa14972 100644 --- a/_autosummary/datascience.tables.Table.stack.html +++ b/_autosummary/datascience.tables.Table.stack.html @@ -7,10 +7,10 @@ datascience.tables.Table.stack — datascience 0.17.6 documentation - + - + @@ -159,7 +159,7 @@

This Page

rel="nofollow">Show Source - + @@ -195,7 +195,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.static_plots.html b/_autosummary/datascience.tables.Table.static_plots.html index 4c274f6e9..b65544f46 100644 --- a/_autosummary/datascience.tables.Table.static_plots.html +++ b/_autosummary/datascience.tables.Table.static_plots.html @@ -7,10 +7,10 @@ datascience.tables.Table.static_plots — datascience 0.17.6 documentation - + - + @@ -113,7 +113,7 @@

This Page

rel="nofollow">Show Source - + @@ -149,7 +149,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.stats.html b/_autosummary/datascience.tables.Table.stats.html index 553306b88..1689ad827 100644 --- a/_autosummary/datascience.tables.Table.stats.html +++ b/_autosummary/datascience.tables.Table.stats.html @@ -7,10 +7,10 @@ datascience.tables.Table.stats — datascience 0.17.6 documentation - + - + @@ -145,7 +145,7 @@

This Page

rel="nofollow">Show Source - + @@ -181,7 +181,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.take.html b/_autosummary/datascience.tables.Table.take.html index be40fde46..6f3a802e8 100644 --- a/_autosummary/datascience.tables.Table.take.html +++ b/_autosummary/datascience.tables.Table.take.html @@ -7,10 +7,10 @@ datascience.tables.Table.take — datascience 0.17.6 documentation - + - + @@ -143,7 +143,7 @@

This Page

rel="nofollow">Show Source - + @@ -179,7 +179,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.to_array.html b/_autosummary/datascience.tables.Table.to_array.html index 040b5b122..359bdbc61 100644 --- a/_autosummary/datascience.tables.Table.to_array.html +++ b/_autosummary/datascience.tables.Table.to_array.html @@ -7,10 +7,10 @@ datascience.tables.Table.to_array — datascience 0.17.6 documentation - + - + @@ -123,7 +123,7 @@

This Page

rel="nofollow">Show Source - + @@ -159,7 +159,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.to_csv.html b/_autosummary/datascience.tables.Table.to_csv.html index 68d1487c9..a6d425865 100644 --- a/_autosummary/datascience.tables.Table.to_csv.html +++ b/_autosummary/datascience.tables.Table.to_csv.html @@ -7,10 +7,10 @@ datascience.tables.Table.to_csv — datascience 0.17.6 documentation - + - + @@ -111,7 +111,7 @@

This Page

rel="nofollow">Show Source - + @@ -147,7 +147,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.to_df.html b/_autosummary/datascience.tables.Table.to_df.html index 188a589b3..1714c3d30 100644 --- a/_autosummary/datascience.tables.Table.to_df.html +++ b/_autosummary/datascience.tables.Table.to_df.html @@ -7,10 +7,10 @@ datascience.tables.Table.to_df — datascience 0.17.6 documentation - + - + @@ -131,7 +131,7 @@

This Page

rel="nofollow">Show Source - + @@ -167,7 +167,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.values.html b/_autosummary/datascience.tables.Table.values.html index b696bde42..316db5451 100644 --- a/_autosummary/datascience.tables.Table.values.html +++ b/_autosummary/datascience.tables.Table.values.html @@ -7,10 +7,10 @@ datascience.tables.Table.values — datascience 0.17.6 documentation - + - + @@ -109,7 +109,7 @@

This Page

rel="nofollow">Show Source - + @@ -145,7 +145,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.where.html b/_autosummary/datascience.tables.Table.where.html index 2b952030c..7bc185e2d 100644 --- a/_autosummary/datascience.tables.Table.where.html +++ b/_autosummary/datascience.tables.Table.where.html @@ -7,10 +7,10 @@ datascience.tables.Table.where — datascience 0.17.6 documentation - + - + @@ -167,7 +167,7 @@

This Page

rel="nofollow">Show Source - + @@ -203,7 +203,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.with_column.html b/_autosummary/datascience.tables.Table.with_column.html index 163a4dcaa..cb9a90660 100644 --- a/_autosummary/datascience.tables.Table.with_column.html +++ b/_autosummary/datascience.tables.Table.with_column.html @@ -7,10 +7,10 @@ datascience.tables.Table.with_column — datascience 0.17.6 documentation - + - + @@ -143,7 +143,7 @@

This Page

rel="nofollow">Show Source - + @@ -179,7 +179,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.with_columns.html b/_autosummary/datascience.tables.Table.with_columns.html index f6547756c..c5aa78745 100644 --- a/_autosummary/datascience.tables.Table.with_columns.html +++ b/_autosummary/datascience.tables.Table.with_columns.html @@ -7,10 +7,10 @@ datascience.tables.Table.with_columns — datascience 0.17.6 documentation - + - + @@ -164,7 +164,7 @@

This Page

rel="nofollow">Show Source - + @@ -200,7 +200,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.with_row.html b/_autosummary/datascience.tables.Table.with_row.html index ee41b13c2..0a28c85a8 100644 --- a/_autosummary/datascience.tables.Table.with_row.html +++ b/_autosummary/datascience.tables.Table.with_row.html @@ -7,10 +7,10 @@ datascience.tables.Table.with_row — datascience 0.17.6 documentation - + - + @@ -102,7 +102,7 @@

This Page

rel="nofollow">Show Source - + @@ -138,7 +138,7 @@

Navigation

\ No newline at end of file diff --git a/_autosummary/datascience.tables.Table.with_rows.html b/_autosummary/datascience.tables.Table.with_rows.html index 81c6d4c4e..27644e42e 100644 --- a/_autosummary/datascience.tables.Table.with_rows.html +++ b/_autosummary/datascience.tables.Table.with_rows.html @@ -7,10 +7,10 @@ datascience.tables.Table.with_rows — datascience 0.17.6 documentation - + - + @@ -104,7 +104,7 @@

This Page

rel="nofollow">Show Source - + @@ -140,7 +140,7 @@

Navigation

\ No newline at end of file diff --git a/_images/barh.png b/_images/barh.png index cd654eec30a89b982d19ddfa9df63776402d1dc1..7240863e2d2753b1fc1bed278b678a2fbe9eede7 100644 GIT binary patch delta 41 wcmZp3ZF8OAA!nkakWo@nP;8~IpPN`xkdt4MlbNKKUzDyduc}Hq)$ delta 41 wcmZp3ZF8OAA!neYkWo@nP;8~IpPN`xkdt4MlbNKKUzDzIx^e63jcE!>05gLRPyhe` diff --git a/_images/hist.png b/_images/hist.png index 7d255f68b45675b93b47721cc76f02583c24d37f..dc9dc5612ff6603f1e4420e2ec41bfc621343b06 100644 GIT binary patch literal 11461 zcmdsdXHb;uvhJu06ARI$fFeO<6hVRk1RR115EPJ%WJNN=z>u?IKtVx?N|qdloU<+& z0m(23LzJ8(4q;&6_P2Dey-(eHPwhYFoT_7$j`iiY-|nZMe!5@YRg`7e&$=IlLNUnQ zx~YOf?bJe{cD&iU8;;0Nc}a84k;)jRp-lO1n=+q-Yyd)mgX!;vN*PnW+J zxwP&{!ne*;m^KF$z5g0iu{zVGuCM=NFML>SF?J99>=ik}2S1F80Y>ht@VQK(1v|99SSNk3cu_U({}h;$uXg*uH&QFV7O zcU}FFxx8%eu{PwhgVSz)@S3r)ajHR;r~Iv3cdI;U!66}uPxdf|`-3H0zUz*Tj{4WJ zOKz5IPAB|+*}ore&_f?tM0h_ zpPrjnKia`7AONQ-61Qj@mhb_-{{EMb9YUdErH=_}t*@_7^%SJST+}t}dzoAfO%C+>Qx?V>z zwx`%OzTa~LtLMJ(8P6u`L0xYBaKk6xh!S6IX7evLb@ z<#~T}`1O(tEV<>?P}!s|rO^&3hk z%gMd$cNu3tedbIWZlE&IpM_6OUO|Cj?VWywtFV>kc2$Imo*wr6>||)!ZjeUL2 zrA3MPW2PfjwVL?3ww8)@x|o=ln3kS?DR}LxJEc=oBf3cV0pI2Y4({{JTSpnaUJ>`b zdR8^|%7-{?zBs6mo$p+;xbE&c_;`<+mR3sHT&0dvudS?~xYFv6KAneE+^VXo@wvGd zVHLcmPMw-)9tcOC6L9z_z1J%rsoLS+YCjsJ1jza^^AT-@ToxZzEY_c66|s(F=F=K1 zsx%_{2PXLX`aTMfvY&V};K*&Xbl33a&8L(bZ!_tTC5k@IfmN;h z51z>caAdORJD)Tx2}FlAB!auMOS)@;X%}=vytdp!!oto;NJO~-COmrcV3Rc?GLkJ* zw?yT_g$q~a%9n(ke)P(a6A}|Ax;kY~&&vJ#_Xodw zm-6b>?+P)JQ7(ITpss$opr5_CxELH3<|Gp^*^wFqejgGQg}rhBg}T~8=a9w*iz|He zFQAnjtFZEW{%P4X%aNBev0034fn+_GsXh4@*?VMp2}ZAGkD?Cdp4GZaFRJ387R1@0 zzOkZ=FWWV+hajvoKXDTvFOp925J2Jo3P2nyU`Jh@&YO$aZ?pk!zj)KJrEAZDx>61X1-HCvS4NjQQ`6G4XUVd4vnxl*I8|oxD{sB&s;~Ta znT0vqkcow5nzlN?=!j&X>_LWno7z{$czJo-04twF0sNjA5q9xyv5hnwLz3F@9rUE3 zPd-eC4jr07(%bzH$~8SXMm~jDa?+2!GV+&QDAd8l@?E=sH(QG8$U)L_42e^*}K_xtznGfChXd++z3 zyz%_#z~oeCy1JTLLV(nkmQInix`M)MWsI?E@n5z!)Z4j3YT3Q#ZE0pq9I-??qT3F%`OeY(WjM<=o)O< zN^}V(EE!{G!ECae9_S)+W`Bj7^$Y+IX3#Y&H5xRh6AZ2)H$!|}^0UfWyA zy-MchsqiZAH^mnuC!Kd1*+z2bK0!}TD0?cC=t)`~9i&Lo9!sm?g6}`kvnz68-dP+n z3-+;4ax;~roKT#M*T8tjaQ^xt{GpNoM;V?eJy>nY_EgDMBDe~ zcHPbXUx|sHvXHHx9e&Ys)0sA7D%C#L7@=h87U8p#>(r?XPG2kjJN}Atc5zjS{7O&P9mLDIF~R-uvH>S#7FZ4)`ta`E zQFbx>pV~l6AC1jN%&eE`3WTl94RDT#a?kXZsKV|{b!EjA{0_U^IONDC`*@4KmfQ0H z`;`RnPMHSyLm7O+C?8ns&rbd>23Or#*FGd zQq!UwLSMWMt$SO~n{V zi5JRn^5cza?@>{IT>%#4qS#~QkjH&y5yRa791#&=i2?tKm z|1viO_+G~T9lLh_raOc$$p=?FK}3#u=o4*s63i?R+bK4A3|8;(SRV~@UF~xUiH;_u zq?{cc8=Ihe}$6esj*Y)GQM;*&L^GuaI=4B38h-I!KkhiJ^=wB>e$>Dj|BVqPK^h$P#xRng_-7LCC(nE|)xA^S(b2$CvfuORSQ`>;~AxlOhKeQL#f}%%c<^T=ZQ4Fw^=n_u1nG5{-r?UnOnDKYR|AJs0wC!%?zqz2?qKxEzRg2)<=@v0Ok9^4rc67nlPcJ?RL zOjFWshY8d)LApN3%*vDjXoe*hDs<_)Wxf_ime`zShy-@&YQI}&swy{aF{~;-WFLG@ zf=d|Ry|@auRSO8Pv?^}W4MvFsrvVRGK zHQE)f1wj3m7l@pe)1=I_)YR7RpZy%V^qlB=w+3sTxK5=e2gk%@!J~O0OU28)ZhLj? zQU_4}OPita(3!;p9OB>B6ipk$69WVPaF}e9e);kx;DI@wTwgB_WsW((HtS`pcL46` z5cLQWRjl^6Qz_F-?Ce-^E-?0O^LM<&1n^gl)YMcU6eMptdLbb9XNvTSZ9X8y=hv@y zs%C$ckNmpDcY*HIUIH`a2R|w@7uC7pb3h%BU*svWW0OU)1nf9q{8*9oR7a|>pI`gp zXv1+uJ-Gg+TM~2P{4KkhdZ+8aS*6<5S%)Vzyi7?2 zcD&0S9d8Sbgl>;(MJ)$4WJ7^%__=2V| z>hrZ9nf}NkUd>|CoV`{ep&|I1p%SMgUaV)GK2X*$tD;s$TCn@%=38}_oiROYZv#bHIC_?wWhFV;5^>3V}cZ@dGUfIlUtDC)$>|ty)*n354DL^c*S|@@SLJE?b%OS`i-w-VsN?k= z=bJDOzZ@hVLscK0(-b_*n;SKIRAI4meMC)@hd0fGTxN-Bc|Jb{1oM~H_ipv^9*(`m zA4l=#t#Q)V`~hwcQp?Y25`HiCM(XMo@&3v7mM0;2%ik3Za+&2oIN_$ zR9Bbt^F2bmTC2Tw0j2hnaj>2L$k(b*CnqPNqNOgyY+L=EWeJs33s9vL=PEY{KVd#g zxyGW45T&B3O8LxU@a-po+Ue<=4N6T^aqm5SIe9rb zWohYWY(!-MMo(BTucTzZ<7KeLn-L)Iz~%!JED0qt(_LBP%O^l`y*Ce1j&^HnYw7$) z`pyzNQ}SPAG1_Tue&{E)2?34>Prte(%&WCD)~E_pv%tFVAD-(#z4=!4c$NvZ>)BZe6hC%15`$P$k~` zwA^^4oxkJEH>94nAxUnOcQ`&(wNca5Q0W02parU^ z0_TMXNP6D4Z(r&5)&}-x&hKApmZ}<}C)y(Ah$jt8mgC8ngT;N6;L zep6L1ifQ;@Sil>33d)u9UorTRFOSYarM9@V^yC+7rQg4QC&8vfcSqPyZ}(#nEc``W zK}J*jkKXRNOPb&so{abQ-bq_;_9{Gr zu$6q_(%sX*n1X?QMc^vUe}#gOx}vUbWMEJbWqmvbkw35+3fRoqy{4asZPTN=j4(10 z9js$2Rs@?U*$acZPxZ!2BN^rp3QInQmIJ{6il=!U$3BOyNid=& z6wrK$;9{b7J8(j*R#KZoj1HqAno}R?1=T>|g;@CjQYn&dhKT`P$8qH+!x|jgJRoHD z@XYS}rK0d(UPRQ%z-A`JcY^POL&g3@ayHYHG8m6YC+`?6^Cs`K{ zJrDX3pP#Sh;Na+as-eCUy0SL=Fkp z4x8|nPEu`LVWG@vHzryq69nZRwi*f6h8iH(}<~l$GCJ#`U|`dv^j# zo;Z#9@VCMOrnuP>QzdNvGG~oieX;! z_B@+ga9)hr+9|R3$K9x|nYH8N3nDG^u7@R5DeT@kq5>JjPosfkyXT(=$%h%O!#2Kh z9=Gn9&?@c~kS?&KdT^-?80k>9pKLElZF9*1S1ybMZyH>_C#Xd(!T}j^i651gmewwJ z&N;=!B@8h>xCdg{?96oX-tFaNsmb@I(XE}D2APn&KtZw~7yi|4>9sC`UO+6^^P4|J zs7+4>OGY}OR6fR&n!2@8RFw+d90(6+DYamW`jVg`({r6nEaU>$iaZ3RyJFC}ZOY0% z{`+6voJ3;CPYNkKv$X_~j@?i##(CcGCwTZe0muGT?@qIn#E%AZif3@C*SyDridA>G z`1noV|5OtM7JxOFuLS2?dU6x@o}Tbjj^aJAhz4 zhEe&z2S!E|KZDKdQot_?pan*o(yYo2ZsAwDNjyUmQ_+hO=LkS+p1%>rTttrl_U^zn z7XhMXvZH=ckF0dvC=@u!U>v(9s*haQI`i{mc5^OVlpNaRjhA1+zJ& zmsouEExf|qB&WZJXu$oU&b5a3?AbSHJ-69{*Q8ECH%Qh`!Y9kh+5hO=C=JV$*zTsz zs(N5$MKKZvg;B6nJX&3N*j7MJmcewN`m4|Tpk)erbpeQC8JZ)|O_f)vR(%9najGrx z_9tM2s1MbyHCLSHW6`Nb#Oh>kSm*IVgmTi6=)uxgi*xj|rvh|^9fGG?KHN~?=mP_p zy#`#NT4wFkGldpE0ZJS@KX96ZDsUKSLkH&D4%f;|Pla{j!0Qk0|EpWwh=Q7=-8f7y zNy2T#?9+3G(up`fG`p0rsQa3Y$4a+pPri8&0K9m_1$ez;1cggWKTES&eCZVk|JIf3 zCP=^Utt?0Do0B*4vE<8*?=Enm8#)mcvMCC4PC!7Bo|!M3ojZm1+_?fsOo%913O(>n zXe>Y%V;Zz%66eOP8-d^24*Xc||O#%|v36wlBIeGdMqf|b7bLlgB z7HB6bf~lyWYFiO=Od7+5StVTafs}W^Gxh9SrAvYAFC*OEpIOL%_^gza0U~Ha#?As( zqUYFc>^kwmXBm<43Wp2cb*5`hfAHaG13Mz>9@JEsS~+obvy2?#DH$1jl<6)dAfd?D zKrdaJqPII^z)UR=sVg!Ks`R0$LyFm2=I$hsro8C|THrG?z|7tLPPJ)iX~A#beps0$ zr|0IjIY!2wgSHFQ0tkuMvuhM)6}AY5lgYxCqzP`R^_P%8GeGd}@i%9)vxo+^FE}xo z9HRk5{rLg*w6!&7sGn3pMrtp0nEuBUK>>TaFO(Q(F&G^v5wMG^PwdOp?!3P!Em*ag z3nmc)?*IAEKh1zNx`LCctEj};HHi@&zs5R`yp_!dlI<`}QUK}A_w{RaTiYDyki>x^ zrhqG7cn)!Bgh{f^Gig+TMm|z)Au?xhuuusWI?7OF=NmULBOD3}C*)qdogD=P?u&x3(FPKcuz4F=VtpjYbtZ=>WL$rQoa1c*YEn<7M;X$8cAQnb6OrRI zr%xk#ZTiT|%Y(DZ=;7;5GpmL>%zV4xvAr>%34Nh{_oc??<}sCSX>L&KV8?bH|IgqgiBqOJZ)cS+`d+sB7CYy)y-^rX*9i`peC(2m*~h2*5Iv4n!3PiT zbE(MuKDW)RuAz}cFIavTsePasy(xJi2IfP+Ef4@gc);gi{^2O6er0Gj0k=lP{KiNz zRiO4HP((Y;$TKrmjqfkXA`K`pJCpd)_9O*W4GoR+!!gW28a_3GlD6Dy*F5=>JNho5 zBbJyG2h_8awnC=WhoDcR(Gy_OkcUpx_|Usj$z$JgjCM7py3Bmb3F6o~AOeb^g&F~E zK0jDf3N1iH)dne~^ZLcIXius+v`j6bfIlfg?CDNPOH+X+fa}UkYImOL9yXuCyKo=8 z5h~`=@4n|)`}`-KAGdyk_MlO^F2@xV!%PUTnAmzS8AN5{hESd}XJp{pmvlrNrqn)v z{%pR!IEs%XIc2=?Hg18k1o3pFUG$@Du8=)hJxx$=Xl1OeXS~Bo;UmR#P_59qFAc~r zZF5|z>lur_8OC22S4As4z$O}-pDzUL2P9krfQptm&s7Yf6grm2LNhfCCN7X}5(wpA zaD7nD@W>$xwYq63?D(TM6~U~Q*lVv9cgaXgBUa$$=f{RfVX(u^PfxgPE)bFZLvll5 ze7-#NP!NqDiZX~N3yi<=*Hjl*@U&%sH$>9$*m%BnbHsEIYz#dA?p%Kbxnp$aHETOxh-LC9Q= z!?Z>PDBPvv(QZPv-*1vHWTtIbbax~)4^)JiSeE_v#M}55G~D#v7o;1bC3IjZ`CvHL z#X9Z+xRo~VBlUZk-(@9J#YPAgCM#9hY|o{Lft2E6EnEdf zBVKhJt3cz)lJ;XpCW(+KA7pk(Npk%rqr~zXW`6C2;NT;DAX|q9?Iyy+2!fUh2vSrm zt9)9#_GGttZ?P?QYdmqw$ue0nY9}G!^=k^5AUt$r$SENy>9V^$)qcwjk~^Ax`{}1A zjFKr0f>pXwv`Hm?FP1SOC-I#wP&f(0zzBlDNGN%)>BS1q|6ijuKC`#3KWSjF%OP;6smZ(g$fZ5o3R5YWzIR#reU4@}^WcD`=lK?y;cE+u_K?e`)u z9NQM)!{HZ=eUTD+o0_$)0?Kyki_G127MB}s*%YG1?;%)G`}%m-*bjOqfX{Q#gh1pj z_C)m*FZSQrMDNPU$$3r-l+RzM%yg?le?kQWODG}v(7#86r8U9&3Gls}*2DPEOqyl@ zKdhoQv5-fEEIQ8m@yw=eyFi(?x43evr+~D!5#mi@Z>$h$59QZU)6?r4k6R%&osUxZqzzH&@h4c;}%O1Z)qPnkMdE_M_uM8Lwd+iAyI&kngiwK<=IrO5&I)7EVnJFjBlp1s`T3yq;5io_E5fVq5GWMKv2grPYiVwV)0tT z!-hJ6hjTD)_Lpt8=C(;NX3?2=JIs)1$u#9vblKt1MjgSc;I+4LHG@d+!TFu#z+%#% zkO|Ypzof3rrh{|zUccf7OF;0bG2XFhT~az* zNM44Eic+TuQ;_fX=<35T7Cdt*DZ*N%i=d}8%{4s~TY1MF2J3)xkw_ro>47wRV0wUs z0=)#Zu*bRQ)KL)Zt~GS@ECbNP-XM)JARaVHIW0ZC%#RePu=9OH7=cIE;#4=~%dB2Xtj=LyTT6kiThT9g*ON z<@#AaK(=Y%c|wE{0cdV_)Q6lC1}(kp7koGq#iC-)GDiaeEOpWPA6tj?+G<83)7`Q9L&;&vf29zs8&S@g+1@AHZ z^sE>A7CN@BuB9;N7Y`#KYkg++Tbt`JCf23oMOB47=f|^)emlnSw?3F=ONaIjU^w(v zHaspS>2Gh*K26!*qD6*-`CA)B1~M)f)t&`;3}#STrMB0VBo@DLofJzpu^Sy3K~xbW z5M9QjSmy2Rw6(Qw9Fit4MhtAqKyY=9)CD0*qX#%oJ9mtGT-6pOYpONgC))Y@KJuX_ z50)odsSu`FpidzcZRuoE1o&Svh_)4w;9%yYW2QR~OSC!!jX8Bt5YWQC_Rih8#tf@R z?%cj@=^XIo>(>tOR06QRsURiER)7k1UEK^I9mu3e{nxMgOA3)Y>F8@cppVGl)QNxs zr%lAdFwsZ7Ch#Lpu`w?Plytc^q^W@GFMmWvb91X^_oM(6BA-y-)I>7aT4X`I5pW{> z{C#go$jmFU<yMK0WunxUa#qDkIJgvVojM5y`R1K|~~jK$98?1`HseL`8CjCP~hXs318u zEm=ZK5|9i{dTTq*oO9kgx9+`F_m5lkrfLf4u=lsWZ>{wUYxzP|S(f@B<3SV(MJ;#h zhB^whO9zFbc(s2YyyD2u{04pqV`OwN8us@vt|pFVC?yljeH(j>jpdy)E@qBSmiBg6 zd4zZ_ah-p#YSjxaGr>Wxy&<~wtN5c#78Af zm#`)%${W50LM@dCcO8ph&3nNW_~q!x71kQ+=Z{$D_wC+wfbA};AzregzRl&C%@8K} z-Rkrynv{$(a%Zfjvt)Wkc1~DCggF%~tF|PH2Y#ICI-CnX{$RaLfkGX>S-lH|y7ba# zFA8=0I0byH`qC~26w1eB4;Oss<9^s7)YBvXe}2I$rKCiMl7?B+!Qp*pG9Tm8r(@#t zGAa++X^nsV%D}O8=JvXpkMeh3o2GqUFlQ3g}9N?Q9_}$wogeVZ88x*6(~BJW>A%z ztD2sk-dpKWOkSD6nS6X|*%~9RmwWqRk=;PX@-&f?gQEfS79x|n)~%ZSnb#}cdAghZ z+_}%z+tW* z?^4q>QX_e2QK+~N$0cQiEZWY*-ajYD&dxs7lb@;_B@~~T$t4$T+ozXz_eDZt;_@e2 z6*umkiNqid0Rb)hiutEDeFBE(ktaMbAv3EK$@iMg*Vk7r_|Pe#xR1|hrpu}StjGc3crUec%zPFk7i+wfF;c8IAW zd^ZZUe_w6RhlSM4Ohp>;rC0Lu@_e?v1r4k^^g~B&+7o<->iF#k`>jiz*m-ya)U7Qo z(~0=F3)`AR+Mqhtpj5F}=T4C3-K;8A-bb$`T&S9O!HXSf)|6ynWmO8*FsEkD6=M#n z4LF&~B~3yBLE_gk>Am9fXtYWVOJsW57sUxzX-nO7 zSorjkPSNi~fM_SAo;EQtLB}vrh3=!)DYCV$d2#@|*euBZVC{Z$v?$TqOHuJ98@r_B z(A=m>vbNs9`Gs>P?Zn#;QA{5$vrkixb zO>eIj+VotJk(Hh9P~au}=*jmCms3(A&}$o;A?&A+rWLv%7aEzP>kom`#a17~0*ht!PH7 z8=m9vmCb#ba1y@Ho>7(|829QMZEh8LigRY5TpO~=Apt6tPu%!yca}bh=JV&zBG{!g zw#o1B>|HV-!+qkuOJF8m5%)Cab>Y3ep}Y~|gP{gJdgrk`MF{pfs0Bx?QSLHBck<-4 z4I19L)-;ePOOt91zwT%6uV?xPxX!-4YOW>hv@ljr!3D^BhHnkYnZ`UW1bd~JN@QOi zAI4C__s)KpcP%0 z+LtFXrnHX0e+|veSsKU|Dm(NQ&A8q~cUq6EkH>1exD<_yjD)^=73ais4tL3M?AEz+ z=iHBt-%EoWI{cvjf^t+FME`QL;Lrp?+nAtlUzsfI^xb0Y%WG$&$wpp$CPW-3JG-3I zcnbkaScYd)np$F4zIm&Nd(DxPew^8D3cQs`JceZ!n``rBW5EiTkJN%) zmdT#vrOUdk@KM$Ib%x>HG-7dY-W-P-DH!K__wHSb!3uZmIw@lL1Lf(oq$IYuRvI{T zzg8J#o(P2q1IHHg3;MA*K z!66}GF)`V*1Ld3&5=O$p!r1X>SB{+BeI*Ww@E*=EC>^VypisH(>m)w!Cbr<#u$vsk z4|q|rP0i07l-j*Pw-E?{;U5FoF{rrAdgV&T4Poc+w7EuJ>tDqqg8tpibqYUkeGBOVjke$)$ zMgsT^<{&Y38}GO8R8x* zU-GyHJmx9`83f??wzgOC+V}3=3kbLGObK{B&dtq@wzJDVdh{qAGqc^@=npOFe}f6{ zs|+_W=CIIE4i**z9_}hx%|-CS}Ddm z=kY-0;1m(jOI3-@ZeK{D+57a_Gf^+M_wNs2R1C7EOASmYJgUm>ml_0A)gnKfw+-{> z{)S!duN%Y6m+w5`YE;j^*W3k|GJu`VLgFGSTY>V>DODq*m@=1{DGWOtWZ{Sr&>d41 zucOm>706uIr-Vz<01QAGm{F2l$gZmGe-M&$Hk|$I3@LrV*i;ILz-K)-% z9Wuajhy$)eS-H7w_{ghNv z_x-JTbj@U~mfzfJ?Eaj^N^eJMV#XQQs z`h|x_{q9|j(wZnyA)~IT%RRt~4~^2Dg(7Y;>o8jTtC$$MlfqCDfNO_0`(a-eMIR#~ zNL6sQKIDR^A-pbi%R%MsmCut%jgvljtQ1~4{=K24#ia~3-{;jx*+K(n<@t)W5r0NO zyC~p_!-_KS(Q7SceMQ74z%8xU7f9HhtyLzD15kHM)(sx>-~T4nQdF zfX@8M{%l{HkLde*M*|4TFYyb}=5{ZMGn;OFnw>bOZ!fjA> z)4(PDf`VLs;}&i1AaN^Vr8c4%_ZG8>FL!A)G&OY%?QFZkI)^sD3ziK(JsFivjcVZx zPraq&?e<~v%2Z|=!8GrHjt^Tskcp1YPI%ycyJ83>oaE*(jWQ9|e7K;$c*v_fAt9lw z)XALsl#nWL5oO{Yc&DpBr*b8-lONXigbu&@0fJ9zptQ52gN}(QtC6Q%QE&hg@+%XR zknL=)yw}Vq7i^{rigr8coqd%qZ{<=jr1vQvDDP*4N}1iqjs!6B%WE4thuQRX1Dy?v zjLg{Fe2{7lySZOJ8(CDOq<58o{a_}I#F`Wcj?NE{DVJ-gK6vl~;G!4(G>*B}uQI6gnL+;aNxQYq`;O4RtSGT*%Rxt47h4JH&|%}_4;?1x)$3FaCl$j;puKq zlszXWIP@T2gCE%m{?+*F&nnLAgePxrZCHcC1Q7P4=L~)QI-a*`OwvRFDg`SmYglk_LR8c# zCNa0R_=B*qR;}W8{X+PwT#X%^ITamoDqi2JDdf~QR%W(Z=Gx+~lN{-HjKfAo?y&NQ zg@O) zY_tF{m>r{>)BdBOK|aj0)D1sMOUvZ3olkHXI#9eof1-yE z6~_MuPOjuAt$vKti9u7(c3S)R4w}_ac8yaW3w|C3r19~MXm3FCoPQOh4`*LAqAy0^ z9G=ldG?I#IV;6iA$Ln`xvuJG5Wk)@j(Ms%dwJw{}F}nbyd#U3q_Ps$k%e$`3)rvYY zkg`XWrvqo}>4|8x^AV5F{CWgKZz#TPZ-kh0^@{DXnwk{p85pq5oRC;Rp1aDNt?OD7 zA#b~$CQ^Xh0RJXEE=~&g$U>x`dCMsP8Fp^&=Jsh}NL4G`wS5Zu6>jgZT)Dy~2bmU} zbWS1M0{BI6QdgHILJNZV97b+b?rd*FLI_uFE+`lRsP^WY2MO5qr;Ux>1tR$VtUMHb zi%Zl;bKyD#57r%XEJa;syIP_}&p|-{7xifg&`IfE(fZ!BZmOUINN;j#D$#A7fm_c4 zadRX*vC%OAsd1MbwE0_3kM2N>cLjJ5vkjGr@GOVb`+wojuU{XnhJS!x0z$2US^j?e z!LIJg)j?cIi4aKZy5GXCmAwX(IvjkKesRn1>aS8gMZiTw@>wQu>lX?AjpE?^s6p~9 zZ>>)FX!5woL#kO2yVud_Ub z%gHcn3|A%sOF0~BP-M#q%rUsD+|?e+Q%vV$c=F|MM(^+V0ybknXiV2o@nXt;OWz?p z{x>ieckV^`$nmJeWaeE;ZG6QhqgTXZ$CQ4b(^#vg-YTNFVUe-wB8p-d#DLrI-b&y? z2*j#uXhf$SKutAmePofj$p`XME;zNHwY=ok>(@%8gNq)<=BTp`=0T@LFln&lPp-ObS+~VqGop?0T+v0S)-#&Z zE@^DY+P>%6_E}2K~@sa(~6 za?B8Ogm@dtr`JP1XgxiSpgP(KJy@UgBb90ns4PTd?=0|4{)+npIy>vJJL!NO%MaxmN zf!7)1{{6&&_s-U#2-wlX75$@iLE4&{p(3ucnN^+}93mpUlaaS?{po9@uVVkj)?iG_ zycfvaO7qnT`Y|}MoL(~)ZvA7$ftn>@ytp5CKORG0FT$nMb@xwRIV|1p4OA0Y6!jQJ z?ZtWV;@rXMdAA0%re;^l!4c^>h#E@yLZJvaakbW*jMg?J zNg>qOnP{;~>o4YL2)Qg($?vD}1m1~HYCrV>VLf?fjR?pi=-+Fdg9b0K(+oMLNJKHC zTcX6=9jg!4H#ZZ&6RJ!Zz;r6FedFE#8c| z7q$w)OeK#PDK=7%arYIO=>{^esJM@Q)e&ujJ%lI!YES>c6WJKrH8Ab*E;DS4GmG-*fSZtF00Yn07hZQB#E_eyLAZ_rsIDC z{b1y~ch)wB$_M-{QW994?2n&2_hVC18?7Q%R5!75Truj<2y&C5Y$ncLHO?}Zm9)oN1}mKfL5kXJRlV~f)*d2 zQkRj!^;=2<1#Ekdrzii-0sb_dMMz+Obro1{(N@%rs>#Wvv#`{V936UMG(A-e!WB$R z#)-Mo;LwfEe<3-dHz?JvJL>ZI$_fN}5=}ic)zuTA&rr&>!jwM0^2zFG_NPzbfnu%~ zJ!jt>=GeNQqnlql$++oQYQV^E6$&UA`u44^ZS@t;i?6HaieE!n_7e#6s9aIH35+*fr8Vo}6#Q$h#IX|@q|@*J3&3V@k@&!4vqR(dRhx7|Q;w4CiPl~+{6{IaeY zoy2Z0|LD=!Se*l$EiW*wJ4Ao%7~(ZufBHu|1f4T5eNjUeh}|q8B#05gERGdIg4ySC zpz&iQjjjF%dSrk0Fq>vD6jJE(J1bg-$2)}t)%wE4iez~j&owSY58X)Bq+81a$iFeV zxwMPT@c5`!dzGY!;Z1rQ(9xU_Kf(4jECv+S>jA$~?0-wg(=HX9?GX9KhA5t4V;lW& zPQ_$1^Q5ada7go&Mt<- zEJ8B-|2+cz^VW|FP!qn0>c(}-oKucayU_mHoNuw6V%aFjR)M*XHG&k3-V$sMuuRb4 zIN0AwArz!bat{=DO){Gv>3)5%c)=_z8k2b__3Ljl;ZmRvIsh&exzsNW3Mk}l&>>aW za7G=CnOTzQ!Qq2aaW|Mf3Gc^OLOt#tJH~z`FWtaoeCS1Tf>u!dp$|UJ+gs|b zJJLFd2Xwr5Hin$R>6`+CSnHjDEoL-8a4M^K(6J1GYdvea>m-|jGW7LlhtSY)diuu+ zkcP*zj4JhL#D4l5ViHLL_hVH#0ya(6G>|g$s(FhAG_&%!6s(EaXwa!_a-b!&cDA?p zO>6(4W){X@Mt1tX`jT`2y$3LK7Q&r!K-VM2yCSg)&Wlg48|erT9adw__*1&@Q5ptB>lXF)nE1WRoGypF7uBOH!-|2{47K4)o1?lN%q$pbE-siv9bQ~a(yfqhr-!#i27P~Lr1ACO?@?|yHHnf#h z2KYk#s4&5oH8s*%&|6p?^vKDs0(7?`$U^}vngrt?Xin#ewrlWZ`?diqwhI?zsTjE0m|Xkgp)?|deCq4_#Ey=Rr5^KG zf}6O0v7Pw1%g@QwSb=Z2OT5Cur47U@mK{lqITtjGLXs6CVis3Vo;-=W_IMwOO6RdJM=CdF%gH}K(iEC}+~*8_&_m-F zCx9k(`14k!xyX>bXSipqp&--s>-3kiv$E%GvMp8UvC)O~w>JS;jo3pC<6HnxkRqU8-{ zR8&-m**H+{inAZ8Vid4>v+|=SaW55v#dLQTVw8i(vRbMLaQ`tFxiSX4njpT~p9tPC z&b&2-Ovv#{Mg}L~7T6!}>!6!-p4+&}ARN7T}Y+V`*t$-v{ULqNl_tcR*R8O7XkBl*^e_nBk^ zPpRR(w!q5Df?k3ue(f`_RY4Ve+Ieo!5XzfvT5y1n)AyHN>y5@75W*(~Y|>8UP5$WY zg5Ed5t7ilnJl%2E9wVJB3sOTEkb_rjwmo?=k11)osRjGvpe4?~HhtNIkby3nNbnC0 z4j$q6tP5l++gj-ZeUt^(7rLr81F63tf4au%LzclA6}VeZ@j5DsYcka{Ia}ING+iDB z8IZVx&EeqWQ~(!m+(6=ZaR?~7Tfp?R)zyQ)w?yM$fWUHlbDdEfThN-{Chi$e%UZ+vU}ejZIavbG?gp8 z*053c17e7uym}6wl9V}q5D8`Qk&*Zg8MDJgvaA|4*DPC4QCUF-ks5hMAx}NB>!A~ ze2urSTCd%tvOqoFN4;=BI~X=B0sPgePcLYpq2m~r_wAT`pBx%AP$I~k>2Q6!bOD3C zI0;YkMRxY|UK04-!RHhZTu z!NhCdAt$bU_GJf&xYFJx)p+N?K2q8w>2&6`oXg z+Pi;x99poNIaTBg7@BBc6yG)&WsjMbF#eEGQBkq*z%5q7(`xxEbQBSU50lgnPZpi4 z&;VmOq1BjI`SNAvdnP9FUTedY&a?eJb0@D~w4n?}k_U-Hn4v)0p8=;=yY=ne4WINC zSZau`kA)cZ-OT;+e~B)WLX&R~zA7W+0!dkj&$7vscW`UfUS$r=O&%O$#oCV{cV~*} z2gl1-!ODF#CV3-9!E>eYsiRRW%MU19$ets*x*ZZXPDNt<22vNG#ezF~{prNd;g9@! zt);aZFa7+$vD8rwN?n_S{sY8N2NYXEsna;4q#d-Odn?@Yx7S;}r($F)CQd%@}VaNzL>vcofnuNL3Pv2%nUmb{|pf~kY|Jm-X?#ZvRkd@8ytON9kYjGgt3= z6jT;<`O$_H?IWx=yCxjq%~IlAiEjQqMu`U{(51?NT(kfSscbyPW6W`H-4IrCr?wwq zG4z~T7y0?o&>88?HF<1TN@94H;S^Ih+73};rW@Y6FFJ8IQsk^D>i2L?g{w$nB5U;ip(7SL3;GUwlDIM z$s+{BsZUGve-Up&+!S0+l^)X1fiWgkWBW13Qa-?C5YZQ}UR{i`AB(SuzSS|by&~ud z6=iCmycmqPU~CRAT~UbNkQtPRq4mP`=x0-3E5X+9Mq0x#5`ge)FuF2UMXd9U1w!L! zbP6kZHIy`;Bq4R%VjWUr;`GkiGstq7%4u!!_GS&|jk2?Df)#-1oZ7#N+OTTF>7$$8m_8Bq6p>zPZGbL@kQp~XRJ{g%lWV|{% zfQEB{E_%1Mc);hLVXH5%&Vu=3l7;Wl2tyPF2xd?eFJ8R3**%%mYttED6s;))-FooR zQmJ@KqyUyK<+Z4ORTjZa#KDW4z>}c&WV8rGs}O`X%%hbx_&5J&DTpg?l8U34ZSqaS!ItpCfAGS&)-Do z6M~DvThC5=slp~fR;!JkOcA!7ANg!FjF8uHgQ|>}AH9W*bH>zweO3M2bxO?3JM&_ zQ1uHCCZ3eErhV< z`43wj)7c~_c)fUUe5<*p?GTPJKlT}JD)1Yc5Yjsv@engOSnmmx4rwN4#*Q#w5K@d+?mjo*i5T=;HAK3SRL6L_a=f>u zrSPBha3vuHwtZ#bx@-=fxg;#yGo90!fxQBvCCji}3*mI&JcG55(7Kl||B$(P(+WzDbm!2G; zEpVH^gJjdz#%j)~UFTR>Skj(KrMm^Rx3`ml*^dhvfHcxN)MA8I0k#BHD!Y7E1etwY zUtjNiZ~Clin`{kMvKDNGHJ|Ji+*Odkl}jB8h;9fD4yFS)36?zdkw!AKk%V+OE0qJH zY5MAWKq4W-S_pY_rwRhtL+}iqM-KE!IPz@MId~%=>mf^>+iLShx{y6Ec~$6`76t7| zb)?6N^!1~neq7aTaUJqZh45#;e7SvmcC64n=U_qP%3X*vWM&r`k%c|Md#kd+T-N{v z#BG-g{*R1m<(id|tFBQnte20HC&)X|2lQ4!`V^yLs~_ z$-~nZ84QXcE6K}eJjen5&;gUtd`{mLp<2sB=xInxKSCxuKob$&PD$6VzxQZOP7w!N z87(LGf^8D$?|eBjW46KMGBK_=8<7%SEQ|bm0mcS*4{Btb@%mY$d2swc`IiRUk{=qa VOL=03?BTm8IT_^}+0wTk{U18@%b5TG diff --git a/_images/hist_binned.png b/_images/hist_binned.png index 43b966d0d14aed1f7c0cd526b1413ef86f0815a2..ff6497235f66391538d8b6d06fc414e5328b8610 100644 GIT binary patch literal 10940 zcmeHtby!tmL!quQOWnPt>=Zpe zZ809(yyy{oNO6QWSn#{b3_Q3GfcYDB*L4Zpi{ zqNe=RlLCQ$3Fa&8b*3j!_!mf6FE@8}cd_g=MvkM)UQMbmHz>ny?uyBuh1dPf{e8@# zJ~1(&nfLIiRp|uj+FXyq^XJcJ`wCL7D#T_Ii*8;X?V%KLQ5FyonC;1l3keD7%+V8@ z7$2XW?nrQ`{{w|Geez+%baiVgu185hB&oAgndlO)Ed0hbX6BB`mbXRDE5?H1QNnwpx`IWrvz zl30g;1F=vHhT;;|k2I%eZX=J!kad?Q(5G#RD|%e{1Xj#nSZtS*djDb&Rle{4-cKkk26OcMiMJ3w26p_co|O1UAS-| zna=lA-FI#^WudNajAyX0&ClEl`$@aPm(OuqOB@%8Jzv$E1q+h0N6x*%v-VEc)KyVdW`g-p2i2n~6CmJqbJX-yRavfm zrAxv7u$(6q-oSM1$)xC7lTHpct>6xpR=x)dToy{FFxlnXWz-@rsWOr5{iSv(fiz+Z#o3VRPoF-W{g(7{X(bgNo~m8~Tktj7De#~dk#Zsymo(sHrF8mIkh7m!lIR<~}E zYinm$PY;646+^p>2z`JthD9S6>(6#1kQH7na#vsnd@H$PX$x6d z-Uz@yXeFw>?SJ%gIt$0@n*ho`!*3zz{^-6_=(wnBKi}VVml_IS?i4k@jXsu#u2q>Gi2f)qjnmC>5{qNuXjn^+g3C9K zv8qQHHICWbM+z9bm+SY>&p(JwZ?DY(3M5wTujTX?m;_bm=0tGlWeY8oB=mh)nQH5a z3VaXykoNxlr*$`Yj;*os;TM7dn$@Lx8Z`}#C_#rGspI31+_7%{0axWPiD6+R2R2s4 z^L=oyrshlTHzu*p5@u#*(o#|#Aq+AIq!)O!%omSj$KUb)aF-Gm=bd@5H_zkV+z2P2 zGG4i(`^i|xp)z|y&DZbW)4Fet`P&M{Amz)C=u&cOYU;ar8dzNR1wiZ*+G95S=*^#F z?~X_DS;vk{#Rxg7>gvY&5z|l?B8%-{qZM(%=1Ww>K$hphKI9KpMNKCuF_AtzGSZ^f zk4Uq^DGwQSmR4~(++gA!jlp0pC-T(Jt!=wMZUICLz>ThKonkym6o9Kld9`W!#BO@cT zj`!l4rM43qG%1Im&US%|-lpjV_O=0Q|Ci5cAF_whr>H~~v-SWsZy4I^_;g4cNrQ z#Jl0);Vo98z~s-&9*tFEVqqctDvs;w>bl0xZuOxeKVK1eL>0Z+?&cC(ERd6G`4;)J zqASf@+sjQHUB%WTgdXi`y3P=z;vtD5uIu+gkm~R4eN;+OLc&iXfFdd9 zRR`{CGgwK4$#8J=#2xIKxUY4oQHZ*g+~DHkKmgS1D+Oc*W z$07R~VogXB`?>Bdwt+lDe}^BvSEP`jPJNKDYJIS7jk#g;!ePEYiB0Q6YI?dff*~Ux z-FXZ?9orjc6bo+pV$T3cSW#kUXU7opaWTAh?7p#a@NSF_6!xO-*w0OBJq2Z<@$U|(O~Z?M{k7O;~wfx$jw(jEupqR(Xl=y8aMUj(39RvlLmSqn>+ zdz(xr8TdvD=5uB;I>Km+?O8xTSDF1BQe7{;KrRnsbbNSRR!w1>U~q35kfmD3T*!np zbDt6#=}3w5FsCI3me@6`Jx_W9i6NiAH27RzrIV*4g4tqkH+o(Y5zNpBksj%vdGOXY*NG` ztFIjv2GfYecJD_R&7_F!rFm@D(qLKv_s>KOMi?=3a3}!o&O5MhaVZ6fZm0g5JM?Ju}8Zuk2k(}{`^6XZY6ri zz9&tu$|ITUu$aM`(M!RwssB!4nHZr8Ard|(5*vgON6>>fU^Q!fMRR7!$$b4Y6T@0OU@SS!IlysYEzxLxY{;i`O&NG89t zz5Q}z69X1EHd`?`y??3bNjLL$wW5HItO(&TC9JXl3_KUl^Ba8pP0@C!)(O>fU%Y%- z1X1yu*DTy5oNA6rfI>(m>c-#uYe9y|70&X???Qd^S~;Jqk1$ES*zv|O8ZZxS31fH%U3fwSmjwo zaX=;PbU%dKcD%t_#T=O+%%s4|`=Dn{b88K_rSF*v z_ft{e49GoomR%}eI7o{&F-Ezk`yGq3pPgbL(G`;=OzQa-agK`05`A!F(dPndz~Z@A zK|#bNqP)D_*5%fUy1LnZehnVS(;!)>t~~Pnq+asAe`dU~ooPKloG`@~YAWm8rIFF| ztRwU1fHG)eId4ldRe1Qm_(c}%>wNfX9v15NrCIc3C({*P%<0K^@q&PXk9JcipcWl)5a1j8lqiN zSC+O7G?^+RB(80MusoV=!%wOC;jzZc1z~n}`4D9ll?yiR_Vz^}T|ckJSL^?D63+U* zBTN>5ofNzdff)7#a*CL1=Sec_d^x@Vs1aQPlr~_#LNbUNk#-37g6XhR8JhdAdQZfpmC{hi zk)IMH?3_=^s{RhbYjemHz4ZM{dS+&4o5wmAt_RFRRCEw&X~SN)n(l)K4}$5mx-7b)j zAo4pZD(Y)%t1LpV zJ$=UJDG-#gT7Mr(JQS@DR*hLQrteaRgb-^NpE5XRsswyhs!qf`61@KdMec`8&s`jIxEewPC%>pb`bEyH)fG*5s zm$x2j!ye^a(XH|Ga=>ddRI?PdwWGm?F~0$ed$ZS8MiJB>{0C0b`-FtGPlOyyoSYrM z%UdC<3_xQ@qD6M81h`vctCwLzibr*;JSzK(t#gJeT{D0@CjZi`A{(IAzuKEDRx5++mf}E%4^C8srD-#SC=KUkl5^!=nOxcY99n!2B}M zuA7^L{A6R|WIBm2UcC5g4ZHIU>&I=Ma6V1;VqyrRMSY4ZfA{Y4D1m?N+3`d1T?x$Q@I5bf z)(5Ql4oR3z@Gs3DJy86QEBy7Z$Z^G^YE|3e2zC1d@APkK`irqn1EV7#AXwd=%enLy zW3{g(;%gYQna(O6zH!KYcv#fImqawgRGg>PKN+ihjNlWZUj_n!dM@a3H&MO6qB{dH zF3w{+tqeW$@bC$UZe5od1}I6UP_7O)UZl#q$aX>+EJZc>6eXo(SVIs>_Ua7cQNc$7 zfDOylt958_M!j+;_gkzz3Y!a40!x01M@+h}v}T3U9Q4}|$kbn=7`H7wHHA83 zrHvP>f<|iz=ol*)$Nbo}(;&%=Si;d9sH^GNhr4Vnum#m807+x!<5SZrw(3Ge_vBma zuVXfDIK$4)&ST7$Kb;TB0q)|an`o_+Je5cYYb|+Za*)Z^S+fgZ)n4JDj$qL9>5J2f zn-JQ|t1%_P-8N%ojq9SVss#($(zAJGthJ>@1o!pFk00-RH+%N9J+>w^0cOB$SBCOZ zJnSOVqvyHDCo19WTuMPfyTh0aE)ClE_2>)plzz<>Bdp2R?MVSLf~Qf-Mnmm8x=@_rIC%#yHPLGCuWQ`bnmU8?(7s)t$1W{02M5 z9rva13=z1A7cGRlu#XE8Qw3+HU;@ko z&5v%S@87@Y2L3mS2jN_Dvu;Fu6Xcu}Vzgv`+%^Z|$^^p(uchmQ<-j;vu;@|aIY6)$ zG|)vaJL3v{A}T@UIJf2J`|HJ3X}P)g!FmLD_Zy^qdULa^jzgbOG99R)XfoV!3rJRq z8;_pNT!g`V;PgNe{$^r4f^Gk~Vrbs9q&TB{Er=TXJap1nZ)3|%&@HjQcmD{ApNxbx zI`TZD10N!S@**=Fi@e|dV(u#5SM z^lAS-N=xOeP-8ljL9LdWiJ?RzoFJ}(Lh7AaUx{m6|X3% zs;?+t09htt`h6?v(H(fKgUbh|jmLxSv6r8HM;04x_V~c#n<_^BvXskM<45SDHLIiW z#fp;u@WuCs2Gpa9Pmy6^_Y|v@yr3k{_U0L4!OTF7RXf!Px~!(sGqba^k8bz&_9k1x z*!!>rB!rv-0Kpw;Jf$+ryBE$^=s|+sz4LL#lK!`3YQJOIMtNR zrf1Mg4ScY)_>lcX19$iWq@N#k>OL%Q6GxRc=;rqBEG-`WYLrxpJW(LDCy;6nW@G$I zj*q>M4uNJDKVo3M8>=A37T1>Y)~ZZOLqo#_d~%*g4QCJ)Z#UT-ukG#wfSm?Z6ew3a zIPbFcC(}VES%67U20R$uXB3%cH`R*J4>`V}M6um5;$&PA)8vA164=u$s+sL<#e?q= zvw)NH0r;w&?`5&={~s%dFyvxB7tCr({_ z=ekfTi7@vW(_2Ow5nu%In0GR*&34IvGZ zhvyx_$PMdWbpR(Vgz*f49fb4(N!hhc1(WCBl&=&*MCu|gqoR@$G#su2Crt+f`YoSz zH&_pA(A1la(6ZvB!oGppZZ=%u42;J;!!6*o{Dl`_CC$L7RY4g*mna3g%T)X}H-Ql% zO%V37X<96&&mG=~U3tE?|Wh+0Uu&jpB)2r(#Qubzj$L zfhHWV$Bs}1(X9jQi5OKqJ&s}_`aqt-65vy73qx9DI_O}ay1T>iRp3S=hX?|N7TRGA zh>~AX)+wC*{t4!Ar%iMxliKwMC(@fkQ_^j3EanVYmAB*oFo5s6@NvgV$~Z;C{A7Tg zBXn*>M+alp*48u&j00+XYj{8#7(>*kLDOE~iR2WEJ)i^Nci@N!?)j z^Yio2W$k=@EK7>L>EphMR$+c3UJ5q_Fc&%SzMO+cN4()=e*`e~{8UDJ8 zl~y4^+wo^W#J~uA2ST1rBmXW(0vUr>V?o zHSd~>bcuNHZueBFiietI1fB~4Q@YS;wYD-)E95mYHEDgr0ZDnrP7 zZD3>{iTCZ5xP!qTtIif!r!tGad?Tb-0AEUmb(~EI68+X3#Z~mU?*_PWv$3uVoYCA) z$qI4VtuaCt5dAJoU&!7@5K{}QpT8<=y4FT6^yEdmS7Bjca;gUDtUYftX-y00&xlziYNDgU6zq73oMFEYTdq1EiGG`kev*=4#64Hmo~U zxjmbKxo&Vfqnsm}eh8Wl(sFWLNE=1+P zFB{lEU&$4Lm9VI&8AqW=mYfR3xt^S!cei}P0CzYI>n_TY3oxml(4MZ0LJU~wdvbkj zaakBFh3(AVhrkla3>@x#l9LWL7(}8>q_*vIK=H2lJ9w8up2p_14Q=H}GEqz|P(on+ z`N$Y79l1DB9oWQ<%_SVPT*w}H`bKAb|Nc@vEDl4q`Noq9s4h@~Zg_C*9~WY-TEOesCGA>=!9qCc@Ri!o!mw>aU53 z>4686OjneOlqlG$9-951c#u6^)(fpq3CX_BJIo<&L-Y+Nh{J`d1CK17a#fgm*Gik% zhk3^0@3?OH)e)JV+bp=Q$DJj`Qr^*~=h`enzG;TN1YzRs{;>eslf3*=^?q^ovo7r9UBPzdwF?zCzK=tyO%O=-*s86+<*ZyH06iI z#x86GzL5av3`$kHf`IZRK6$<&bSP5!dVAF^!BhwJKC%WBvpBs}2wIx|;b6>Zr!oOL zx`ec6@7K2GtvxfKMQ#oo(_i6S@NuJZaR$Kvz5Qh}#QO;nS${M0>=qaB$35_z)NbAS zlfC@M4a8vr+HxNbk_|ggQ9+G2+uz;#1yiJ-y25zW{M97E%BJ literal 11093 zcmeHtbyU>r*Y6l0iik=n5~6@KBHb$G&>-D{v~(kNz(hiaZloI|1q1{Y4$>_QrASK* z-MssI@K@`e_pbG>b=UpluKUM1gEQZFV(90D9S*{)hR zJKH-6adO)H^8yY#M{`czcV)Tokkj_}w4G2W;s?lo$FjsTEm0_z2DIcIHTU?1k;m?8 z>wh%j+!UXo{pcUo)8A%bNWOZW!+?d)-=Ed}^wl#fD4V$mQ=+?m<+oEcvd>5}y||lF zu5;m!QxR2HZmZ~oQxdQhR6iwMzF2jUDEJmwI%*Zk(ja8pSvD3iP27q zW}|!YEpblmdm*_gDGlT>E-I6lbMSHAk_qOGI+tp6422R1^2bA=#&4d13;aI){~!Kl zNggC;WJvFBE@>(#1kW-xa*-cgBK8e>F5dWwb^=G#n6j->)F3G#5imQc*tYo8O4+_c) z3`&yRRU*kud76GaXS`p88mASIB=~<~XIpXp>KYmuA3lhTc+Tg`%E{d~Hcs(en|a&X zD(}5qf9ja;)J#|E*XCvw9i3PV1`{3`nGqjPMJ?*tJL?XC-qyabMkIE)x9T~Uof#e* zn?on@jERd&g@J)#sOUie-=lBI6b9~hDn>o$n-@Z9#S4Oh&Mu7B=t?|4*Z1w6iMpO% z9=yBe@L+f7y+i6yxy`(@JS2|pQPB~*?Q$Eea|?Tg#Z+rd)%H{z z88tOKTBrEoOV_2*{9nHwwIv8|{@hrdYU>G863b?gi)6ZSqiGhYI&FCM-z@DuN;dF)oV0HbR7V`AC}PgPShvpMWWZh5(e({#IN z<*8iUegB1_GQuq<2L}fqYyuk6Lc&rabYOmccL)R7LD^J4y?R;E@mj#_G+pRXs!UvA zf52vJY#cP|TSCE>)RD=2Kf?lBZc{Z8BFy8nw`EqD1S90-;o)hqc^r+q%cBAYo5)!bY)tT!)-&?vpy679e@`QA~?rmYb^ zdxE9{`PfOB=%*b4@-{s4f=LQOs=$VCu zb?s`_BO}?gQ}nA{EkF7lW8vWFhqdjkuro9@Hy5V90MF4DG$=YpC2$oj~|noP+?KZg+!?q$&~*No(Q#y0$;rL2xY7GMd{w zBrq`0d29K*(KLKX@HkUc(gN#x6L1(M8RUmI51G8;E>hoq902e_ENNb-*v`Gjn~Unx z?FkA$|GH!GV1GAhF9VAG^K;Y~dZH_Qt!j*r=tWbu9|WAPN42DX|MZ*{a#oohzFnR& zsIW~)Bl(h}5XUF0prC&DuK%DKyzN1&s72@1p3Cs(wKLq6C;o-8Znn0ImYVH}qQWm! zkY6P}B0;OiL4ijIg<9l&Qz)&S5L|y-(qVdXGNv7_Ij);jfCfnw+_pMP;n)|?5?KRV}$>= z2tQm|S(&LX_;};jRcT~Z&mJR;w81)7>XEXIpJfT5=^5xNljh#?5~CJVHRU;hN@m{N z!c8ccqZ+#5mss446Y?ujPCdK0|IgI-SQ~XaD+&@^xaC&-rrv6~M zT-5JZAuE4M@4I6qvVT{bklpaL#g?Ba5EyZU+v8(ge*SsE8~24`sMz!s1UMN9Nh*|N zYC*@(&V0xY{ftcGvl+@Vtn=~Qna%9WRH9W#5K@Qe?IZTxlIYonhcqaLDP2&Ek&&KJ@$^QF~ik#9G@2O^zrzZEfu;D76Yxuw?|g zi;&eVlaARCHglsj)wUmS(k=@_ea;-nL?+u?TDXrk?7hM%*f%Yq8%@lO>dcxWDkhg7 z<(83>ng2StKn3A&`&HN1ocpcy481^x~%zPG<|UvhLCPY`tY`Q4OUL<$3t$c_|s0xDfc+zWr{75#)Zy(ryT~ zFpIdjAq;>w93d@xmpHY&cQ@31d}<47cdP)Zv-9%gtp^JFQlwt-JZLy+GgOL(3-W3_`SD~U4KI0NyEf-(kI=k45aQg24A!=9UEx; zq^j}`zJtWRi!@ibxVWU3#@y>Exs0ETZH`pA^mOu_e;fp&^~r%X4!d zSVXrLk_w2Q-Sd7VDJ7MyTVX5B4O7eHhAHf?Ws3K~#M`ZQA%OUut~tRRzP7YP#K*IR zHkk;8sJ!JNH>A#1o$oh0yt}gPm6N~D@)tVsI~ZqK3%2@O>~FWV8NY;SC*ke-s7 zYFgPUYN(elGS|(}^=)5HgwLPuAz@_GgbEb;+Jl|>lA+PHf{#Ya?jr0zHbt(yy-6PF zqK9xsiR&%JcNyiF2%a{{Fg*}aRN>U-Xqk~;;vpiP=WZ2HeaA}Kl* z>XfmJ2QH}=8Tf3Q!Ubr|#;?KaXoTOKAtYo#0|X%(ad5C%XWf~6r)sTRuCLn7j)9Re z2e#jL>l5wTX5FDagb5JBeh*XBdA*XQ8kL2KwnP^rZ1<+nJsQn)Jr|iavv)djdYu#& z?}h<&T=%431qPOSu3OcaVk_(hHWsi9Xl7>Szg{(Icpw$VsDR{fnZtxMJQu0wb3K`% zjlowkllFez2n_u3;o?=Q(onZt&#~*z?tfe1aaIXxGFhX#g3ejo;vOVrOa9{65yRbt zyVBOtq3PpuP+?0!OIwIXNG{-W2oq;~`U|}XpWnZ-uoDG0x5J;;p7I)fMAhLbiLQrd z$j78ymkEhRpM*S{V#Aj2lYjp5#d3YF59n^iSt+Dy*eSHvQwln!J;L_GxPBKZ1;%`| ztZesY?WU;rO7jiI71T$!ANjfB4hfZ>QC(C-L}J?cLDDEA<&WCO!otGVXET%Vg$Yq! z=Cn(Pd$g<5G3;6tZspt2e4YMyUI+X+=j~h|Id3zCxZy-)@TTuk}E2_EmqCTAJGpV zy!lt0wVkkt>8=YyvlMk(PqRU1pdPfU`+OnVg`SVgB^7ZKOe1CqJ zbBb1(WsfxAgY3O~H{-zexf)b?iiq;z5yg7I=ms-+u2Ka5r<(frN=D>J1=CrcHYl@F z|44=qFTd3Z*wpf)*!v=C-cEJ2rm`jRKWqOMYkO>c*Je~;L`>}L3TQMMQLT!KAt5xp zj~&2x@>{*IY}_%{XA&x!0Yc1Wrt?m7b2G3G(S>qgftu3N&k)i0R^mA#FMxh)7#Jju z`W|}Q48K=_M3tMd;xG?>mrOTFEjpf=1XIvRezqg&%D{c z%gky)W5`V&!c>yr$nfx)@%jKt0ehpcPksQOvPw#t+S)NtE9{u)Ag(H%D(uF@#?Ks) zQvUgbsPOQ6m@1cfa(izWm6Gki))*}L+jj4&Pj>YJYy(@&^$_oPdbAW2(-k8zu*(7z zY@Y$G>k8SmnS!5oOow$07>Rt!HdGM8VIFMQ`%KLL#Y}^w-#onHtH0t|6ZnokX(6mt zOwDxnQmFLXTjZHO!IDSNzCSH~IB0>&43CJ&ep|oHdXJlxlarsCj=uC|@PHTjEW(N_F;W!)(a{w~xP&R_z$GbXi$hhDlaIdv13?&~s8D6FRBI zU0F4?UdzxByjQ!A6s7GrfK_7BfF}6O=jP<>l?#Ufpa>t$<3EHZV0>*(R(HqrzDA_! zfzD*UZrna$^Ym(Vd4KMVMJNteq!*czk`iQAWTPvVq!ek|Z0b%C33L%4R+>Bho3Kju z%#4LLM@cBLCTnPwGnyxsPOb5}TBHAF#8e;Ks!>9I<7$qg+r`Hdf;#3-2NARSf7FlT z+;u)LdGN8dU`%7YxrrIx-lVy)6EvvW^DSF3oVBNkK>sbyD_>m2C!gsPUW+4h2H6DN z(@w1y@XUvkQ&W`Ht3Z5n?`J9wy)$_pLMy&lQ2;Ut;t;+{2wIu~Ml3*~aHc=OZ8ZBF zwNTdk_wNUnh9@1Fxw-E*g-|1g$83ddSBg|lR+h4vSq4sjA7WrSrJ1e)Oq~5`--FCi zuT=%m1qlPewR`oSRsND89dBd1A0!uI%QVr?7HPVG5Y(DfN~(P>eEtgH&(EK zt&qb&>?@MzfpKHCzq9_etxf&Toj-tz00+y<%VTRx6pfode;jICPnuB~7%T`uoKEuf z8Rd^nN-Esj+bbEZ1@REeZ+EegvLYj(8n-y{QC_DO>qHBqXEZ=QQF`SRWJen7TxmO2DyhJDe0!yZ z6G3ejUfw>*ziRA2nvv+nHxmHP0Yl%Kqw=`)uzqK2B9zy%n?7Ib-Cc;pSP_rnW<6Mh z2QBPqD1ZQLfWd(;Uv}B~?&>ly#?~laM9`}E5mrM=>M8v!0DB+s3PBMd-^$lqwFsntR)K!C)u(4fKtKQ)YZ&pYTcf$) zoxM<({y|mFXjob0TqGe`uRGkW!~cO?Sm!rwr0@RyDGMhj@ewYbhoT7Ka$hZcF!$pL z)V1fiZyTIXetG|>@A>U>rDq|)5PGR3zOM#IkG$=ga_if%*pRD+0ZM(meX8=-Ju02Y zx2Uh><>vOZ#&9#B`A3|?-rR<_eQ)=k>7;`-w}Kbwls}5uSRBa(ax((_U2+sI+6oM%%IZqk#XfEbY95fA-)OAUB*U%q@{=Hu&k z{tMg37s06c%~D>8B8l-g4!ct*mEf(vYNWrv|8K#&*wE16$EwGn`8pMzEQ!BaY}x|q zd6`(D~~^?CLlUy?G_h@3WQl>NEC0aytqd!=}RE@yny*qvS1e6`iCPncFdwy$L8 z4Ro|!0tMeoYJ?B=yvr3nkas;v&Zg)H49-3pY!r>7O%3F=>Se0KtJ|C8M0gjqhw!Ug;oA)aF1JJIdX);S*uTW1Za zjY&f|)!XMZ-C(ns2*5yYZ#gP~NAM4(={%zh*cbboX(Fugw{rn*0EGI-ZN!5|z4=pD z(_F~^Ar?e|Db3A4%xO?O0ZIotW%GfDM@KhacbVHPIt1AQ#eX?3$#^eALkGM!M+P2lr$-r3mLi2rks!vu4_vbS9~5;2 zL;Emi9tt;4&#K>Sq{e68v*$8B8thB3^t!?Ljd=Y!nYHkPD(GWgYC?hh!OhXE4V>BZ zT$xRFgg$d&7b(imm;4rYWfVA|tgJ0|gX;r^h0}?T6@j7N3_l}Kvw^c!UwZu6{)}$Z z6-w}wO$AP&#?|OlihTAaXy@m03pEN2YJkVB0aarLFENhKrW^c%wGFHtI2#E#J}WCL z|8TyoBT=5`a2D*+@ANk|Xwc=~&u%mqj;)YdUVtV_@Wl5LZ`FYBH|ai_@78Wx*^4|% zve^@DnO|pVyd_Sqx*9AaFCR2f;lXh?#b|%Ec}-K#;VICQRB-5_md^s*bP@3n+c#pF zSXu8&NIb0b4@dNQGT%E~PJS+b?03NSzW!LwI58~6t?{SIJ zxVRWZ(6I5w-oXIOH*RU&YvZO-QBgrmj?@Z|0(dK)v34Y*VtiIg%C&`W?0W2N4Hoo!G26WE=1Td= zpyzdsqFP;DUB!BITnlei#ITv*7feiix0+Om;&|D(XlNxusch-RmezSGbn1LDo?Lgc zQz4???MC{4>-R=qr4}KMmRr8Hp{Cl6PVw%Ce7lUJ-{=&>PoKe?_+IEB!WPBA8tC8W z&eXc*{+=z$Sm)`-#~L-;?_S@v5TPRP?s$KAuyhzn5Ay1gA`+Y%K@@oqG1)*qnpa@9 zfSK|zMi8A3mjfW^;%`hmCm3^|AVQQ>)l{rCxI-yGMHWV?HRJg0B2BdsR}G4!u@IQ1 zAGNs+itveP@N^4WmXPWh zCJ^xgja!09b$#>f-T{G=S~ zob>4aj8sXsa|l5FUFrRw$e#Zj?a<*2z=&&x`rZMQlwM{M-^x=`+_4h&%lA&8c&eY_ zCmpQd%)xY+b5WuAbh%U2{=X|Omk<;A@2bw<{LolN;Gih<8C}UObE(=F8|hW96xo7l zF=cy3pB<5-X2W+JbyZTOs8;Grm&s05Rlfy3bZnp%vom)uf^GhN7uy0>4KYLTNxoTG zSSYKhh0~W1y>fhNKc1f(HCdeIS<*par=QTZd&)o9f1SOypr9{ECW$+?e%e~u#U)s$ zBIJ#!)a5o~$0ag9r%l{Jhr|!!i^=KVsX%M}Ly{ep%>NktQ~COxcT|>~D+j&nhX% zfJzjwZY0$3_O5}x1|vWixcynahXRa!4+^(=;!6YR=HR!b0_4Os6O7`csbj+C{FL<-RyiEC17X9=|e80XUrBG zhC5@Zs(KB5jQAKMJ$)9qWj87yfeB7E683kc$}oTf{s*xz3_W2OAo3~|7?Mb`HM-YZ z4LiA1)u^eft7nc>Bg`idCf(>%cs#*eT}9*gL*scT z9v2PURwVlDSZ;fXjd-oLA-WaNJPWA^U<1T*o1dGUJL|eQoDIeuD;?dPR}`Fl)Hkv~ zh7>?cbf#T+sdqBUumJIpfp_qad6gLW?z{BhV#x*;Mc#sO=;7f}wcf7_7I((y&ywpi zT@o=dF+1Y{#PUsqr{yBqRG@W(c;rsgiaicN+R)ZPcD}b)4H{`GKpuL4Go*Hi9}YX0 zCIj=v!^12xon2;i!APJW3<{i*W4Zgx}b+EVXIT6gS z22E5sj!H>lk!3&N+2%q9e?p@~Lqj7{r@}UWqA4^kgv41&N(v$F;PMn&7uIM%Ke!tV zfKuBLp^?W+HHh*eXVWqg%9wcXI?WFqKM&FM-uuvb>U&Km5gr|#g~433`Brr23g4qn zLe3A#(8TL=mNyaGnYoTM*bvv?P2q*^mv^~L8qd~%wTj#t&1FJ*Z>!@XCZL_gXmXdg~76>vBp<)c`p9O{4V9 zZl;&a&Cjm~(C*zfH8u5|PH36~igt zzG;DmQv#5Bb}_c6vojfdp=MCZ(AD!?@6!bHhjD-Wl=w|*_N+vZVr?nUom-PO=$$z4`^)Z}HKx8a5#rT-X*ri-t%AkYVS7xo*mLx7dE>Ifo$bbg7 z>vhL;kGiIQ-@~2ME4J_NVAdcHV_uNIVbXdq0~RO}QusuaX~K)|KRL(0?$xTgwh+wF zTR3uA_S!m^Js?Rqqt4;4dtod3 zay5YoTK@T(E@MI<(Aq6A;XltC$TywNfieM`oh=he!#)@O$L#}f0c5&g)~E&G6LsH6 z@^W-cFx3V}r5j8#GZuqRh#~`G(Y4n!o-=erR07I~w1ZO-Wgx(igA7$LEMAY5hdo@^ z@$pz&Ny*9Q`0KWVr#g}fL7v8jkYH$h_Z$#Q0r7ONFFtH5sdP05@A>BSr}0%)LJEl@ z+TioV3cK09!Un8EmDhow-$6Xtq#_H<$>_+owL_IAA3iJ^xHj+a> z2WrKLQ-|oYF#L|*?E8K1Ok~=kxg_?a12NA6Zn5OG`o5W4aG%qpGofQv7bMKoH~GJ z0i^P5i11=3(tnjXlY^Lg;7i8}x#ZxVy<{X5;sC}G2Ix67{bcoB2TcQmgVjMWL~ZHJreml*s+6*0fWa1kz|4+TV72QNyurGST2)io|}vLhg+eC%3#XhzaW7R z1y~eY&TBKoQ?oOdOUZAm_bQG;5wlpmB$l3$VbvZln34MAN#k?_m^iR-H|kt!Jl9oW zVUgHVS5sr6qpQE&Fpji+k==uE*;bf#>{HjYY>VZkylLbIg@*@ZYXI~0Q+O?Ys|j(I z;4$W8XA3SgHjFLMQ7Z*%jBFFqbSi+B!im{dZRm(0hgraNPK>8uR@L`j@6#!@c!Pu< zl<%#4>ugxsGChRgcrI2>>kNBn218@~1jkspO&nqc_bBks`V(>}!{4vNV!E{G#SXS6 z80Y8a=1O5{5jLJ;$gMcJ?#Yng!}6?gk|y+qMa;F!c&tJ4aeVCKE6B+fD6|Ouf3@4& z2}L^(jxZtE385h?FV91rt*!rfp=@rbEEj=WNT0!_p#(y5w%6E&erT-_WuB!0*0{S= zXNc%hIH9$^x7tzh4a!)D$g2FuNyMy%(eXG~0XC*8t zUatb$%!p?*{N91xj3Y0%ph~uGyUh+nUZzT_^!CD_ZkbgC(xy6g0-uS4quuE1pIx_T z)L-1wEq|l}J|Xy95cp#^j49U_u>2|Ko+3pV%qiq}7QzuB!!5zn+xb<}u?BpgJj>c` zYHG@=FGn46rca7OpLE&YNm{zG`C4G)^g!J~*)w9=0?VEZOK`iYwtl=SvmW38PUx!| z#i748lNuTua)~EZCbWOaXHyuEWDfkh0R{e%v?otal2K61L#b7Fb}ogQWG7_yIoXKr zk@vy&bnya-rsvMck`IM_+-VXRa+Xe4MXetpVl$G$E??H?T@R_Xyg@b)Ep@J7?`d ri}bQA%#IG1{JT~0AH4hMhmFIYCx*)YUj8F+FA6QCC|PjV$p60p`&>Y+ diff --git a/_images/hist_overlay.png b/_images/hist_overlay.png index 43b966d0d14aed1f7c0cd526b1413ef86f0815a2..ff6497235f66391538d8b6d06fc414e5328b8610 100644 GIT binary patch literal 10940 zcmeHtby!tmL!quQOWnPt>=Zpe zZ809(yyy{oNO6QWSn#{b3_Q3GfcYDB*L4Zpi{ zqNe=RlLCQ$3Fa&8b*3j!_!mf6FE@8}cd_g=MvkM)UQMbmHz>ny?uyBuh1dPf{e8@# zJ~1(&nfLIiRp|uj+FXyq^XJcJ`wCL7D#T_Ii*8;X?V%KLQ5FyonC;1l3keD7%+V8@ z7$2XW?nrQ`{{w|Geez+%baiVgu185hB&oAgndlO)Ed0hbX6BB`mbXRDE5?H1QNnwpx`IWrvz zl30g;1F=vHhT;;|k2I%eZX=J!kad?Q(5G#RD|%e{1Xj#nSZtS*djDb&Rle{4-cKkk26OcMiMJ3w26p_co|O1UAS-| zna=lA-FI#^WudNajAyX0&ClEl`$@aPm(OuqOB@%8Jzv$E1q+h0N6x*%v-VEc)KyVdW`g-p2i2n~6CmJqbJX-yRavfm zrAxv7u$(6q-oSM1$)xC7lTHpct>6xpR=x)dToy{FFxlnXWz-@rsWOr5{iSv(fiz+Z#o3VRPoF-W{g(7{X(bgNo~m8~Tktj7De#~dk#Zsymo(sHrF8mIkh7m!lIR<~}E zYinm$PY;646+^p>2z`JthD9S6>(6#1kQH7na#vsnd@H$PX$x6d z-Uz@yXeFw>?SJ%gIt$0@n*ho`!*3zz{^-6_=(wnBKi}VVml_IS?i4k@jXsu#u2q>Gi2f)qjnmC>5{qNuXjn^+g3C9K zv8qQHHICWbM+z9bm+SY>&p(JwZ?DY(3M5wTujTX?m;_bm=0tGlWeY8oB=mh)nQH5a z3VaXykoNxlr*$`Yj;*os;TM7dn$@Lx8Z`}#C_#rGspI31+_7%{0axWPiD6+R2R2s4 z^L=oyrshlTHzu*p5@u#*(o#|#Aq+AIq!)O!%omSj$KUb)aF-Gm=bd@5H_zkV+z2P2 zGG4i(`^i|xp)z|y&DZbW)4Fet`P&M{Amz)C=u&cOYU;ar8dzNR1wiZ*+G95S=*^#F z?~X_DS;vk{#Rxg7>gvY&5z|l?B8%-{qZM(%=1Ww>K$hphKI9KpMNKCuF_AtzGSZ^f zk4Uq^DGwQSmR4~(++gA!jlp0pC-T(Jt!=wMZUICLz>ThKonkym6o9Kld9`W!#BO@cT zj`!l4rM43qG%1Im&US%|-lpjV_O=0Q|Ci5cAF_whr>H~~v-SWsZy4I^_;g4cNrQ z#Jl0);Vo98z~s-&9*tFEVqqctDvs;w>bl0xZuOxeKVK1eL>0Z+?&cC(ERd6G`4;)J zqASf@+sjQHUB%WTgdXi`y3P=z;vtD5uIu+gkm~R4eN;+OLc&iXfFdd9 zRR`{CGgwK4$#8J=#2xIKxUY4oQHZ*g+~DHkKmgS1D+Oc*W z$07R~VogXB`?>Bdwt+lDe}^BvSEP`jPJNKDYJIS7jk#g;!ePEYiB0Q6YI?dff*~Ux z-FXZ?9orjc6bo+pV$T3cSW#kUXU7opaWTAh?7p#a@NSF_6!xO-*w0OBJq2Z<@$U|(O~Z?M{k7O;~wfx$jw(jEupqR(Xl=y8aMUj(39RvlLmSqn>+ zdz(xr8TdvD=5uB;I>Km+?O8xTSDF1BQe7{;KrRnsbbNSRR!w1>U~q35kfmD3T*!np zbDt6#=}3w5FsCI3me@6`Jx_W9i6NiAH27RzrIV*4g4tqkH+o(Y5zNpBksj%vdGOXY*NG` ztFIjv2GfYecJD_R&7_F!rFm@D(qLKv_s>KOMi?=3a3}!o&O5MhaVZ6fZm0g5JM?Ju}8Zuk2k(}{`^6XZY6ri zz9&tu$|ITUu$aM`(M!RwssB!4nHZr8Ard|(5*vgON6>>fU^Q!fMRR7!$$b4Y6T@0OU@SS!IlysYEzxLxY{;i`O&NG89t zz5Q}z69X1EHd`?`y??3bNjLL$wW5HItO(&TC9JXl3_KUl^Ba8pP0@C!)(O>fU%Y%- z1X1yu*DTy5oNA6rfI>(m>c-#uYe9y|70&X???Qd^S~;Jqk1$ES*zv|O8ZZxS31fH%U3fwSmjwo zaX=;PbU%dKcD%t_#T=O+%%s4|`=Dn{b88K_rSF*v z_ft{e49GoomR%}eI7o{&F-Ezk`yGq3pPgbL(G`;=OzQa-agK`05`A!F(dPndz~Z@A zK|#bNqP)D_*5%fUy1LnZehnVS(;!)>t~~Pnq+asAe`dU~ooPKloG`@~YAWm8rIFF| ztRwU1fHG)eId4ldRe1Qm_(c}%>wNfX9v15NrCIc3C({*P%<0K^@q&PXk9JcipcWl)5a1j8lqiN zSC+O7G?^+RB(80MusoV=!%wOC;jzZc1z~n}`4D9ll?yiR_Vz^}T|ckJSL^?D63+U* zBTN>5ofNzdff)7#a*CL1=Sec_d^x@Vs1aQPlr~_#LNbUNk#-37g6XhR8JhdAdQZfpmC{hi zk)IMH?3_=^s{RhbYjemHz4ZM{dS+&4o5wmAt_RFRRCEw&X~SN)n(l)K4}$5mx-7b)j zAo4pZD(Y)%t1LpV zJ$=UJDG-#gT7Mr(JQS@DR*hLQrteaRgb-^NpE5XRsswyhs!qf`61@KdMec`8&s`jIxEewPC%>pb`bEyH)fG*5s zm$x2j!ye^a(XH|Ga=>ddRI?PdwWGm?F~0$ed$ZS8MiJB>{0C0b`-FtGPlOyyoSYrM z%UdC<3_xQ@qD6M81h`vctCwLzibr*;JSzK(t#gJeT{D0@CjZi`A{(IAzuKEDRx5++mf}E%4^C8srD-#SC=KUkl5^!=nOxcY99n!2B}M zuA7^L{A6R|WIBm2UcC5g4ZHIU>&I=Ma6V1;VqyrRMSY4ZfA{Y4D1m?N+3`d1T?x$Q@I5bf z)(5Ql4oR3z@Gs3DJy86QEBy7Z$Z^G^YE|3e2zC1d@APkK`irqn1EV7#AXwd=%enLy zW3{g(;%gYQna(O6zH!KYcv#fImqawgRGg>PKN+ihjNlWZUj_n!dM@a3H&MO6qB{dH zF3w{+tqeW$@bC$UZe5od1}I6UP_7O)UZl#q$aX>+EJZc>6eXo(SVIs>_Ua7cQNc$7 zfDOylt958_M!j+;_gkzz3Y!a40!x01M@+h}v}T3U9Q4}|$kbn=7`H7wHHA83 zrHvP>f<|iz=ol*)$Nbo}(;&%=Si;d9sH^GNhr4Vnum#m807+x!<5SZrw(3Ge_vBma zuVXfDIK$4)&ST7$Kb;TB0q)|an`o_+Je5cYYb|+Za*)Z^S+fgZ)n4JDj$qL9>5J2f zn-JQ|t1%_P-8N%ojq9SVss#($(zAJGthJ>@1o!pFk00-RH+%N9J+>w^0cOB$SBCOZ zJnSOVqvyHDCo19WTuMPfyTh0aE)ClE_2>)plzz<>Bdp2R?MVSLf~Qf-Mnmm8x=@_rIC%#yHPLGCuWQ`bnmU8?(7s)t$1W{02M5 z9rva13=z1A7cGRlu#XE8Qw3+HU;@ko z&5v%S@87@Y2L3mS2jN_Dvu;Fu6Xcu}Vzgv`+%^Z|$^^p(uchmQ<-j;vu;@|aIY6)$ zG|)vaJL3v{A}T@UIJf2J`|HJ3X}P)g!FmLD_Zy^qdULa^jzgbOG99R)XfoV!3rJRq z8;_pNT!g`V;PgNe{$^r4f^Gk~Vrbs9q&TB{Er=TXJap1nZ)3|%&@HjQcmD{ApNxbx zI`TZD10N!S@**=Fi@e|dV(u#5SM z^lAS-N=xOeP-8ljL9LdWiJ?RzoFJ}(Lh7AaUx{m6|X3% zs;?+t09htt`h6?v(H(fKgUbh|jmLxSv6r8HM;04x_V~c#n<_^BvXskM<45SDHLIiW z#fp;u@WuCs2Gpa9Pmy6^_Y|v@yr3k{_U0L4!OTF7RXf!Px~!(sGqba^k8bz&_9k1x z*!!>rB!rv-0Kpw;Jf$+ryBE$^=s|+sz4LL#lK!`3YQJOIMtNR zrf1Mg4ScY)_>lcX19$iWq@N#k>OL%Q6GxRc=;rqBEG-`WYLrxpJW(LDCy;6nW@G$I zj*q>M4uNJDKVo3M8>=A37T1>Y)~ZZOLqo#_d~%*g4QCJ)Z#UT-ukG#wfSm?Z6ew3a zIPbFcC(}VES%67U20R$uXB3%cH`R*J4>`V}M6um5;$&PA)8vA164=u$s+sL<#e?q= zvw)NH0r;w&?`5&={~s%dFyvxB7tCr({_ z=ekfTi7@vW(_2Ow5nu%In0GR*&34IvGZ zhvyx_$PMdWbpR(Vgz*f49fb4(N!hhc1(WCBl&=&*MCu|gqoR@$G#su2Crt+f`YoSz zH&_pA(A1la(6ZvB!oGppZZ=%u42;J;!!6*o{Dl`_CC$L7RY4g*mna3g%T)X}H-Ql% zO%V37X<96&&mG=~U3tE?|Wh+0Uu&jpB)2r(#Qubzj$L zfhHWV$Bs}1(X9jQi5OKqJ&s}_`aqt-65vy73qx9DI_O}ay1T>iRp3S=hX?|N7TRGA zh>~AX)+wC*{t4!Ar%iMxliKwMC(@fkQ_^j3EanVYmAB*oFo5s6@NvgV$~Z;C{A7Tg zBXn*>M+alp*48u&j00+XYj{8#7(>*kLDOE~iR2WEJ)i^Nci@N!?)j z^Yio2W$k=@EK7>L>EphMR$+c3UJ5q_Fc&%SzMO+cN4()=e*`e~{8UDJ8 zl~y4^+wo^W#J~uA2ST1rBmXW(0vUr>V?o zHSd~>bcuNHZueBFiietI1fB~4Q@YS;wYD-)E95mYHEDgr0ZDnrP7 zZD3>{iTCZ5xP!qTtIif!r!tGad?Tb-0AEUmb(~EI68+X3#Z~mU?*_PWv$3uVoYCA) z$qI4VtuaCt5dAJoU&!7@5K{}QpT8<=y4FT6^yEdmS7Bjca;gUDtUYftX-y00&xlziYNDgU6zq73oMFEYTdq1EiGG`kev*=4#64Hmo~U zxjmbKxo&Vfqnsm}eh8Wl(sFWLNE=1+P zFB{lEU&$4Lm9VI&8AqW=mYfR3xt^S!cei}P0CzYI>n_TY3oxml(4MZ0LJU~wdvbkj zaakBFh3(AVhrkla3>@x#l9LWL7(}8>q_*vIK=H2lJ9w8up2p_14Q=H}GEqz|P(on+ z`N$Y79l1DB9oWQ<%_SVPT*w}H`bKAb|Nc@vEDl4q`Noq9s4h@~Zg_C*9~WY-TEOesCGA>=!9qCc@Ri!o!mw>aU53 z>4686OjneOlqlG$9-951c#u6^)(fpq3CX_BJIo<&L-Y+Nh{J`d1CK17a#fgm*Gik% zhk3^0@3?OH)e)JV+bp=Q$DJj`Qr^*~=h`enzG;TN1YzRs{;>eslf3*=^?q^ovo7r9UBPzdwF?zCzK=tyO%O=-*s86+<*ZyH06iI z#x86GzL5av3`$kHf`IZRK6$<&bSP5!dVAF^!BhwJKC%WBvpBs}2wIx|;b6>Zr!oOL zx`ec6@7K2GtvxfKMQ#oo(_i6S@NuJZaR$Kvz5Qh}#QO;nS${M0>=qaB$35_z)NbAS zlfC@M4a8vr+HxNbk_|ggQ9+G2+uz;#1yiJ-y25zW{M97E%BJ literal 11093 zcmeHtbyU>r*Y6l0iik=n5~6@KBHb$G&>-D{v~(kNz(hiaZloI|1q1{Y4$>_QrASK* z-MssI@K@`e_pbG>b=UpluKUM1gEQZFV(90D9S*{)hR zJKH-6adO)H^8yY#M{`czcV)Tokkj_}w4G2W;s?lo$FjsTEm0_z2DIcIHTU?1k;m?8 z>wh%j+!UXo{pcUo)8A%bNWOZW!+?d)-=Ed}^wl#fD4V$mQ=+?m<+oEcvd>5}y||lF zu5;m!QxR2HZmZ~oQxdQhR6iwMzF2jUDEJmwI%*Zk(ja8pSvD3iP27q zW}|!YEpblmdm*_gDGlT>E-I6lbMSHAk_qOGI+tp6422R1^2bA=#&4d13;aI){~!Kl zNggC;WJvFBE@>(#1kW-xa*-cgBK8e>F5dWwb^=G#n6j->)F3G#5imQc*tYo8O4+_c) z3`&yRRU*kud76GaXS`p88mASIB=~<~XIpXp>KYmuA3lhTc+Tg`%E{d~Hcs(en|a&X zD(}5qf9ja;)J#|E*XCvw9i3PV1`{3`nGqjPMJ?*tJL?XC-qyabMkIE)x9T~Uof#e* zn?on@jERd&g@J)#sOUie-=lBI6b9~hDn>o$n-@Z9#S4Oh&Mu7B=t?|4*Z1w6iMpO% z9=yBe@L+f7y+i6yxy`(@JS2|pQPB~*?Q$Eea|?Tg#Z+rd)%H{z z88tOKTBrEoOV_2*{9nHwwIv8|{@hrdYU>G863b?gi)6ZSqiGhYI&FCM-z@DuN;dF)oV0HbR7V`AC}PgPShvpMWWZh5(e({#IN z<*8iUegB1_GQuq<2L}fqYyuk6Lc&rabYOmccL)R7LD^J4y?R;E@mj#_G+pRXs!UvA zf52vJY#cP|TSCE>)RD=2Kf?lBZc{Z8BFy8nw`EqD1S90-;o)hqc^r+q%cBAYo5)!bY)tT!)-&?vpy679e@`QA~?rmYb^ zdxE9{`PfOB=%*b4@-{s4f=LQOs=$VCu zb?s`_BO}?gQ}nA{EkF7lW8vWFhqdjkuro9@Hy5V90MF4DG$=YpC2$oj~|noP+?KZg+!?q$&~*No(Q#y0$;rL2xY7GMd{w zBrq`0d29K*(KLKX@HkUc(gN#x6L1(M8RUmI51G8;E>hoq902e_ENNb-*v`Gjn~Unx z?FkA$|GH!GV1GAhF9VAG^K;Y~dZH_Qt!j*r=tWbu9|WAPN42DX|MZ*{a#oohzFnR& zsIW~)Bl(h}5XUF0prC&DuK%DKyzN1&s72@1p3Cs(wKLq6C;o-8Znn0ImYVH}qQWm! zkY6P}B0;OiL4ijIg<9l&Qz)&S5L|y-(qVdXGNv7_Ij);jfCfnw+_pMP;n)|?5?KRV}$>= z2tQm|S(&LX_;};jRcT~Z&mJR;w81)7>XEXIpJfT5=^5xNljh#?5~CJVHRU;hN@m{N z!c8ccqZ+#5mss446Y?ujPCdK0|IgI-SQ~XaD+&@^xaC&-rrv6~M zT-5JZAuE4M@4I6qvVT{bklpaL#g?Ba5EyZU+v8(ge*SsE8~24`sMz!s1UMN9Nh*|N zYC*@(&V0xY{ftcGvl+@Vtn=~Qna%9WRH9W#5K@Qe?IZTxlIYonhcqaLDP2&Ek&&KJ@$^QF~ik#9G@2O^zrzZEfu;D76Yxuw?|g zi;&eVlaARCHglsj)wUmS(k=@_ea;-nL?+u?TDXrk?7hM%*f%Yq8%@lO>dcxWDkhg7 z<(83>ng2StKn3A&`&HN1ocpcy481^x~%zPG<|UvhLCPY`tY`Q4OUL<$3t$c_|s0xDfc+zWr{75#)Zy(ryT~ zFpIdjAq;>w93d@xmpHY&cQ@31d}<47cdP)Zv-9%gtp^JFQlwt-JZLy+GgOL(3-W3_`SD~U4KI0NyEf-(kI=k45aQg24A!=9UEx; zq^j}`zJtWRi!@ibxVWU3#@y>Exs0ETZH`pA^mOu_e;fp&^~r%X4!d zSVXrLk_w2Q-Sd7VDJ7MyTVX5B4O7eHhAHf?Ws3K~#M`ZQA%OUut~tRRzP7YP#K*IR zHkk;8sJ!JNH>A#1o$oh0yt}gPm6N~D@)tVsI~ZqK3%2@O>~FWV8NY;SC*ke-s7 zYFgPUYN(elGS|(}^=)5HgwLPuAz@_GgbEb;+Jl|>lA+PHf{#Ya?jr0zHbt(yy-6PF zqK9xsiR&%JcNyiF2%a{{Fg*}aRN>U-Xqk~;;vpiP=WZ2HeaA}Kl* z>XfmJ2QH}=8Tf3Q!Ubr|#;?KaXoTOKAtYo#0|X%(ad5C%XWf~6r)sTRuCLn7j)9Re z2e#jL>l5wTX5FDagb5JBeh*XBdA*XQ8kL2KwnP^rZ1<+nJsQn)Jr|iavv)djdYu#& z?}h<&T=%431qPOSu3OcaVk_(hHWsi9Xl7>Szg{(Icpw$VsDR{fnZtxMJQu0wb3K`% zjlowkllFez2n_u3;o?=Q(onZt&#~*z?tfe1aaIXxGFhX#g3ejo;vOVrOa9{65yRbt zyVBOtq3PpuP+?0!OIwIXNG{-W2oq;~`U|}XpWnZ-uoDG0x5J;;p7I)fMAhLbiLQrd z$j78ymkEhRpM*S{V#Aj2lYjp5#d3YF59n^iSt+Dy*eSHvQwln!J;L_GxPBKZ1;%`| ztZesY?WU;rO7jiI71T$!ANjfB4hfZ>QC(C-L}J?cLDDEA<&WCO!otGVXET%Vg$Yq! z=Cn(Pd$g<5G3;6tZspt2e4YMyUI+X+=j~h|Id3zCxZy-)@TTuk}E2_EmqCTAJGpV zy!lt0wVkkt>8=YyvlMk(PqRU1pdPfU`+OnVg`SVgB^7ZKOe1CqJ zbBb1(WsfxAgY3O~H{-zexf)b?iiq;z5yg7I=ms-+u2Ka5r<(frN=D>J1=CrcHYl@F z|44=qFTd3Z*wpf)*!v=C-cEJ2rm`jRKWqOMYkO>c*Je~;L`>}L3TQMMQLT!KAt5xp zj~&2x@>{*IY}_%{XA&x!0Yc1Wrt?m7b2G3G(S>qgftu3N&k)i0R^mA#FMxh)7#Jju z`W|}Q48K=_M3tMd;xG?>mrOTFEjpf=1XIvRezqg&%D{c z%gky)W5`V&!c>yr$nfx)@%jKt0ehpcPksQOvPw#t+S)NtE9{u)Ag(H%D(uF@#?Ks) zQvUgbsPOQ6m@1cfa(izWm6Gki))*}L+jj4&Pj>YJYy(@&^$_oPdbAW2(-k8zu*(7z zY@Y$G>k8SmnS!5oOow$07>Rt!HdGM8VIFMQ`%KLL#Y}^w-#onHtH0t|6ZnokX(6mt zOwDxnQmFLXTjZHO!IDSNzCSH~IB0>&43CJ&ep|oHdXJlxlarsCj=uC|@PHTjEW(N_F;W!)(a{w~xP&R_z$GbXi$hhDlaIdv13?&~s8D6FRBI zU0F4?UdzxByjQ!A6s7GrfK_7BfF}6O=jP<>l?#Ufpa>t$<3EHZV0>*(R(HqrzDA_! zfzD*UZrna$^Ym(Vd4KMVMJNteq!*czk`iQAWTPvVq!ek|Z0b%C33L%4R+>Bho3Kju z%#4LLM@cBLCTnPwGnyxsPOb5}TBHAF#8e;Ks!>9I<7$qg+r`Hdf;#3-2NARSf7FlT z+;u)LdGN8dU`%7YxrrIx-lVy)6EvvW^DSF3oVBNkK>sbyD_>m2C!gsPUW+4h2H6DN z(@w1y@XUvkQ&W`Ht3Z5n?`J9wy)$_pLMy&lQ2;Ut;t;+{2wIu~Ml3*~aHc=OZ8ZBF zwNTdk_wNUnh9@1Fxw-E*g-|1g$83ddSBg|lR+h4vSq4sjA7WrSrJ1e)Oq~5`--FCi zuT=%m1qlPewR`oSRsND89dBd1A0!uI%QVr?7HPVG5Y(DfN~(P>eEtgH&(EK zt&qb&>?@MzfpKHCzq9_etxf&Toj-tz00+y<%VTRx6pfode;jICPnuB~7%T`uoKEuf z8Rd^nN-Esj+bbEZ1@REeZ+EegvLYj(8n-y{QC_DO>qHBqXEZ=QQF`SRWJen7TxmO2DyhJDe0!yZ z6G3ejUfw>*ziRA2nvv+nHxmHP0Yl%Kqw=`)uzqK2B9zy%n?7Ib-Cc;pSP_rnW<6Mh z2QBPqD1ZQLfWd(;Uv}B~?&>ly#?~laM9`}E5mrM=>M8v!0DB+s3PBMd-^$lqwFsntR)K!C)u(4fKtKQ)YZ&pYTcf$) zoxM<({y|mFXjob0TqGe`uRGkW!~cO?Sm!rwr0@RyDGMhj@ewYbhoT7Ka$hZcF!$pL z)V1fiZyTIXetG|>@A>U>rDq|)5PGR3zOM#IkG$=ga_if%*pRD+0ZM(meX8=-Ju02Y zx2Uh><>vOZ#&9#B`A3|?-rR<_eQ)=k>7;`-w}Kbwls}5uSRBa(ax((_U2+sI+6oM%%IZqk#XfEbY95fA-)OAUB*U%q@{=Hu&k z{tMg37s06c%~D>8B8l-g4!ct*mEf(vYNWrv|8K#&*wE16$EwGn`8pMzEQ!BaY}x|q zd6`(D~~^?CLlUy?G_h@3WQl>NEC0aytqd!=}RE@yny*qvS1e6`iCPncFdwy$L8 z4Ro|!0tMeoYJ?B=yvr3nkas;v&Zg)H49-3pY!r>7O%3F=>Se0KtJ|C8M0gjqhw!Ug;oA)aF1JJIdX);S*uTW1Za zjY&f|)!XMZ-C(ns2*5yYZ#gP~NAM4(={%zh*cbboX(Fugw{rn*0EGI-ZN!5|z4=pD z(_F~^Ar?e|Db3A4%xO?O0ZIotW%GfDM@KhacbVHPIt1AQ#eX?3$#^eALkGM!M+P2lr$-r3mLi2rks!vu4_vbS9~5;2 zL;Emi9tt;4&#K>Sq{e68v*$8B8thB3^t!?Ljd=Y!nYHkPD(GWgYC?hh!OhXE4V>BZ zT$xRFgg$d&7b(imm;4rYWfVA|tgJ0|gX;r^h0}?T6@j7N3_l}Kvw^c!UwZu6{)}$Z z6-w}wO$AP&#?|OlihTAaXy@m03pEN2YJkVB0aarLFENhKrW^c%wGFHtI2#E#J}WCL z|8TyoBT=5`a2D*+@ANk|Xwc=~&u%mqj;)YdUVtV_@Wl5LZ`FYBH|ai_@78Wx*^4|% zve^@DnO|pVyd_Sqx*9AaFCR2f;lXh?#b|%Ec}-K#;VICQRB-5_md^s*bP@3n+c#pF zSXu8&NIb0b4@dNQGT%E~PJS+b?03NSzW!LwI58~6t?{SIJ zxVRWZ(6I5w-oXIOH*RU&YvZO-QBgrmj?@Z|0(dK)v34Y*VtiIg%C&`W?0W2N4Hoo!G26WE=1Td= zpyzdsqFP;DUB!BITnlei#ITv*7feiix0+Om;&|D(XlNxusch-RmezSGbn1LDo?Lgc zQz4???MC{4>-R=qr4}KMmRr8Hp{Cl6PVw%Ce7lUJ-{=&>PoKe?_+IEB!WPBA8tC8W z&eXc*{+=z$Sm)`-#~L-;?_S@v5TPRP?s$KAuyhzn5Ay1gA`+Y%K@@oqG1)*qnpa@9 zfSK|zMi8A3mjfW^;%`hmCm3^|AVQQ>)l{rCxI-yGMHWV?HRJg0B2BdsR}G4!u@IQ1 zAGNs+itveP@N^4WmXPWh zCJ^xgja!09b$#>f-T{G=S~ zob>4aj8sXsa|l5FUFrRw$e#Zj?a<*2z=&&x`rZMQlwM{M-^x=`+_4h&%lA&8c&eY_ zCmpQd%)xY+b5WuAbh%U2{=X|Omk<;A@2bw<{LolN;Gih<8C}UObE(=F8|hW96xo7l zF=cy3pB<5-X2W+JbyZTOs8;Grm&s05Rlfy3bZnp%vom)uf^GhN7uy0>4KYLTNxoTG zSSYKhh0~W1y>fhNKc1f(HCdeIS<*par=QTZd&)o9f1SOypr9{ECW$+?e%e~u#U)s$ zBIJ#!)a5o~$0ag9r%l{Jhr|!!i^=KVsX%M}Ly{ep%>NktQ~COxcT|>~D+j&nhX% zfJzjwZY0$3_O5}x1|vWixcynahXRa!4+^(=;!6YR=HR!b0_4Os6O7`csbj+C{FL<-RyiEC17X9=|e80XUrBG zhC5@Zs(KB5jQAKMJ$)9qWj87yfeB7E683kc$}oTf{s*xz3_W2OAo3~|7?Mb`HM-YZ z4LiA1)u^eft7nc>Bg`idCf(>%cs#*eT}9*gL*scT z9v2PURwVlDSZ;fXjd-oLA-WaNJPWA^U<1T*o1dGUJL|eQoDIeuD;?dPR}`Fl)Hkv~ zh7>?cbf#T+sdqBUumJIpfp_qad6gLW?z{BhV#x*;Mc#sO=;7f}wcf7_7I((y&ywpi zT@o=dF+1Y{#PUsqr{yBqRG@W(c;rsgiaicN+R)ZPcD}b)4H{`GKpuL4Go*Hi9}YX0 zCIj=v!^12xon2;i!APJW3<{i*W4Zgx}b+EVXIT6gS z22E5sj!H>lk!3&N+2%q9e?p@~Lqj7{r@}UWqA4^kgv41&N(v$F;PMn&7uIM%Ke!tV zfKuBLp^?W+HHh*eXVWqg%9wcXI?WFqKM&FM-uuvb>U&Km5gr|#g~433`Brr23g4qn zLe3A#(8TL=mNyaGnYoTM*bvv?P2q*^mv^~L8qd~%wTj#t&1FJ*Z>!@XCZL_gXmXdg~76>vBp<)c`p9O{4V9 zZl;&a&Cjm~(C*zfH8u5|PH36~igt zzG;DmQv#5Bb}_c6vojfdp=MCZ(AD!?@6!bHhjD-Wl=w|*_N+vZVr?nUom-PO=$$z4`^)Z}HKx8a5#rT-X*ri-t%AkYVS7xo*mLx7dE>Ifo$bbg7 z>vhL;kGiIQ-@~2ME4J_NVAdcHV_uNIVbXdq0~RO}QusuaX~K)|KRL(0?$xTgwh+wF zTR3uA_S!m^Js?Rqqt4;4dtod3 zay5YoTK@T(E@MI<(Aq6A;XltC$TywNfieM`oh=he!#)@O$L#}f0c5&g)~E&G6LsH6 z@^W-cFx3V}r5j8#GZuqRh#~`G(Y4n!o-=erR07I~w1ZO-Wgx(igA7$LEMAY5hdo@^ z@$pz&Ny*9Q`0KWVr#g}fL7v8jkYH$h_Z$#Q0r7ONFFtH5sdP05@A>BSr}0%)LJEl@ z+TioV3cK09!Un8EmDhow-$6Xtq#_H<$>_+owL_IAA3iJ^xHj+a> z2WrKLQ-|oYF#L|*?E8K1Ok~=kxg_?a12NA6Zn5OG`o5W4aG%qpGofQv7bMKoH~GJ z0i^P5i11=3(tnjXlY^Lg;7i8}x#ZxVy<{X5;sC}G2Ix67{bcoB2TcQmgVjMWL~ZHJreml*s+6*0fWa1kz|4+TV72QNyurGST2)io|}vLhg+eC%3#XhzaW7R z1y~eY&TBKoQ?oOdOUZAm_bQG;5wlpmB$l3$VbvZln34MAN#k?_m^iR-H|kt!Jl9oW zVUgHVS5sr6qpQE&Fpji+k==uE*;bf#>{HjYY>VZkylLbIg@*@ZYXI~0Q+O?Ys|j(I z;4$W8XA3SgHjFLMQ7Z*%jBFFqbSi+B!im{dZRm(0hgraNPK>8uR@L`j@6#!@c!Pu< zl<%#4>ugxsGChRgcrI2>>kNBn218@~1jkspO&nqc_bBks`V(>}!{4vNV!E{G#SXS6 z80Y8a=1O5{5jLJ;$gMcJ?#Yng!}6?gk|y+qMa;F!c&tJ4aeVCKE6B+fD6|Ouf3@4& z2}L^(jxZtE385h?FV91rt*!rfp=@rbEEj=WNT0!_p#(y5w%6E&erT-_WuB!0*0{S= zXNc%hIH9$^x7tzh4a!)D$g2FuNyMy%(eXG~0XC*8t zUatb$%!p?*{N91xj3Y0%ph~uGyUh+nUZzT_^!CD_ZkbgC(xy6g0-uS4quuE1pIx_T z)L-1wEq|l}J|Xy95cp#^j49U_u>2|Ko+3pV%qiq}7QzuB!!5zn+xb<}u?BpgJj>c` zYHG@=FGn46rca7OpLE&YNm{zG`C4G)^g!J~*)w9=0?VEZOK`iYwtl=SvmW38PUx!| z#i748lNuTua)~EZCbWOaXHyuEWDfkh0R{e%v?otal2K61L#b7Fb}ogQWG7_yIoXKr zk@vy&bnya-rsvMck`IM_+-VXRa+Xe4MXetpVl$G$E??H?T@R_Xyg@b)Ep@J7?`d ri}bQA%#IG1{JT~0AH4hMhmFIYCx*)YUj8F+FA6QCC|PjV$p60p`&>Y+ diff --git a/_images/m_smoker_weights.png b/_images/m_smoker_weights.png index ca2e25a8b49adbf425962647d52906c12188e3df..380c8142a3444bb6bf3c28c10318e05b46792791 100644 GIT binary patch delta 41 wcmbQ~Gt*~+hn$IyLPkkRL9vy-er{q(K~8>2PG*u`eo?x2PG*u`eo?x<>BgPb?1pqw05E=jg diff --git a/_images/not_m_smoker_weights.png b/_images/not_m_smoker_weights.png index 158aacb89575c03947908ef0e10e71d4ce341c1c..c13bc05acbb81ac1d39611f64f0f5c45889a0b5c 100644 GIT binary patch delta 41 wcmZ1)wlr*lhn$IyLPkkRL9vy-er{q(K~8>2PG*u`eo?x2PG*u`eo?x<>BgT~^0sup&5LW;I diff --git a/_images/plot.png b/_images/plot.png index 9a8a7e437b3c28c4218ea785ecc256667804abaf..277f08c3de2e9c5aa96ab57d124b3fb08c6f5b3a 100644 GIT binary patch literal 49700 zcmeFYXEdB&^ad(|Oq4L9M~Oky=)ERl^j?Pqqxar>FrpI?qKjU`Ai7|b=+QgTiQap= zuiyWF@48>^TKB{Kct4zl*UWj(*=O%_p1q&vgsUpc;9*l>qoJYU$;nEoqoJY09vTP> zc+za1Gza_;a)rWNH5|-cJ&c^q(3Ff^9c>+4ZLN%7x|=z>SUK49unV&Dvc0r)b#-(R z=HRgVzdpe3;B3J`!$9W-bn?_uR@Vg$4d3XYJt~wautGya#mPy%)$~l;z4fZ2G)upW zT^RSt^y?Gq>7lL!e<5%;1&@Kvz(XMR?thCh*vtHPWEQT!os8yWWQb0;(f@VnqcAab zO%0`9auG;M%1VB5aXz~}(Qc6t_8XZ$71dJF((%ypSSa5 z@bDOLgsh@&mksM2Zg9?{1D2YLo-rXmyh>O0`Go=bc-`6JxNt$b_u{_IZzX^U`QVe1 zA3mW+{^z)6|Bnyy+0eHOByO3-FHrc)J5__y9v%WSGc%6I0|E+$68!w1Y|4L;Y)_WU z0M94N4PzhvG%+z*gHb=cKvwr@f=SN(?ZSQZFQ4=5s;cK=Vq#N`9_1(1@$vD3_czBC zW_=`0J7yg1+lKevw(||d3peWmPW!*kmuqJ2-vK=dCCWXFRh^`l5OsAm*%DKb;f*cg zvDZPY^TFt9rrdAWW~$N*r>yzP`Ud#-?*j2t=9^{GmewxuGcMcdN=(D+naSP?sfQ^1 zT&YG9=yo=3Vbb%3A+dbajY{CJCtXTP%0We}U+H2!zTdxhmNqu+N&@p3`jdSXivRPa zMXR{$Kj|V)i>;5+oO_u+@xs|i+N}!GKiyuRn@pDJQ~&t>bR*`pdfcAY)YM>SI@sH@d#027lX)l0(qrE#+&nsu1lH=1V@}{MZ<8m#-;v#Tx!q7M{F=;>oF${ zEuyZchKgem)s-nNO42!9U@zsMQZT6iLDWSR=p$0{myY^4x;i>A?luDM3Kr`*0xtW= z$jMP_-wdBAjf(2g0v+_3sE9?X1l)FA9RG@4sjZa=Q}JJu5gd|OJ*@=MvTG!QCSv_h z=tM6TgV8?P&DK0Zvu`?-p7U7nL;H9Yl-h27yQn%3JRX+ z7S5Odz@QS@zZ8#l*&tgkVIp z%{Pfo%kNLPgN6>tnyXpQ1X?9)_YTFE~?!g%Z1r=dGqoyDc&*=F_Y!DtGrHxh{-ov5TNg3LKmG=B`Te>AI?U&KZonwR3?B|`O}@1<8|QfE@&sl{$(zT3 z^>d4hSOOWsIqPfubR#}rMSPBU7YIzrx>ydLFk4lU(u^Z%P4(Yf;)@_^C?ZQ4U|Ux|3L1X~K(+u$V`hW9^D_@KyQ=5#p_Gv0qaXeecOvU0)176@po zA38y3f(9|PiNjSTtug=S1AB)&_R9%>04R}r^xz}KDb^#;#(4$e2-GS5XG$qjk;!Ci z7GH}}q?l-{(f_9x9&m#4Hx(vssI2VT0}KJCNiDJR%3P9B0~#kN8OBFjPWlE!n|IJt zJ{RUi^+V8Wl;VT;odOtiao#+v2v6YY?f}+5p{vCLA_-D^8K=0^+5GnAN(F!Me%?EF zvX85?zp5l{{_|HIgeEmG)Z(bDIH$Rj)Rx7*gl*UQOHqpB3|e83Zw#>(!-DZa$@* zP=&{(6ga@i7VgLO$ui{^|0O6KP7IVwnY`=YHWOOzDexEwFQN39JNI}9Xhv4C-^Z-LqkmBUZ?My3{vQt&qrr*W0e#K-~smp zBm?_LaOmB;NjJ-s^;2#{611pyI~W=WmCajv%~52P;cw6JN%}Vq^=yp^{xiH7&#Lc) za(TDu=*N%OPU2Y@*Gf^@&Ht@ZT#C7+sp5sFVFETAd6X(8YS3TZ+^W?&rAQW30i3^M zygXHMODikSM~MyOyee3cuKHau8-^W^17<$~QMN5n2)Us|9ocI>!xW@V_{0ax&6lI^ zK({fj6vj+^Q4QU6r7*l-ayVRE8AL-f9_AFk`7>#}NdJdBfl9u~NRz)Lz_#8U(ZPBthtNYk+{@8?c2i z_%?ad!SWndJUqm0J#7agLpizm)vkW`A<~JyWrjrP()xJGtbKKuMG$Zi0fURn19cT^ z!s}60jb~43Xi^UxGzXP6dk16wtyh6`gQ5Ss6uRN96z3I5obR-Q%{I^}Vxb|iDueWt zKZ*#aib{@L@Dh_RSPSAs00&M8eK3-GpjH>S^i!Q8d_dciVQVTJu4RKq0tG?^6O*LK z$`rjs&jva7h8;xe>_;g7uGEJ2ZE5pYDP_!+0US za|?X1E#s*N+xA+IzR6LOWQpOxm|zq?e0p;%anF1VSrd7 zn{LqcUL*eN*RNd${f<)?I;tlPBJZzT?%N+gm{*;=`j7rsozgjPPWAZ09O)#vxYiaZ z*hJ7r28#?`XiA-%9WHB>K;RWG44c6Wv2Igt!P7AfoDO2NrY)^2 zbAek?@Se1}T@b;vji3IiJzax_vP6;kq4g9GZSIjLJ2FOii%ALs7CjkyM@B=#;kh>$ zaL0qT*v~U~Vr-S$JM1>k3xz3Ycjh9Y zI1Nbu)5`k2w*n0yGg4=XN%%DQvwxY{av`PU){{X@5;Wh%$26@sm&Z;6e3Oel3)g?= zRtnObvDtr}s3Y2q`t17qJp<0u{{v}FX3o}F$%@{4LGOK+s3^#fJDoK8Gxz-{1@5jm zT<-lhd$tc_1ez#P@@dnR>EgL2$OiiRnF11}AhdJ8r#ehKTkyvh`o~UwIu1bc3&vX_ zr@@J=70$P4(+Y)nR{NiU1fS< znDe_yDJd)$ibBsQMZ*&7^nM3;dcx|W16_No_S?4vssaKs9S7PbsRciJ{a99(D;Jvb zP`!Hi@WR&lSUYw)Q>!(LU0gffU`UIHnH5DHGfs$F{EiU*)cpS}7gnV0<*j%x`z z%k4CG2Y}f#yjlFOMl+2^^Ofq(W^7(#YCAZTvu+Q&Q2|@q>!}3^#JgZRS;{?0k?XN& z!8L@5(mj8i?03NFfpj8FiZWv$%m#svM@Jn?8{Y$W=MS{x4SKT}26`G|0&DWD2xa9x zS{-d90DU5eCB5U#^gM&6`L;>(^7BI&x<9&kc(4W}*3|HKtSpN({{0&Q!eZ4)DY{Bc zmVMK(ZoEE_y3u%>vNAMPdg5~8dj7S^e!6Dkd}@Jz&;mg0`N9Vu;K{_59&T<%^9^pE zt8p@%f`Vax{wQy{&*5V332}aW7o3Ck@y$yR8W}~hs(-93{j!(k7qlUCmuq}9^uV?N zVBhnt&HQ5Z3mz>5tR3J21R$)C!O(W2wLwBqSnVS;D=N#AMUjfD0gPbU%@n+HyrKZo zgja+yvJx_a>Q@bGv+n-N%l|ph#f!m4kc*IMGV!~;L;2#9Oa0wXUC*B3>g?QxizK-b zpx?PVALbm<)AiUc|rc}bT)gc?`+hZCkn4kHGsi>%4 zd+v2f+;O?@&OAWstor(TW1FpH3nEx>yNPT{k~ZPJ5d-o!;|(J+S3fA!EN;h3L>y*r z++Plab_1wn)beNAeC!Tzq8xc78$OeM-CHyS<>pACmkd)ei2 z#S6JhRqmdjCbwPzIGyQYcmDjJ#6d?*I(1nX!Fg6IAwi_{(BBzT&opr9R$DO^&cTAH zr0xmBw~2T&wVe;*1MI8*O5l_{zQ{ut;CNIM@`ohIuS{>8lT$A=_gy4u%<-qc>Ui2L z3%-iWDC5VCRVEVs4bpbwD)|hd%uFk8l^>Jq!ALZVK%N*4ehg>?*^R?5g@V?GkronM zsj}EM!(WOKg%B_$Bl{dK~gMZBoJlYLtun~30&nU?vj$qW4(nL-Z4eI zL;>j>e?kZDKrL&G{lfrJ3)ujP%MjB?}ccqZ4 zgO@dtL&|ZDv6zWEl3gmylDc-LMd%u@=5A){-dfXOvpx4-uO`RPzHbc^h@?%t+4~df zG+Ms@^Hjk981*F&v=JrE5MWV))h89j@P(N^o*B`8C(M^?hwFIehL@-t=R+PXeJfRO zjWjoBV3y33Hj~?JC(3#%mj0V}3H7eMx#0!9Ox;Rz%j{k1VULyJu8LK}P;Wj;J7(y{ zN@AjPs{Z0iB*+Yc?1hD_6_|X`exbWXVTNuq6WYa7gwKRjOj@ubf`yx6)0sRE(s^F) zG_sWZ;$nwXo!My~R#qmfw`y-ORn=*8oAjzQfnAa(3s&69N$PO-mcOldjDl_2{Z>y$ z)|w_@?UC;%rXWmHyxp1isjN*D#?s8EFIJvwG&}huJ`Mk{rMeYtwz6#MM(d&g|K;h3 zc7DH0({1XS=H4dEwz=!x^jajl=K=2Wi#$8@IpElRuGEr;pi?3z0B0rmSG7x>(-d-_z5LSfCi2=f6P{|I=Gx>w%B z_Z|!q4MYbkU{y;ydnq;weo^HTtb5wXo5IBcWyvbp554peW-9PxiGAt!jfG2#e`RWf z|7K7fE^Sb-)k;-f?5B(ASgrEo{UI&dZult@2WDF)CW5`POnJpixtpUEyw9|jExb<0 zQTj7HtoNTVJp+tiW-Tc|rCS);HVzfH9+T9+e;EN+QXViiw*D=UZjt-5Fr+17Zh#KPy)#x0)3=#ta`s4#!h7_Z zF!k}foVxvr0JyU^R)M`*SX&V=) z_OeM=F=??RyyZ@iq_^DxG3KVJ!gYtH{|2ct!DZ(uziS1Tt42HW3jD@<+|=bqgyL3k zONr#TCyUmDE(M{!-~1{tcU&pI53=ysZT}K->^KeO=xX{?6X5|Cudrimc5ENq@IMcz z+Xnj{1%J!QE6U2oMNKJ}-&}$F|dRv^(?N93i z;$m?a)$VVw%yV&y3tR2g3}uU4emwWzQ7|aBe6`i*@hP;4m=nXBKOBye!79r@sYCSQ zg6Cpv(q57~nWYG;?`ccJ?p;u7vEP#?hph`W2~GM{|BQN|d->w9JHh5hRqT=*HfhOV znNH_AqYQ;GeI_Ikfg9n7?U-RDDQUK&m z)tIQDOdh{8@$}v>c)v*}AicKp*JJ2ls!Z&O{9pSbt2f7XIx={P{Z7AfA?JwtR_CfA zKTA_e6|v(cj@#w17I=i}qd3xue-}jg7Utkss2B{)EX@}*KK_@**Voq>I~tEm;M;20 zPdU=8GK*Y~OLtL3=}(O!KGsSQ)P2_Z@U-^F;8U9WmHAk0(I5ul4AZvO*Ycp1)iR`_~6Dy$0#kok?4blkzuo8HYoK=hfApbDs*@2 zR!7`9x(Mt-6bshCZ13AMh%vOE4ioW!%@QGBp|p=vw7=jdp16HEj~CmMjzE?I>3;0% zOftTtyjX=IR7%a1fPF5=%-?HGnJRuO1QQDj&~m#Dv(C-I?Rij9zb+y7ij+;V)8Mw7jG*ph4@nlNxJ-brXPN-lzv zAr?Me|1nV{D1r9}>Wc(pi4(SE%Im|dE4}2QuhPglS#XMbc%pk2`}lemVUjdbp6tw) z3dQp4w|dR}579c=Tgkw@ue5d{Im^Kb$8Odn7y6g9(8BG8P3S8#^;P@6p80kV;7XN|i?$Hm zM0UyKB);eMl}xED<_msB%#u~%!Lbg0&#s?6`&xH9!W9iqPz`g~T-^(5{jz(l4izYR z*bBf=B-;1PkiF(NYuOaxrT~ZIlCxBQ$h=Pn)6RaC&d){RR^R>WtEFVyYLJOLS4v{8 zlezix<}mo$ggUnQf=v;0Py2f3%;#QvDyX&(Xg*&6TN)qC$M+W;}*;XHHH|Tv; zrbc~f(GddbeKWi;zxCO@Lj!n1Up`9yqCqXVlU>r76q^m|ZEC+q1OrCDnidJ?6Cf9P z+QnEP>R?t&2=kWq=<1m-V3wSQI-5@zL=dRHZ`n!W5=oSgh9~fOe?-%Aw zsg|5{(|D}Wnn#pnx&R#QrmApe!v8ZtS#iDz1OkGa6vYiJpE~&<-s2za$Y~0;Lzgp* z#5TQNQ(o)8P^J=8vET8J42DC zMQ^IkS@_0Hw^j|FdZ5C$^9Snt=58Me~yg%lRl50HiTv}i%H9Yf6rBYan zf+rlMHy)lRyfiYlTI59+$RSH-=?s@hmY2gsPAffr2m)IGw*X%R@+L1N#g|z5C))I1 zl)$|Zm_cf^ULM5=`6bdqgj9!^OIuznb{bRWRkr+VYL5J`phVpWxB=G71MwtB@m88z#H6an`Akc%bz>wpf=lPlO%q4r zN$OL5&(s@-`{`f|e;}nn?2=WM@uRv3ZEBcMzI>95r8^~qALjtwtXwj@K4K8$_3NXx zrR)f+r+D?P1I5vV6UKi3^G8vB^14=`8*%G_Y5=JTK@wxuzjqIDg-9T<{xzK z-%z&aJV*QZ05Jjt{;CrjH&TCZt&|&V;%_$raDB#4bqrQkB(KtQY_oDZiqdSy|ANC^ z82L3~u8(g=7h*8S8Pw0nSoaR~eYZL(yswg^e$or0&kCrl*J_LBja@1w=OTaYK;{4f zBR?N!(*1h?*{sLzu_crq$n;Xf%n8r%qBKLED80_n4tArbV=rz$YKR=F>=ujXV(u@q zXY`oVKv>xXGF-C**f|gA-GkJqE!Uu@s8EOaSDq_41K!v^3G$S9x&}FjF8urBvkC~&H5LWxw zo0Yx!!kEplneupJuUyKHc?lY6WD|7Y32Ql42`b=m<_}@o zfef7=$?DMrg1fR+4XNcYyosg3qVOBRXLQfi*TrEyUm(zRK3E<_^pyy-(D`_IwM5HK zlnF|CJ>H{Ff|4)b0qS-|JH}y;49TLm8e(k9>aipM0SVIg(%JTJ6Si)d0$;?t*uQzdQy1<|yOjNfjP z`k`ihiAzA?Gwtn%N9*Zt3|>}R1DyBiTw!HKg?u^YV+u*HQ^5hHyHpvNJZaV}bZ-qv z)a?^{*MiN?(uDz>L1@PVZ12@reH&GvadpJAh&f^#r2G-8k}0>g_%$o3c^5?F>8~!A zHD{p8YUJrj=HP#v8mC-v2rx~L06C46jScG`@oU>sSVh}50|h~HH2Rx`MNoEz!o*bv z%P*2=q|{qVcw9@{ukuApQI*^jd|({=g1a>LpSn-krbD{jQa`nC3p`h-9JC~U%3}5d zpy2cen>}7G?$Bp@<9dcf7$!V7Dz_fxU)O0Vu53wLCm4qAm8{&Jv|fF_^!S;#0Oogiy&c zO<)k5C#5T4pFjQl%M#k26?9AZ6cbTSLqT2guj1?A$w|}+585~>k4)5c`4{$tOTtFmw z811k)WfI$&?(sK#yhLZEs34>5iNwWQ-<1~&tw(Ep58*rSDsp|kU+dcD9yzu{pO1+d zFXFz70;~aueoDH9yTQMIcZFQj%V@mQK>7EWawjDxbA1>)-z@V{uM zSw0z6=@Mu@#8U_ypPhYwR=p1UDJ!Gk5|0|S;7_=Hbary`lCWqnc!t%uf{gGBd#No3 ztL+qrKGp80uW%;9&gIU?z6NdbA9ju4*uMQb<3p^DmH4&|3JQvZ2{A4qyDMrJ8!J1v z6ER#R`q#A*0si}QauRW}i}m`A;Am;eg5OfEZtg~h%bk|Cw%q!IyZE-9VzJ`Eu}v;K zF$VP*XhS0-##aIZKkQ;+UV26TPSU6)5@7i45d@M*wW_C&y=rzKm2U0242eyANL&a)p z-eZSLp+CW=#`yVh(}N<47k;>mN&KFaxx*!JeB_H=_`*-C(X_f=r;}kBlj%ycscIWi zX=&-9iHTS9%6absk2l;FJF_8efpJb~x)uN2EGzGZ2teJljqOX{jaq)z@KTsZ4bZD+ z>^8pPw7eqk7tbLX0{kac@qLp_BAjV;$7cvVahBunS-&k|;K$R2X<9OD2ubAINu&CC zO}#D;|0_n{Q;EO9vVyn+%RHv88yl%`PE)5eVF?d}7>%D{>9!o=#gYuIz&#`0}9dXN{8B1PrXT@42Xr}u~&{gX5 z_w2f3a#IqV>X#t|XcOs%;J5mb-L_+W?2;wQvdK8Y-wh~BZATZ8IZBsgb{N;D9GiRTpVXEb(uA9ig)}!>Gtr8%%p_GijaRZ;Sc2u zoxT}x&N^x|V$7-q2=52J9<8-%P~66oJz3Eh5C#HXAf=| ztT|s7>c;I^p!ApXp$_~;zc_ZNJ-91o|Blf6&V^HjMSMRq{s1s!me1S?y(2f!Z7z@2 zJTLnUWAq!{mt-Wa)KD&lm%Tci!om@NWUhs!35f=Wdp5PP(tfNC)s&(~Vs!q@kVdkx zvzrgox&^NN(K9WSLPms`0=b}eHeV*Ho!P&{L~eXa9Wm~&&eflgCCuK#s@YLHukupF zeTD(d#z<|>60p))N0|rGmY{yB$6BK&og zH4rS|(q*Eow)8rEXY^sVA1v1|Se=Tt8tL1%t~okw$M(T&)kInIphVaWP-)c+hhJ*J zsdi}2Y@_fGfjU&Tbj4o7Hha_MfWzsP>S+!YB*+=}kGyQA&jwq@Nn z4kIv>LKerVGKH0$k+iQ6!4hQFAS^7--^eLqRJ=7pwdB2JPnV0mAGvr}XxGPckbqe_ z8{Ct(AwRk3_GIT1J@gTIxVC407z$aVfA%asL!ZA`=IX%svlXL`z-}8VXO{dJvS+ZI z3ex5q;VGxO4Gvk-$p^8VcryQeVry#6r*daT9VXdB1=tvu-LS#7KOHpG=Nh&b}oFhMMN28T{u zqX4s{R$wQ9%D=Y)_+5W@Drg=vHabd)Hck8VY z&&kDO+4`*#oP6IL3f+4%u{(z&9|5nYOm?;%{qC4mBo)D#{s&;1XHy&mbyf}jfD)lB zI*BP%RGA$u0h^&N0YP}mRG$Ay(&YeSh+fxx%(5P}3^+C1>l?(?AYjEEqpzq{9atd#dp3m#&UiI` z@&PWLRr|GItv?iOJzNJsS(;d?&yA{XE#?UhMq+RCX=RQgRCYENo(y6`fyfz|B@ zJuo7fCI7P==CLp$_8bp)r7#Z%puD&McFJX$B~z0nxT{t?^r68yKf0A9E{-YLI4%F? z8$nlV$^N2;gOfhjX(U|^RIoi?7D=~gau_N{&H?yyEf&6+9JRZzF}e-R&;#Wh%Ju|h{KenxT;rNty|>RS$#omu#9dT-`A!Z#9Rm*s)J#SZs-4bRWC>p#M+&MyE<5`#a$Aqk z0E2}|w^=&awH^GELahMQ(O)*%H_UbmXh@TD|DCB{Gy=C*%53k)f;D2_N5;qM2ZtQr z^1M*bb7y7?=jRpZ#0&DAD*j|RsQ-bQgumEgUz>>FLFpu$6PpF&AB2o zIr+81eD)4m(pNIm^?jE-P-1Avfi<{v!~(p&LoUVK2Bf$mS1_dO9J3iIpbt;`b^Nap@{kGE2NJh&E3L}bNKMhpZ2&PITg7c83j3Hnh3d6eIoryR_$QoXv!G)Qw);NN|)8L!eLO&c>Ia%%VVU=pntA<$hDUQ&b(M4dWlqn z$Sm?lVVE!6vfnBC(`+|8iOzjrCqRXE(5cvWwX28*>-#*Lnb~U&4xT#ix<2fa_#1n9 zJmb`xUoB`hN>K`{{Jw0g08PT6w;|N!)65xW`mSx5Bf2xa$tDTZ5zU{=0jHdIvbv*Q za6*siSMf&qr7BRLE@Fg&4LAyCGxRX}UIZp6TYSy7aMwU&gS15x6~OWs6DLt(for4e zl4@~2Chu^M8)qu^;YJ-1U^WL}{{s&XZMeP)4qQ^}|K>`rO*q{NA;bM%TkxDT(}jXv ze1n&gf)dpZjGqpW*`DcN+y3eTX!ncVUHs(-)qPnENt*KxMOu^9>xojBCb%NcS%+N# zTmu>r)fj!Mg5g}m2PB`Ioj9di|I&>$*9X>cfDIyAljU*ki!^SlYrv<^&a;m^lpBW8 zLUa*93nf4{l|(3`b$nh>hIIHP4=%>_#!Bml@Y)Md^iV5Sf)c5mO1B#vLd7gJwnH{1 zJ$ZvL=hM*x`8u)&soww|!VMl5;9SNJWDwfKic~j07M^uP^{JpRIV3RKb5^FiCl)eM zH5+GB+%}YC6z%)_-b5`e+iE|nd6!pBCKtc1Of3J)A$dRXM5vQxd1#D4#>1lIK&WW? z-x%+V9?Q0wwl#*rz>}gT8#VIKFPRWmil>#3^qwh-_;|VmWmf&wzIyv%pPsY#cY0c9 zcFYDgdEX&TkFLS|YDA2rs0alJESrLXJls@%)6MXa4o2pvMgxSZk^^mr&ntDtAG68=kb(3V%Jg_ z!CQQ=H#I}QW`NB;UCo-1=+P>V=h3Eq z4FtpF`DooXiqQ$6R3A3vmC5q9qSOiFmEk@G{?>TE-<>!Ojy;zgofS6UjQ0QjYMbO0 z=vfDAH$N*`CCUo&WZ6J&Xv*91DmAyVOoj-=4^utWewfg)laTg8>_4(30vPXVH>s^P zv#|q!wBnRn4KNfY-Ifk{fTfDqzS^m)FNxq1z?cB!Fb_&}5>fa2g&L#ddJD3K8nc$v z4-u+Ow??J!t2HkunemBW3?own?_5mghGzD^ffB7FR73JV3H}i_d;HJ!NZYQl56@jS*Qd6vBTY(#@W`?|*y=tM;WeH(wg@@{?lkI+{+F6D#eC}%Zz zWAxS~>W{bzy@n)8SSOg_0ENCYK&LrB2vCZdzTV#sjz!Pg9tF34f%=0oJc zFfZT=7$6I9&uKl9!{{sR{zbH0!K5s4NS5Zm%$1}>e+cLz4-TFWE*}06;pF?_f0&%C zv#e4s{_WEh-xaF-Y1Sx}f_JX2xCnfeY?7Z1@SHnEpN z)`(WUzqt5!k-Nk-eMlNBJv1`*vT4(T(FnMw;2a2uSb!s{WwD|;5NzmbC)*hs3`&f$ zq!$&?V@y^w+OBFmJa|5P2wXs!iNF99N1|tA&mI~=@(~amxCPX;B#gE&yBY1*ku`-x z9Vf?3R9{>D^%Zg?IVvZ}eq1&Z*kx@3 zfhx1A*}V@PQZu9^9h92T+M9rNUjS51M4&I#3j zZ+yHm*aADC3>DV_u0xRi1H<^}zc2#?rjK~vpj?~}AdI4=^yrs=Xt{q6tZjYl@u|I* z$wiOGs>rB#{)YF+=5c!(&$5eF*pZ?KN*K@gG6=5KRSR0JSOeE?NPkUuVJK*?ifb={ z5_fn`Tx(cE&&JJ%FIl0MBq)}Uox(J3X=HB#gec5*lqgGyh7BNBZg1atTK3uVcB}~Q zBHTt!;)#pxZ{5`ql}24cjOVg~Y)x;0dHtmOtzPugmHr#?;QnsByFdg4<{X$noB*8F z2exsoTQA5Cqa{p!y$M`HcP{y4G>DmK`#}~UK8Yo>Uh{-IjRB+tx0@k^^+m@fV_Q)z<3zBWU6l^ z;4y6h;5-cyScVLeh$H*5NU92?&1{CM*L*@x-8l?{|1;OdLY^Z#*``l z5EStDMrG=8OzUTN7DcdGell2?=t%mxr6h(pbK@zON_Sbh5n8!TlHkKCV+{!w}id$KY9XO*kaQk z3)abSO8Xf<4Wz2!-v=w)uI)Enlp(NVhPdC4Z{HEYh;u7-rYWERYj)9I{MJ1SH>7Fy zG$r3?tNK_6NzRuK|$>^Sz&VF?wG#NV_bO03d@-@ne=b&LskUsQ(7h+#Wsiy$T3m^D`8Q zlP?I_s|u&jm}aPnd$cnSUxUE7!PNkZP8@>XhpCrBfxVaFe1R&?8vCbQKg^5QM>5d$ zf?W{D@T#NnFi)ik$DwX957tolesiBO-yEs(MKT`GlU;gD4z>x%^InPoX+lonx*||m zYRdr-(vJWyP~&;Hg~AM2$vp>Fyqx7%_n0dO27n7=$u(x^gsuP4bO7cVh<#zw-2eUnC&-f8hnK}E5rX-O= z^B8qh-&)D@Sc5l|fGG-I^vuoQ-+_j|RM*~fPWf$<1_xW!$;;2tuVPh{iFwZz2O}mE zBBw&yXP$a^`MkSviB<&|1tmZr)Jt;k*8$k{OEDHOcbTsu(uT%9i{A%J__?ct_b?a~FS4Tb_2!?%C} zj-%u7P6(zNpe!3D&!uz)7r%&3?8$$7;8R_RyGcXYWB)!YsAnI&@6V?C7G}aX5>fkG z`8>PmsEAa17BGsN)p1bmLnuS!&8K%V#;>wtR8pd~NwC?z0YWWhB}SINdxlY}@Jn8A zGieJS9R5N;hAv^ZLZ+<6*B7Ar3*-nRoh89{a;vp zbCy48N!%EM)@(_#8iotwQyEJnz%QaxXhQ2F%QJz?QaM-()F@#HP%*R;WB2T2PIQZU zM;K^U(5*jiDUb4`_eUpT#|1e*LGPt-5NUe!Od}pH0|N>icvAd^*a#umHs4 zk{^|g17)KCPw>vrrn^r-3scsIPj@z|MP_462< z0kYpd!)xrO!=NfoUf~!RZ_xeKjM9_`lJkp(FP-rzH6$$;RJ-f>mf2dzcKl`J&3e@v z?vu+m_XOJP+ggV7PKs^@R(`UzFM*=glV@J3$0Rby;!#Uw^B7@PCU-mx-ZkFBe%qg4 z++dZENmb5|G5i)_HndNTS|W!yjhpl$q)8uK<=nHn&$*q0Ola7kv}l5TtPG z=O>RDpvVXg0^oLErAuH>eQ9Jw=L)+NlABy#Z_@lz`rx7|b=E1;B4@j9oW1Hf>Zlk? z;nb&^FH-g3w(s}KDqXP^C3QMMbM3ziTPu=pM1o-0`^@3hF zUc6)B_gwr2WWBq`Q^iKUZDb*Fc^x+~wkJwGfaD_XI%%THZ|t0!I|3!FBN{9`lqgkaX-gelUvj5ye&-MbJfQItfQQ zPJFVg6k%s%RUI(YVEfpwDDBdp2VylH{j8V=j-F~1;OHu(RI_?h(M_Nx+Q-{dG=cO5g%UFbT z#`PhQc7m{=E8M)NpkUsiPg9}~*&vz3NbI<`ep_2%B%g<+Fy=^`BIk)*@VWl(9f;ls zUB@vejEPa1<}Pu0p@vaXE%nW|92q~ONq&+>NBE46f-9mnyr;LCM}ZC&DiJy=T)NEf zB2q9uCwCFYSor9z>4kqhMrr;*nMY2r0bOQg^jIoQ=c+=lhbk{;8C(=6mGrUmONlWw+PP-%!* zI;_GoaOv>IE25zcM`Ie#$;2eA8;3Pc(a6zL(d$Qt5D|U@7z{?*QNGnG`~oJ;-AkLrEz2oJP@anb#(c_( z9@mqOw4UN8Gxtox;K8~MVm#!{b-+G(>g#*PEJT!#_xjX64Zk_>5g#YLfpEaH0>})O zEhh`%5-%`g#DM*ZfLZ^(g*$zQX7R5JNSA3z^>925HrsCqFEWH(oNn~5oHV#PB5v8! zuF;&2x-tEGa$?}EX$a>Qqwe7uE${h)J2tdD$M|;5f~G$8j$V9Xtx`WlzO*RPb5P#s zYdop^ z(?GREE;@Xr4`Pq$9#kg{7*Mx<2ZW7Ml8PiKe12rm2&bZc$u=6j1zUNCry_c4+Ki{d zq2b!!%CpTRoDG5d78(NYBQKlHR7UTCp=hwEUJoQ~31nK=dgC!DJfP)r=(;%8Pi`m| zU?=YHV4;Hgn6f*3y^i`-BSH+K31uRpURFy0nAad4-IC)EGWnZGi^sCT*8V5QDqNz~?xejg` z&9$ z`8TwWIJ9kTL+|a&QnTD+&R?h6P=rzuqNXWUwmyK7oO)a`Q5)9h_(z#wAaJ%+QJne> z7gj8R03Nz>pD20fEdPOu=6Nk-f- zo?5fF1br=q!!+2IQBiUw)%s39>MN^@zVh|15;i>ON%yZBku9LnjAmQbFa6O-AVyqE zHY%TUff^#E6e@*dvhGM?XBLi)VN0y{1(?&0pU0Mt`=e~WYSv@b-oZ`#JVO3;n2037*Hz$ibVCIw zxK2a0viP^;fj!IXb1JrQq2@hb{R#=g+SgjK@|#+rSV8Q{8<8+dp`cV%jt%2bzG+lT z)Yb);0uK0}N;6>$v{^dQ>QuAdl08n~rdb!;5j_7{QN%NhFm5T+!CQM}i8+;Y@Q^76 za^GC1i&`_tmyMzK*9IZxpuNQ=aO}z-$O+?nEVcct@Bw)b%T~7jL14=T^au$=sqN$B z^#Xn3Qu*Rt0=R+o#>bT3Qn$YF!*7osy>4UnnXG#_G-5+BNO0f4F`RZvI4Zc;RGPaW z`<_M|P86Sjn#(4%QmYMuxSpaNSb0>_!och^u=D<@FCsFuz_?Je5#|*Et&HL>!gAq{ zmEZgNvy3VCm@D2cdVGOUg~!57Qw~Q~z33v)N-W4aFL2`UBD0W+h3t!yFj#Adad%<; z5KG};_8qqM!R+Iw;DH+_8D@kqt+xY_NsZX$8}5$)*+!Dj#LV#S7TrGbZ=S0m|4#2; zU!=9U+^BU8aCRNDPE`xHOl&2N@sc0ttt&(?Mx&xg3E)HLnIg5egVT__1&-3+C=!U%hAn$yijJdZ|46Ys_Md0?P)MH8A;qcxd3C1G=-HVWQca zVeDk%nQ0Hg<=m`wcX@N?Tl6oUFQa`7db$uENXcb57%L>fQV8HPrm6Ix7*52m?CeP# z=ELbuzZa}qW$x+5rNoLPk;3;d9yky1dESG2@TbGydws~dD3Fz0@K53gk|+Lo z1b<9GSwcf=tiX{B{i}A=FO#EA$j?BW1kn>pr6Nc{ipY4G0>6@q+~1=@KR9lPEV%;M zvr{43wHR8osn{0$ojlv3((3yKvQF>X!DbGrfJYaagjn83%dLtr#XO!8$;Yo&7W}83 zbXh@c|CajtIYrgONrcTlv;IhXyk4m6CzS`%_@D2B^&J_#i1`vsYqwMyeNY=3ah*Uj zQJO46#@DJ3#gP zJf%h(tTV-hhMgL#FD^1u5-H$~urk4F%1{Ct8h7eDOVyvIat}b^9(UmeK5S(8D#kVa z&|p^TLD#RSjToMKLam2EsK@C6N^IK0R8+5TG$lPFK7MvEAZU8|6op_rjrWu;uy$-W zkwhTPs7(d9oaktWYkJ6v(02(d-`oqfv>fDheR(JT;>8B*?_N6kJhEbl<#rE4fqL&y znL&|xxI_e21yLjjIR1#NvfU{X63!y^4Acc`w_u(gm#) z(0tTmIyG`y`C+v5u0i8po(L_1$?)!^qBTeAmTy9Iy3h0AJjDwLNaPNhpcR5Uu$dhe z`FPL(fqwt{&Mcp>%nSz<$!eaQmiPin*xGNtD3OeA*FdG-rb+tDGh*X|R)!5k2Pbjs zbdZhr%Kb@AXNxi4jIuUxqM5$cJ-y5x38E!kzM&!{SDQLK1K5HCpQ)CnnG|OHTHW>B ziPV<_Nn|Wk_z@pZd6Eo5|8VEJ%ApDD(O-A|Sd?)}dmueoksAUnjoRyc6`J+WL)gjl zVL=t;|4J;wzKhYZ!g13|TCxUwL|-gZ= zRwmZs%h*qH+jt66O&?bM)fotyW0t%cJ~Yo7X-Zh2{=s z$_qUiD*aI~(?{rMd${eN^7^ui7+o4^P5fs(aPXK3jb4h_pB( zk{oIMA_oE|){Sm&NhHMSrak_oGfY#M>P#Zif1hx31j?vOP}DJ2)x#cPm1n9GD7Qi| zeSzJiP?6UaS~*1aNo2^`Tqj;tZjjUiDi1S_qzLsPPJ4`+cZhydv=Xi`u%V6TDvA_? z!vS4mW{;nS=|!D$t~+rLO2fOFi7}5tK0r763Xv1)kDcn+SuXC!iEeti96uItR&V1# z!R$R9%%z4Lf~2{RyQLDs4Qx7T+KfYA4}D<3tq9-FFvyR3x8ji$8No%#sS>e3$*3MD zUk{wsASvC;0^;9|5t|CpB5H0AqEngGv?*8eQRAr;D}(7s9jatLbK*3{EIisKf3zI5 z(pixvs^j0wZ-@2E%OOE5zr*i=2V8zfk0fJ$Ykcs7AL*+_nP5@g3nvrr+Gj{R4H>2q z8qNHx?!!`v;|kIqGW<$+DeZ~LRG&V5EZ!XTwT=US{#&3Qu!}A4Y^2B~+++AAE}4?*cz2&LCq?`%TKSDmV zhEk1=OI~lw>Fh!Bh0-_WuXed>TWkdD2?5m_0BN0#YB$un>d}p{WHYJ zf-q`=idEyb^}v#H#6H-TT1ljTLx3pJB9i+;I~2c-TNY$3uCJJxa=OJ|UgtDaXi)Uj zeWRFISiDE^s?VH!a@jTnL7c{=%g5t<7Y|#)XM=3&G>Tx!Qcav^LRu4t@P}%z>neRv zqvJQRTjboupu)r8!i0wl;AzByZ>G+d@_edIQmnIIR=Y4@eQ+l$*0R0!|E6Aa{-%iO zSmFKp8~j`0XXqMilR1m*r?mZ9iPS9-sZ*`sle^*cQFQtFh>}p$6 z)EGQ6Y8*OjeXwmuPW7ce8SPiPY?zj)!xP3^(@s{QU-LzkL%Y|H$ zBHQ@)$=9(z3R(^xKZ-Y;H1}R~1aBMB!7?e~)v7NK?t^4#Kuy2JLmm- zVv?fle#RWh!NpH5b6W@l_Pa2v4x1TBa2@^icqd;CgjH8Cs`zkVKS&O*wkE>z@H12X zBQ7c+QE(EFoUEO08*6z-qU~ZnsB%uz_~m{_3}SvH_EPM1r3U;j1K7#8ul^0aJowm} z8iTe8$k+V2eiFO#5*u^$>`zsTVEj{rs3P`LRvKD*>gxN>7vg0*wkyBa$dhsHy)RoH z^iGJ`>%$w2?9Jf?*KPQCU#o){tJEZPbe5aE0t2UCP+NR7TQw+6?WM-rQF(Dm*5tGl zExrHYY38>kGk}L|`Wc*>46MTMt%?QjAJ)z{`E%->G^GX---LwQC`qMufA8@9{P+8Y zg@c36MF*9zh=|QarN6&_aiB1$Y@Dvb9`KtTn6z+p-sCEz%-~@7p6x$XNIs%rW@Hq0 zFn2YR{m}J^qc~;xE=F-l(5BacJQvN!A3xq4FQ1*BV}r2n&4u^M0twSDb!YX#4@}kA zgy)^s)q4TnHWTHj?+R@vF)VGlW?+#w* zSl7jBfV(Jj6vxeJeiz}3*$IYPqn+K8_s0iT?iR@Hdht)PbJ`7~Ic?{36QUA0L$P=lO{L%=HbKAa^Dxj@06a!__OC z;e0pW!3OjDDuT#&FG4*H`DrxjldA=;5I93<2a?x4;72#xGW ztg_BNs3B}SZ_{T5SW7earbY~mpB@iNPK@2%EzS)TeCfku_;!!H3y)v&RM{&Z%q}g3 z^b@w_`g4K`mM-C@kGWXonwDLHzNOtHujmpESfl0 zb#=)4d~MZD9s7-1eN5-u>*aPH73%ZVmW~_Tgd(BG?X?CMOuT9QPkrslwIGCfFYOPw zkbOZtfH6QF7wYnfd*FGRbgX&_G$F<@Iyz8X0qGmovQ= z{?F7S2MT+~^i<(g!hSQ00fL2%MMLB2kFpe%{yA+DUI|J)v_wu_POH?O8Wf(Z@e~p^ z7h#7x$`!7ja!j>OdcAojKNi55uYvsYvM*mCsVwF2vr#|sGt zdGH@B!}GKrd;Y-Sl;MrE<^3)2MWtiHnJEgN!r3-V2Gll4xI9X*+=-TJNV?F?aRM}TX3 z7H~|C(arnfk21iLt$1}^W;T`NGK!#UV=7Z#=FMd^reY>_`>;8)}>wF20%jU~I8et5TqTA0+y9 z@51ld7YSJQz4%PxG$-<2>yx1ftt<8dsR(_56Yzij^IEG??hL>OHfoZ zp7~vP9F+=&71&L^TX+Jo==YTTNs6@}JB(SkSA}G zhx-;aUH4lyR}&SOdVZiRQ+H>({(7ve{r9f8ZL0fiJ!S4y;>^*R5N!#&CEgSwHz<%o zZ+GqTo-5_={0VjFTAwKT$ zD)|*cDWC#P;|?w|bK1d?#`;F2%MUk*7N8=QmWuaayx2b2r+T=#j!caE3{A}IOrwvp z3cLgCiM?4hrxkDKFBj_|&mZP%JeE|hw56kh6d`IVl0{d7=YbYN|^~WN~=<;e*O1{tDdDxZ!!2^UFK0!C-CPFi*Mo zX-cbDp}t0h$Gex2m}x>ko(Fl{oX(nCSiHBJ3VD3C&(-ylRpCWOggt0kGdZa4PKN`3 zidyq;hC0(Za)i@9m{xe7{qYZwiV6kr~fO(N0Qa?2%3Q4r7}VKC>fiV&bO$WO8fUVfGWL5oCcIo? zsic17vi7Ux-!iFw49Zf7cBRRJ`W|N^2&u@@2Ld<$Bms6Mri)x3=;Bkf;zIi_YV7~g zTIbYZR-~OS{8EG$OO%(HtTUxl-+hztXm~)6+LR+Cs!WKorA;7)RO8ugoPVO!gIJG? z;$zr9cOE^y=kHETYD??gT_Xy*d8*yWmSi|@L#%wUsL{OH_*cO@L9|r_SfBSJ-+j;J zTUk>jZ+-TTiqYsM)P}=!`SC05Q1hfGV~wv}qsLuvR2-S|M{-v_5?B2E+r<^kUfz?0 zh+3@d$#e#+j%^rRJ{vX?%`$ySn(=zu;bl+i+b+C+H;K(Ffsam2iX5Z3Od^(m59>E1 zVjvbsP);KjC&xt)<7iYFn4_f;Oho>7-M6Jv>dRMgNoYPMit6Z*@}3Vjy*Kz&a~F2`kQ-$554;Toj{QK$tufi}xI%pO;Gg%G z8Q&S+AnF%>(9Ik#6SXg}W9oll1c;&$ zhm$XN{+ghkC#n`7jncntOg*dC$9ikzijRkfhYozy7qIbeQjZwO#4(HZ>0nK0*_8c+5XY0BwOIZ`z4*CIveyTve)YJ)~%-Rl`~S?u*yT+b{|! zeuT^RAL|uzW^duYe?0z${`~Y|@-H9Nl2Z|+3Wh9PTP4&ikwX;;XVf7+Ed2sTO@~bI zC$aLs&)*i?dXHIds`R%i4{OS|73e;7sY>QL%~5=h-jiI5th9{rVOUz{L7*AD`|+jm z*`byGckloVNKJK3zj?{}%6})Wn^=7Dzks;I1f1N;s&E5kCC1V|H?54L;;$1g95hXn zfZwmex0eaD?vWWB!dS0n#zgNu9(Fov@Lq_Y5$cyFov~nG}e%IHc>n^1Ou*i zE(BM3&qAkt-uU~kN;j16^g=c)vcCp16;jW1kCzG*@s@AnzK+QC{&aRVLyw8^A5Hf9 z&sgB6`^}51r#^P^)n|GuLtRE7QD?TxAaoUESGXvO%q)&tTD+TQ(e$8M!5ixVaGdrr zHni_l9vPhQ>cOoBWaYhV4E^vnKV=#iJ~T^+R-R3nvVoL<`W2e93NTvK1hpQJZq!cy1CB z_6nLF?u}FPVAH+mG*Y9gM`%H$bZpMZH>Evbgh*`)KDMOpq`K=)mMJO%(BcaL2R^;O zO~+0jd+BGfnCW&x^c)G{;JI;Qspv$AdU_khm;Nm;;*J;PrJ`lhcied^k5*+U-jhcI zEI#lSjK2gtCSTPy#p|#=Cms zMFjE-1%P^;=S=w&G4T8>fBj+b!R(&(5`yddBTy(^oJ1@~cR4Nvm2DejqXUW@1IzsA zRy9}rI?bZ(adcUc_G$b)w(Hu@RSLID**V2II)W)!?p5~*kxv0q9opTrdGEZ2TDE^F zB!*gAdqM8Yb+xBVSntddV7;>?DQ&d*>VidUNRy165;!M(ugNYwJ^RzGzV=sapyma; zs?xB%Cjo96yqr{E8wNxaT#KpD0*XY{O3RbjNw};^P?5uw#y&;9a8~%DASd~2J?uOL z^?(M~z56J24(-WRXK_UkjB0amRQvP`V$mMg{&86SJrK;G7Kxc_9?7hv)PV{k$o zi#oz;9Qsv0NI+)K9$aJ;vVjJUR0RN&DK1(H;l!T|dEM^cDuLjlOU6!*QR2jm1ozPe zr^1N4x1G>df`LNp#roQNq<91fhm9j_+^Q|PC@2C*cIe>d)TZ`sg(9-tF|ut4J&U&- z=oIbH;8G2~O!Ev_<&X8Kcrn}{N?tx!eR8DwbB!BLvk)UlvEHf&v*l3;e7g0{CZ}~GjT)P__m7v~h!PZ7 zSsY{x{UUhk83p9fY&kwwc|E{#vu$9S*rpo$D;k(RVaWb}FXWYg@JeCoLY-d+l;@j! z3>OZX{Gu{;u|7@BVoJE7aDqK5CwHZ#dTr`MDMvuvIqdk$hL*ihwYbh_hy71wMBhF zh>iYhN`h93fw4PCQYuF~FO?UukG*abqW3Ut<0|jV%+9?3A^iQ6?bO-^Y0RP;zW;gK za{uM&&e4m1r!SBlKB8hTzwe%A+Qt9J)&v|mB~^Kq`*x>eUwqD--JhdG@u0Au0_vVj(1( z6@Eqq#CNJNPeSpZP@V)0Atk7to)~dzEXn`^Pt^94TPe=}dU8)Amk!=tne1${|DXz% z3R0TYB5GfGFfl&-Dz6xymmXz9tn&cXqExSl)R~-Y@z~fRRb} z6-V#hJKCSC8>~6T`Z^)0iAIMbIIoj`&#!-N*n^~L5vQ%QWd}ZqHiW>{rj(=Wc&1U5 zUeNMl$Zr!)p#;(2Sad-0nCSq%Zxw#!0m<_wUS)BzEXJR`e@WaHr8@rYNz0(| zVXIN}_%6+ii1ok+ZJC-|Gh?9C;sbn*U9sxx>n|<_9>uS$m^v(em;mbmUeFe%DnHPT_WkuJRoPrtz^t%n$OmO3YI+~d zL*66h(#P|8Hga*Xq*#UDwOPs~CO6FkYBwJGZOX&g2m4JIE#M|McJox>KV_%WWk6^@ zP?yC;?0>r1h6hjkc@w9`Os1;}P_h|{x zC~ad0-fLcIg&Wytaxj>u2KtrK3{RFnQMUoa48_c z+RX3@K#s`epeTZf?kQTQ{~BbS{zOQ*2xbRH-qvhoYe=>$#!UY+Wlz$d0x@P$aQ%_^ z?eDoH?hR$ciF!};woHx>naOQtB|*^@aCX$xjWHq-Mu7xZYWMWYPwMd z>@F;C;x6N!4S(Cv{Z)f;gxfMFu4E@-2csCB42qqEm%P5K{!_$y}6) z&u+t^@`Wql<-7{%v)swfP=j>+HVr~Nox$d9Q=69E5BJvbk--aDHAoWT0oWo@oJDx! zMp*YR8^=$7AFh?s+?s7lEZ#J01IBI9Une*#67I?$h0(8TY2y%?uRA`vS*#mUY22ju zlk_J#TEn1-R9B$BX=~r1KgpyKs!%{0Q2V<%nNKzy=OHXnfNo8&Z%wFBQ;mEUm0>LB zk-oeU{xm<>(QvvV1$c9k_IcG?q+DI~-8aWrj=P8X4fQC=U`J_vPN9a>BZUnrviV{P zGuNcL${>O$Hag;0hie)t7vDG_t(@fUkxqxxjKIY6OPXt z_^5CvvPPS=(DfvZvNQ;kSBO;_{#`0vwy_f-NMYb~G^#Q}@(`>%8>OJil2(Cc%AsXf z|Jy1G*5BZ%c^BxmL}INbqkB?nM~p-53S9}ho=tCQ{%ry@TbP_E@(-hZIcyA$u(6ag zQ0)gO^O{OYPA_K47VMwgvJ(N~(#5)WvMYe+mf}y{d=Jp}K!iUZ>eB4cq3s+Rv+oq; zJ3=k7dB*73>wyi-qcbohRT-ncRwxH3se#iS)WAYv!hhH03%^7!_N}}*^dEJklY_!_ zo1NCe8YKL+&H$`IeZL$g`OjOMF%ZXMtfX+QKu}VFFRgr_+yLiub+>E3jShD(d)cTq z&6$xMCz^bul1@%s*=nF+cpXc6kQKRK0{NYAH_yjuCiZm{Cf~%~D z48adTc=8{0_zGTM@HJoTcY;1fFC+wWbE$|2vERRc{aDPB|F~f|A*Hms?8%$sQB!dD zV(ANAbzt;$6sCNPl^N?TRq=0KQ9pn3+0h9mpjz4j0Iyu~dhK}XUpZ?cGJ>5014G(# zw|nZ@qd0INnm5?74QBfrWkC&ZrW3P>sQFAOv{^G0>s{8!2AV46Z^SlX@`Xu+3n@Q*Q+-g4 z3@vXein;04oRW5DP%X(Y)#vixt=Vm-6z8OZH=6lmYd|Xe()iuU0-_m)^bgs8#$JYt zWj|Bd!(EacJU?%c?e+Z?`1llaH|zGLTa3F^nR*<1^tEeJQA!NS`;fjNth~--oHs6* z(v(b${D4PD>RV(x9{S~dxhS$gF^nbH(soKCfVpy&PnI&ezdeTzo)Oaq9PM1NjK1OR zw)9v+1lZa`wM97Y08f=TIr3oz@L7fPX29TY)k18T=c;<|_qt6X0MqInoiR_XZO>vN_Zbc6>A>s(ZHZdl|vu%r-2+a z2e<59VENmjdtiXGGl;hSV}0Jc@*RM{0r7Ef$!mIO&}vNaif>u8TqZs7D*q-=7d0px!k5^^GpeTgd(G z-LSvA&Ew*&pu$v98wxUVg|4zJwSTNhz+pP*lVEr&>$HeV`Qy`l-EWExj?XG5}vy>f(A@I zzGQGx$jmIw2glj#r!*L6^f;4D3t@tBd1z~EYrDzQrFXV;09#P&`{G5<8pzfH+nrR) ztY!3g7#$o#VsnJt8Ndl>Xz2P^zrSkgr@Z&fU(Mhv%D^8Fv?!-3&u4~~EM%wjMgbx10vFpFK*5Z{nzY{@oaCJtCMa|7en<*3E#-pQy;en8RwH zF+5^{!u9y316mINcUXXK6j&u90drmIp-U-^c62MGO78vq&=MTM zwMg|5Dp*gKb=^087Ye7$hY8il{9Zr(8K~XB488!Qx@6kNCA}5`$GC3x$innb}=8euDtr6u7?K4n;PH z1rMvav|@aI&vH(EQ=E!k`9i>k2^OtvL@$y?38i9wfBhi_{o$1?!2GgsR2fW)jL!7W zR6+EH3mz&+@oXLj9A-^$-D|c(13)rmP<_lGPoGjW={xGQ$Z>m<-*NPbIwN-y+YRGNxgw&KiRTsyQ*Q?ek^MzFP-SF+`~ z7c`9nt;08{9#5EvOc;RC@bO4O70|KZLC4@d_MdYzm*I%h0;6rf`ZCi&O~HIS=#lu& zn$)Ij44KkRqXkYTH{rg%u~Vu*k|7$Xr<`8p-qxdLc^t$JbN_d9jy)JqR{rJFN6FhO ztLiiCFk0%aquEZ+21nHCZDT(|pv@*AB2@xKcogz7a>mAbiNqC`cb{_;N8L>$DAQRu zoOiY7x@bn+XoEaa*s1gmOr-jG!whKJs&{%JdM+iIzcRtxqHJphvq4N0OX7V)m2wdT zkvQs?Z{|t9qKmV2LO!!H8`#P$T(2+_FjGeF_=3KIBiM2!ggqMN(Ijr}Jm>uz@I2YR z&do)-OT_^#Gg;zix;gkXjRIe&l((WxzcFRv5SNCpxhuxb6SN6YbZWjW-D<63kejrI z#ne5z7v?Uq;^Y*-owuR^0oo2X0p&PWarJ_gB4I{MsFH};_em4G=K%sJ|0m?eCzX8J z1+}ULHs4Mh^40o)LFBNFn+nMzj@^U806zgLDjM!7kENNolzqL#wy(EqQwiKpIkbv_`0T(l>RPR;L$2ec@!8S zWyTNVM}U7KomzV`L9=CUwcyj4@|Pts0)_?jqVLF#+&m|!80}%t-kYtky1DR+#p+1v z(XVNOW!T)cGW}_jt^heVWn0ny&K0o_Min42a1hYPn+ETW_+Cr`Yz-szj_vc`R_i(8c%j&IrIwyfrz2E$ioyp=bjg(*f^9`4g$F7CeBhevqJ# z3y_mI)a!m(c=H%m!Xx{C-If!6VQf6U_XC-t%!(9?UNjfmc`k><*D{En6bfdSNCTcY zprP{c?Y}m};oY=tG97h=!^@#k;7dpf!5N3q7QuQ&3pG`;@Dlw868#;2g>2L>qm38O zdU&YS{m?K_{Lp=Zq$QGKjO0CHR$%rQ+3z?vshQQL9y!?W2H+Rmgj72*o?o!o(5Fo? z!WEbmHeq>oXbhK+tp9@H(I|tW-4S5s?m!$P6^@woyKnJtB*zh^sqa6OmW+WZ{V@(LAk5Xp`RuOq#k8j&6Gnt1 zvMGv8(z{;eD$Gbor^otSZZ&EvC#MqvcCKedLW)I`ZUeb+#M}y3u*dp^t-bBXqRl)@ z@6n|1PM`PI0T9K~V4Y79Do+u!cymVI6qDTY*5uyh^!oB)l+0xv7{sicUEWbZJ7^}T zR8$0DVK|RHI7b0yUS&@?>2LPmg~~&wFc6FdKXmf!LvYLCrJGqG5ql<2xi=rC3Q^drHwm5Yg8QD%6b7 z{?P9?`(A6}U4Mvy0h#{$A>Qp082tJVpmUI&-kpVx(Vy1m%08EJRPv<-v|UjmWQy)-O&-&lZ-Q~lKbNtt44PyuMZFKq;3GWFWJ z%hM?G4`q_Pydwja6P+PT#;Z;je_3WsH^?vM#{$9uOp=hlos{`zOQFN$nXv{*1>VZL zO}YjfjPlRGnDOFXi8YxU4B_5Vuly<_emFw~$|H|vQ{U$qG(3&b1_$^m6(Unhdy+hg z4DeMZ=GZg1?E*Mg20t8ymsIs5Ig4B?%hQPESWS)mzSySKB-6&lKT}^*=xTjBZ&atl z46o0^(X?yIEOi3;$)iM|ikQhTfVB#|$vmMCuja>A+4*1Li#aZ=pBnxOza7=$VTT(+ zO7w`!bPOflH53iC2)F0eR`wj{sD&H_SMJOcYTQPbKc@UzCt=urST8%3U7~B*hbj!t ztN^$Yi%FVOf!~8#{dPC%+F~%w_dZHm2&$gT&o_bM-t-x!9O(BX z|4e~mSL26XEHJct(f<%R|8IEe-~7+AnKb!Ws%g43J8>O*obOlP&$Wzn)4`$3?byx> zN?c_6kDCTNsA^lK;nNM1j_c3_hfEEdDU_{7X%=#uz!K?g-#%@b9WehOhIJt^@0d3E=Bl* ztKEHl4tH0l{dha{NGs%SOcnA0xu$!#3-E*xh$)2fo}qof07;A<1md{(yLgTM^Z34Kg`rAG zbZLwL0P;1xe1qV}Z1Go+n;z;=woCW%l{#ASa`==G=*tOC&$~T8$NM~M?A*s-IGxzH zi7sRsjCDsjv}hRf$Y$tgSOK;lN)jO$*jc|Xx=NIx`*gV*LdBnMZT}pWtocq17;2|C zL)h(i##&lpqT{P@g5Y5^5F59=7xTqW>X#AePa6jr-^@N~(OTbch#8McZUcxL$`Mv` zv!H1{Qe;3BYVW~2F)k@)0A8sK;5_(nxCWQy%to71s?UKmN437%o-WBmmF|A{Gmdv| z;?4#4FyGvFFXMBtEl0pGp}szJX*$87v&MgA;wy*{Pa%U}3NiDK%>R7+3jA!}*D&Q?l)w)H#jpNzWX z21WbL-phf7M*IJu!#kqW;H;n-%sYC-lN6>^02gZb;f4x$2xN*$2;rQf$hs5d01?Hr z&fdKYnzxxOD!5SvTHxT;AkaN>HMep^$Ftkw?4V0Y4MZ^JpB(g;(#EAdLVURSL+$u- z0AO)CB}74oq>|{{$hvT+1yVA7&r4X`D~TNg)#LF zjp|bLOg0!&A%Akd=#p&t98++Yx<%U6mHJU$UZ%F%eOxTeE8|cO4?0k!agkbv{j3Hp z&w_{q`4SA1f+Q?7VH1}0l+}#d>oyHxI_AWptn}z+kqO);`m;*1`N|DVNnqedq+dBc zFZw6_Ei()&4r>SErr@owPYq5))IGx8UG8GOJ+uC3VYZWMXSQab{nc-@ eJz@H6o z@JjG><|+fxI?Ss909ee|3}G) z4J+z=IE)<_-FXsW?zJ%*AnbPf$p}Y9BZM*m5n6`W@#%fNQ~jeKS{anD$w1d|(0xC~ z86zwg^+%3UJ2ar)uuS)3q3Z}Rqx;hk-2y?(yuT0C>Qvxhpe!tK#$HKIrU=pEACi1D) zt(?3Q!22e(7~&>IjK%N8i>*BW`_Hl(7ln?{kvmz>FiY#;@L577NjVGz)YSKdFxlwd zCdVkogS}Rciukq1`#M1;w~nTg56_*mLO@6#fQlZyl{T#`8muCjA-1lmfq6@p+4eckxRxviT~ zKulMrek$W%zCmK!*W&zp2pc_cO0+Kih#%VGO5hP)_I>xj{2zaURs?~vw7j(C^8|Hs zd3t*${lxe0@z4BL$thoShf$l@km_SNFW8o>fa7sL9v%ubIeybS^3V;&4bBL?O>~+1 zvgiTkpPTs}0lWg{)m21&JMpS525DUIE&UQJA5*BnV=JpR<=|xkN{t~Ly^tT$kOI}}Xxt)Os%%IJGc zsf7;*JK8`;aeFqFN93tI%GH&OUfk*9LEt}MxIx{=ol}Z8ZEID!?2D|7mz7S_fT=Y; z)KSzDj+>UM7IHU%T9a|cD6#Fwsk*`j1tESap*#0OB>oc~E?AUe6@aWA&XMVBp#X!R z3Y`oN;ZXu-ikrFG%^YUisFI*^7Tm$D#Srqr14oQrT;2@`@w(p8M|X|Qzj;+pk-zl; zBRWpr-iyk#5hcc>&=klT4$Ab0#rT*Q`L}PP#7<>>yGg|DF1ZR$3YLHN>~6f|PnyrO zVLKz}5Z`DiG&R_6YUT495dX^C|mZ<}tD--VbTHK#! zqh`b(2%BHDy#|6)z({$@fTE&LACA|khIPdhH9?IT?Jn9)$v55u?#kS z<`+QbA#`V4SRsBVbjT}Dnce>EdIQfXXKK=R?dYwlRl=Vr?xTmQn>QSWS*yLX?cP5C zk>%)ny9|}vKfHbtmPgSQ7D7?Lz`K;5lhYsgcQcS@Y4rA+w%u@vTabNnS~hy3Ji;OH zz)>d3A#nc{Lx<|#dKc8ZU z%(Z#(b8v7Fjm5>qW$bsYwL8PFn#+{K_NWM{@1~Q_)S|-59aQY zy#q}~Zm!66POkb&2IClh^V@W2ASZUj$nqmWX~+NW9rJQ4&MT&8GMe+sV zNj|0BJ1bLfPJNrSXlT;H#|uH$nuV3vA1*<&hb#^|&pYnkl{v)temT>;8u!w#aB}(d z>@4k-<;?$w1rj4Ohs?*?NuDP9z^ZO(@pcCplCMA9i$nX(n{7Diu-+e4o8)^7as>JH zdx}@+F2 zB}jF4M)1$+$+NqwN3w3}YGAxBj^Etuvq7-p`N`Tn<~;A^l~-jQ^P0;}){H7g$oxD` z!9=7;PV>8F{W;Nvxs$tnQU!_5PiU33?kdf;I?PXIHfFeBHwTD=CO_Pt6h8v(ePkvg z{>a{2eM$uWywzQujepVujG1VEH3}J)7S}u~zfeYPx5iggw-P)8-GTFV(c4vEGLJr9 z_F*I#;UtUVswrtMAtcuhxJofkl zP8j%TCivcC>ClT9VXu+@)qjfgS$cI>EeqdbfC!!FODX)k~r*Fj3 zAmm(mUAnyCG`zWh+i!x>nfvWLdW6x|?iz3f(WSi2`CHzf%RfBX*7*$BI|=Ebax$ah zWOKMU*XkvD*ix87n9DbYKFi{bZWm*`^rxe|3_nGRFBFs&{X`so+__TF6#Bio^A=lO zLbEn`4p(X*EF6-@_uI=2Z<#ipH7`b}%{szz-_{$7^dE(2#C4T-3Wxh$sJC?3)!gFdN*Go3- zndfAe-NKLZ?p^g0Tb(BWO8vmjGmeUGHsdx!(}-ktbaZsS)tnqCx$E*&%^z-^s_%$v zXz!mYz^#4f8O+l$+}~xw0R7^x`xJ?xpR{?7gbf>C(Ir|?B{nz98g6PVYvhI+Kpprf zMpSz!+#kguJ#2`Ud+csdFLteLIwYX&OwLg}aBrQNQsov$FT}pXz5RE8&7jB6i}tl7 z9x&z1Sci@m^Rt}|bpjvFtT&zjG>~{u_o&vXBPJJjrPD3q6dT+*W z63qHFY2(ZFR!@KcL;8Ayie5OQ^e1M~j}=wSEur@}EU)|OQ4*~^k&snATj<14>EcV+ zqP_E`grKzk7AHL_XDP3iZb;X;dZ=UFf4)VSdItSa9%J7{%gHFM(E+>@-?%=#e@KeE z2`8o7Ir@UMpB3F$HXLvIw<~#nFpe%Vc5Tlol+)MzWybU^?lA5lk6$ol+1bI6c4Z@U z#KA6uugV#N4Q)=jD5hbagQ2Nyn6(tvID5|1o?%MIhhw7eUb7`SRAi&8lcqyn~(jUZn_g(f~5$$71 zIbiuhsXYjI%8#>o{eB6AnTF)|(pN|wBGOQ9GHZ++V7rpv1mqmce3ZE^6rC2edN4D> zubLvg$|arOIY>)#9?iB>Lp! zMWcpO@;`_p%*{S*v!7fe(qx7P=hdHM(oFpHLiAxQtKMhNIPdlM!;&MeNa{P7#Y-#Gz8Hf*B2 zo0Oi4}Qx$p$=}VQRtz2Gk zUXAdnJRB0Xbo#hIW*5SAt~2?4U?pf;X>w+9F^xX?B_w8u&bfvGwqozq4&B1Gzr?=3 zF9i!pP^_LE)O#1i34)W}eq)WH-dW#Xy#aoTuuxN#>ZzV=r8q_qaTr9xU%VeRZP)db zp}_BH&e%65y2qj9!2{z*``i+mdwc%`IxYlhzSGC!HxeY~3%j4^xgDK0s+C($i0{^p zEv#0htLG!8>rngTMIr!4-W7TCQpnv7Z%w#|kDC8!K4;;e<0=s@v^7Wl!{S`h? zyt<^5-RDDPVNnp4imKk!yLr$Z`w8<@WbCOlzRR-Z$n(vk7=lq{QB={W`em^#dLE{$Dtnx&3bEh44;U2>|EnI20z`NvoZT)=T&-g?4pd4*JC< z0D#__mk|UVU-htSr_F>;4l>zVp6`@Sd>p1Uu(A*~YV_7`Mq24%)H;_!_CJ9*-ACU7 zyP}5O*Dc?LRQ~L$o~X_j+pT93$@Uan7Uxl1FAM*NiSoz2^T2uqQ~tm--;q5Z2Wof> z#8fZYd?eru_v<-)ccpB8C9lXaPPO38*K-|)zGO3Zdp-cn`mYi2I?dxgNc}$EnRF%} zL>9%RK_30v%1zM7a#c`{l6Yb%d$kf(E&G);g_slQ)dM@w)04<_uzFJp_=hyq5`!y? z-@UyOsP;_%2=iVjPh1VN2nP!pQ+8?>>)GiRpR#o}`H~-ya1jMv$$c1?lJN-+InI%>RfPXp@PyO@61Ob+vZYjWWfH})7PNHGvJp{&RK)hi(6 zJEqEPTmCy#8=<3&Lvx-m9*lQL6~be#%m0)R&U*eyJNw6Rc$u7q!2r*-%iCI{D&S$s z?nj4Gl~=Om=a}U4%d*{n7w1_E`NzH%!^tAmMyXB@s3ev!gzA9K)G;?fb44jZ;-b*s zvX)1Ioo+rVB=3kLj$&Aq&LNnbH(IY)RY>=CO;n78ef0<`P)qe^iGpQWVvA?h36+{8 zqpZgLb)Yjyre9s%_nMljYpu{R;NhhT{r=DFKdcYB zR@Y={5gtl7OD=jeuCcDcbE!@u&a&!@0NKJf)BI&yl&!6=+qoUB-wHAK31k=WdGnG7 z7&4xpPtRS#vhGIA-$HAI(pTsLlCgxyibQD1`3n=H!YgVV%k2h^Fr~VjZ{tyQp;5#0 z`Eux%XXwO@>^xTg+epuQ?k>0jcoiQt2B z{0EECIzE^##E~c1H!UN9EJMn1+g+q$^bA39gLqGxi zHExVDK*p{9L!PMP5+!8%HYb%C$nHck7(DHPR0bzKBOeW3lgH}LD?UOMBaFTqc1V*% z2(k{oV^@ax?>JftJYf7tBhRD~8{P8+ByX1=4X8vKJB3($3pbuhvys&=aQ*HlT=J5P zs+@+NgUf>TxDME~?~L95DeEGA2(m@0ZpPOVGmZ%}61cF#%{@J~Z3P(ts0cs0yHI%4 z{fgQjqwFk`A3Myiks1Ra6wGcG0jJWfp8>#|D^Gf|AaLR@q`S@6KU5BfWt*~F%68-; zX8-ig7;xv*BPpYn*%Xld+(bjx^)B!aeslkr04FEOs#YLw(%N;US>W51)`NHWShsTlhLahJ@1u5jPe?YOa+|j%CzG$MecaRK0r7VDSL<5-V#)V7LE_ub-m8n^dl5Be!fJkor2Piuuj^20uNRR<#4*_ld5NE$@4dOQ zezMFYhqiy&&v4LWJ&U7b`Onhs#pO=Hu2(FvLwc#7 zm;S|mTBf-qSp4T~T|>OW(@~c2yMHS&sVJbpnUil6^Qp^H7lJjG&CG;a>Ac6>uP-UL zHAs@B&8AZPzF)|$y*VnYF!n8O)jm^-ooit9-n+OwT8H`^VXb=zkYNVnp?5|8Zv3 zn`Dyv;nzJ^2@G<||L{t`_+jj?Swjq?9#=jt2@`8!&s2}5yMk$cEd7J`#SeJ18#~I! zMWft<%>^rJ&Fj`3;W#Sq=+EM1Q7HQ}kGHQFIn{YL5DeiImY@~mckkU`Yf3`%wivNq~G5` zL(XVjjiJPsb-dY;_QgyBDqpC_K-K9$ukFJ5m6=p|w`H?2N2)|e2lhXO;Dn6rmJcHn zUhUiJ=nXy(sr)Q*A3dKG#r%x?Q?y`OgvQjW?(#?cjN`ABqW)&9INxMoSlLGHdkR?Xj7037>T{cOD-z_SE3_-_?3svt}yZ3AF=d+HNm^NBZTe zbY~Kplv#r-=#es-29Y}=t)8{fsI_Ms{PM)r*{O#`*f3l|x<(TKi)|L6R9(Y1Ro`%T zvlVefs+ zdXvW*&H031h5qgP-6b_HCHuInm`dZ6&?|X$CLhq8^o4plUeg6g&1~aV>~l1y1l3>! zjeP(2{sA4z8A8QU6ASB~H$U^N53{(;z4TSwj1wt&xn4BqMXu6R9mce)g<-@~+tE*_ zxLb0V#7IY};&h>PAtqiShw#3Kfy2 zq^EjTCl%F|gmU@dKr(|S1q9$9lJq~%(nGjwldLwZLaF3a`;bDUPDQ*=blaj?UHnVx z+(jkYpyX#|^7Zps9e%|pB?K8yz@IS!SpjT*E0Mf*<#Bvpu7RugbKhyGyTj1yE=Ve1IOfGjad7Nl0a+O!7sg#o~ze z9=FCgtM)Vj&(?{(=pw*vLvH|k4`B|h!9YQW5K?7L6}hvqs2q@=>Sg+tCAP7xfHQ+@ z`{A}m3f3DRz*CcTJT2F*5eJo`T9(L8619Hm;JdJp+iJ4zF7DQcQW|$CCx7thH4eAS z9-f9WEy>3^jg8>Xs+L(|=8soW@RtyAsM?cf>C+n%@!f@E*U5GjU#4j;=<&Ivy#%4U z^68BuCrMCzt}p%!kx(^P!#_V4b%H{&rB&emk$Z6=sK_nt#A;t5L4ZA!fg^`_g2os55%4t49s3FZrHa z$r$A?JL!J~15^Iv?j^!^)CC%SqNM2w`MFaCLkSL^vlaPIw(8pv$prQIcVa-uUtM3* z*ws_zjkj9Ux>#EKet@rabfWC7$NC0q`~=%F!?{cKOq5B0CJM1I?r!344NSW1A#$lc zi$taJd3)mHUu;-g$9$DnIPE?FH=dNJ#ZQmRCvgC+;%G`g&VHJm2&Uo&cIiumcu>5~ zE5cH9XTA{?anj4bb+nRl%r5)%0doZRYW zo!GL6>V-;F_Sqf%o)_MF_d8|A`KWjL&T_~C@ZN_;eYPa;*0|Ejz1t;_qk~7;ZMU=R zEz6$Z86{NoD*N{))t`JiS{5MIsI;=YKRQ{wdcE-(WNXFtx4EX5G=C|udvZRy;fl^# z1Y65MRT8-UF%>_%)7A^o7;t-HZKZzq#qkX6$nDmia@7q<*syeq9$Zb_9S)s%S8SYt z+bM^R;EoSU^X$vzNW$9U*crqWu;D7^DSe^3p6}?NL-ODpv&Mj%+@&hol81dvwl}7H zKX3IVCDQ(g4yzo=y>S}fwF^q9WD-S$(u8`w*$MD8FFwt|0-sp z^>8$*9Yc6bxJ`cG{xDU^_87UvJa~yO8z0?8p`j`%MpeI_v2WV0-_MgLxtu#TGWNmE zt0`GwSrP2TmXb(Ly>en|=9$QNXDTj{wN#KoGVKnijNm1&UwV*H+m0s0E70%a1O2L^ zh`a#lMuFX!?AoWr>{tO;N&+uCyFW9l6gQKl zi!OVX_@=!KWVVe?+YnQE@hQ$|kWTfA_OL%1OCc*g7gSM~C2pzn)ToI% zIlCGU>PY_-3+u+Y?WhlUD4)xIxWnN$Z#z9Xv3sp?b`>CiOK+5e1c~dW`StsjRDa+Fd>6@f6+U^{=Ww>r`ZgvZzlRn%|e;(*?_dI^iY`qBu z(-n#Z4>Go!#{)`<)SnTn#ra;p*{*aVd)VQ?B})JL#xNWgTcDuG{Dnr}=*pr4EysEz zd)k;FpU%|&4I}pO232)!JgB5Om^`6trE}oKnL;3(mfa!?Qy{TU%T=>yKx^}Hha^iH z>T8;d`IYrl$=N;X2JAw}_ZdSLlLv2=dyB~4SZO|azbFS#?$6}~`Ub8n*0|46}sXqc|KQhDz<=wiJ0?@&I?ojr}7z5kMcF6X>!^xJFLU*{QOM zjRX$Wq30g>2ep!UyIsr6IosAlYvyu5-Yj!1Y(=O02!qp?sdB}c`?!8-GJrhrwn@kz zk!uvFviGl=4QBSU!yBw!1Ox?aD$9a(E=;7H-HyK1u{Zb~V%`+&_qfcTmH$f4Bcj32k!4@_EZUXK-!hXw`;-zKRZ z5jsywa!@|6<3qu^T!%YEh53 zw=OB_-440eG_b?D{HGybY6sXjWMlGf*Xmk2)C#ATq!PG%c$cmwMkmX!EHdhL@2W}p zHI8U%8d~RC9XPh-ymmD9URbS)f!c?{k=5mn-s)t%Vuo2QMq(z?I+`6YW^R@ABTSCD zUrNfeZu=3&tKXbA$&<2C1HJc4w6r--{XA*KuX(ISw?OcJ$DmFky^*G$@e>DqMjntgV z3b5KX5}_n-~CNBAiNxP zNk2rCakWlYIlK-CDbPh3^;!I8RYoiUN*w_hC8=7n?8Kvc-jN{iNYIC(f-oZ#AHx6h z0zA1t`Bn7KJ-EiXBqIOyeHY&!Yx1!E@TVw7RT6lbMQ0WZ%7f5W9hm&HUJ!{tL9^i% ziMS115-0G$Refp4L6fA@6ZeKSN7n-~RPH?jyao#1d^-+QnS6-&<%o5l@Q5ijA^<7< zO!9S?Sr&$R<{0#cRDY;G+a|<$BhKtt70(PbvZ%H4W!!1&8^s=sQc;Uy9D{6m5^E1Z zNKZ-F!uS%z@CA+=j(L$%v<8skY-#yw5&i^7<3ME^@_{%S==y;6sD>;Gw_2zusu>S*WNI-dzr} z7$I1y(xGBhm9&YcB*+A)^DmvGI$yQSI=M9EhSnt!C=>1Hk3Hy{UC-^{lH#XMHM+zo zIQ^QMkxmaX9Mb2qi)-@+@AgFbm$k>CbFkNQQ3a$uOzw6c06`gJsu`Dt>VG*s>#v8# z%6Z`Wk&*J0zRakh&@ZVdD=ifypqDV*=_AZ@CsQ_6)I-mlnHMA;hz!gGrubAMhwlTu z26l&4k#WoQCMd>|b9hvYbYw!A^_vaG#lNU?6m4Ykp^kmv#ELhX(wMBF4!sp7O zu2By(HY*-_^rG@yQ&P!`e#I|rSR}?m*BlLJ7Z^E9fMyp@0M|vVH~WBt+SL@_m)Ih6TGQraMRezXrCYfxpD7Nzy8t!)P zucoY31KShpnB0SLujivSP*E5)RnYc`V!G-c?0EV~X5CB%Ef$q&|DW%NGcaLRa!wD@ zQ1CQRQoxEO)kBb@?33>oOok=QsJSV^D1hyh1=3~TTQW#PPcOp4VW*3{WF|BZdynz- z*`4RJslCK+O5Z~~g{U;=lRNphQK>723Z{Vujn?uy9?+D7rN>7!-U;Ut9C7ds1M4=jrMBQP+9t zOX&>Mqf*@7b)!GT(LLUbEU=uFaXj8iP@kATJ~{|d5G@n_=mHGHd69R{S=4^IDJ~xH zy#3fbqqdgR=Z{b5M9ly7^CGZw;84q1e?y#$%IS&`dS-wXJh?v2RCSB2YIYyDnrBKrORf{w?ex(Rh6 z^YZ5QgS>g-@ z6?kr&{pS!%%7m;X1G#Tf|5=L$$SO*6$8NeTJwziQzcFO)N+D*jiQ=XUCFHo^Le%Mn z`u!A)rpUL5JA!Xx@R2*EE}Z`Lm=z95uqZTGG8At!r}QO5@E=(B)5Z`)Q2I9A-Ls@+FjZuTu_uFE3thbd(vH&y(?ULg47E;yMKLnjy}jx#?AptLMTH;+ zh*vs-;n!!Q|M|=E)SxjTEu8Vb4zK5a4{=t)u5|FD|M?gd*v9Bi2FhseWH@z~S+6{^ zTkZt0a9w&I9;9h}NYijWsK4*(@tjb|&d zeHHjn5eBRr%>q=C3o|MZ9KX%C$KUK;F-_{9dvf<700 zX?7bR!``!*5_Q@6og9>uoP756>(_hj>NPVvR;Ww|I9%`r?mj{~haF8;MhZeW6~Ur5 zBx-y&9zA+A+s=_EB}NCj7b!y>jP49ewmUwgRhMliPHbs~`Tao_ZW_GYyK3m34S|}A z8VSeS>AhfaNZ+r!?R6U6o`pv+dc8FBpG~q>*s{M2W>{cPMo)bEyX4+rX^lso;~WR{ z)_E9GY}O@RQ1F$PpN3~PT{en!DXrQ0qQmV)2Gb_xsw0~H-;ea$9$+pHL6u z>1gkpVw4){+BV_q8!_fJmyxRg7C$rR5HH+9&py0Od@ zc5pSmh}53n;XA#KwjK$8kZ%!d0UwniM(KY(D1XRvY1^Ja3TM|38n?kcCWQ3diQOVH zr(q`eoz7PXSox6E0C%5;B=F7u*$0#}y|VPuva;t#Mn=}d^BkL(=6>7=3k%!(^T^q^ zw0h;WFhnst&c}{`xHyMETmG|ctg4vaXr*suiPUmUeGr*cT8iOz-tX7|$ky1>ivfXy z-L+P5qw-aMOY#u@GG6luu^gRh>PX%9B6JSRym^tbn|lCOLL^oY@@{Cuj=hK!_S+KP zkF)*#{bif&9Oxh@3={dYW3?E4p5Bpc?fq_LFR+Uhb>AYw=-4rmT)E}`)V!K<&8}5+ zeZ7%%mPmKcb*LlfC4!KCHBogr*|}fgSrOo1VWbqZ@!_r2-g1Rs0?; z0&6$TtELhfe?xwI-Gy`tiFt1Cw>_GH@!zo5v}udD@pK&mmnldl0grmTLse}pJrbB9 z5CbHeA$+_yE3WloB~&ie0$3*XAxpIf-RJ)-NSq3X=l1PD>u!ACt$wo4+iTtQ4enukR1P&VIW(wx6HY=7-WL z{&v*7_6lpBPic;;(KNn%lv^{PMf( zd0XwOV=JzP%bglch_*C!l%+vo$p>l3njShFZ;bj_{vpB`Y#i#^xGqV;5OF7D~8eoBR5Q*zMySry3PPQa2*Kc|wN#>sw zHXN&Evm}!5&Tep1Xk5$DD8QAJlx)wd-5GppIUi+Y06?eHs{740)>*)vsb5yts1+U; zVgi3aKh>do%qM6z<_+oaEwdXT!CBYB+NMBxfS%57>P!_3YcrxVlNYHH`D(ZjPxo*J zv*AMOh!Z3DdJ~$D4-Z6E2RS);d*0fgKWA_p|Me%d)VrNW7B8&}PRCfgOTW|OPI;km zchlT*{H4J!jgTdy;TI4nFOgzmz?8R37y4eNr;n5=y*KyW<_g$AN)Q@KnC^SPoobul zRkd5a*1S2_f#kr(mQu-LzNaN#h;=^Rm-DDVjPNDijbIw{Dzv(;lfYn(rW>+2K|(@@ zJ9B&33$pg0ndMXEAt7kar(Z9m$667BTaDVBF3zO0HbAb_Z>#^RXt?M?ZA?IP;#hUqMHPseWZ_Qoewt{je-gZD4f(rSq?1>xwiMjzDz>^s7jz`67Amg?PW*TrRMWDGeOVYCNv0caiLS6)@Z<_hz&n{+5+!K(+w`+3K^f zrIWU`EggE0MFUBC1+fh&T44*E(#iLtFrui>-;K8uz33X+!#TutULHYmaUJXsy~OcG zkmW`*W)>zB7nX6t?I0Ywry7~$*kmR8MqScO4q(`)({kDwfbmF=drJ*puU*zb*0kqH zhtze7hLhv96N9b!F5$JRt^9XehR9I?vcH5y`vE}!QmE5e{(m3?)88^ccgb0Sf*jik z@sdq*jnl#BrQy#jyR|1y)20*KX+lb{{32_%Q_EJqj-IZO+T)$PkcZa_-mW}39IZW~ z;i}$N&WltpT^=qvkHf>u>%tB0qhSd83fVAABinLtS(caWQHbaIfBC)t%@O{ed?2RZ z=n1MMrj77kQ#;DAjkOVG_aajsfZW;Czok4`Q&W!Is!ciIQik|Sbgha!Na9%d_-|>g zKFo8-&zFHJ!v+|+@qt|?_a9W?QiHP$-@KtfEDsg8&T>WFzd3GaA29uc1Fw;NF|un2 z`3`3d2-6zu%T4s&|Mq_;Lv4KL5JryB@VCa~~p>nPQ=T*x1Zp@}eDO${DIke)W00!N8^jg_@y zbDw~5hX|4%!G-xw2XA8?R?9C@Q)4-)8Ubw0%fs^_=>2x`&l;!7b#oYF?rGT1N`b4H z?@0)H7AS&$o`kjz_Tv~hnscsCzrDle2-Ydq;RxQsa?G-I8Z4M-Qt$OZ(N*E;w+VJL z1XZ(F*6v)Vz{2^5TAofoK>@GWR_9H`8iH$|oc=m$CMib8-Ku^Ul_`nD@wq@{Ke3Z* zt8Z+KI!$Seuf4~ttgPS^ddwn*#9b)|p_MRqT6${PK)`yZzqq`W9@e*(Wi#a-bWMOC zR|TpglKVUk;`3YJw9KB?VY%S<>T1jD((!9rJ%qT&>jgnh z7is}pv{91hL`;9O*E)U(*&mw=$X<46A31YlO>n%pVMi-8X3>cFLdYb{`f}vnVGrj! z97p6xV(n&p5I?FQy27vJuu_6}q=CHmFC4@lL~zyvNJtC(bcYI~d?mU8aB071ir-vhPvfr~&T6;w7MRKKKd6^SO z@71ddIQigSWlh_k^X<*jpLkcURuBQVV#}{zzqBai`}vn4j(z<2v9YnSMX?hW)poi! zyajA0v^aWQ(E<$%LAMsKyJHz8DVDlL*P2EldnLllVqjn%bxXxlN%^KaKC0umD$k(GyJRB#xg z9**er)EXLDcBhgdn54x86C}z21Uo3+F?9 z{oUy;K!1Uc#0wg?Y`t>n^5uG1L;e8RnNaj9F`v9GYkEIb*?MLfK|HB_dGf-p2KE`f eU!g}^PUy{ws6Xos_+{e2zx&b(Qn^??*Z&1S`k+Gq literal 46124 zcmeFYA;5Al)TMNlK?QNH^?@ z`@Wy|dH;a@+n@G_0l9wTTI*WtjN?4cV?`(_NMU1=V}d{+?Dx_VDj*Ot?C}Fe1D>>+ zr_2Mt_*|hdS5*gdR}Uj+GmyNItD~)htF4tWwY!!|gR=!2cU5gEFbIaDw3Z79gk$vhK`Ig{v;u)@Qr}C6s(GgGXLzLOnl0QP77Nt0 z(EUDL41_N}ML`Y+i$)^lgAqaZykqzkIfYFlcD_gFO-)QVt{9l6`)#v5Tj1lr z@+Q8vLmr=1kzuj`f5UOVWdHvU{{Q{>f7=|GkUo6)fUp{;e~OLW(DJ!Dcv|S;Z(7rn z$|ixojU+sTu$N+xct;-$GmJ`~`xR~vbbSwxWj8i`2E?OHirIcZj{3)N&HulB(0h1} z3@qTI@p21J-D=|ZB`IFDpqElq;Sodf_G}S^?1V62b>V20ZB3MIw z(KQ3m2zt32o7hzl>`-Z749ma$HI;FZ%%H6UiuQ-QHI55n2~5g=oK7NSzv-N*uG~9- zbI~s#0jrdz2ZTxtymyW$3nhuY!Ts{MG<|}XJ~kuTzpszI>Qogz+vvxm?`bEWsVN?b zB!x01bTJ=N>3>!Vt2V{xjd>n+eeKO+(5ib>4`ca&PUVZ6tmjS^D|jp|m(Giq@Jg}w z{i_VP$ivl$G#$PIOB}GfWAaRipCl2W<;<`waW3M)wMc1>WoeR?xPV)eZ{NOsEiT3w z8XB^+vceO#Klw9sxo05~m6k@%qTftfnCZ>r?d|<{D>rWS`O+m?rtk6ldB2N=zn+2$ zED4We)1}Ip6V-42TKpX)mFY!c;cu&aPYlJRl!Cx`7CmV-%C$pdp7X4Jl4Xq-u4rr| zZ@b-KtMb3|o_CwpyX?U64>WkVp7vae;c@Jz30oeMqUs635#H*?#{jlTuX}a&_h zPmG0@J1-bEBk>D7m~0YD$3(FzHx-Z5s>JO@zyl8xGjmOyrn>sdpuznc&~gunfva)E z7J_*jg%r>TIwyjVwTN0v{5Ju9-+hv9Ps+?nNW?NrB6*wRUh)(+Ss`K zuSbMAw;cHJd$aQv9ZKE0R5nM2Y|8hZzBjQG2x!pvU#Qzj_RTET;xz4o#$y^zTiDYThLed-M*U{;5oFAy;s>3fYWJY z#+6ssh%e;#ByxYGx$fCg%PQ_5#b2|4g{bske3+up8KLk=>WJZdy%Vg;7_~Q!s`946 zJ`5Qv$dJ8%cNw|);3{l-o?_sv@#YT6vt_`0xkkjF<=|!ni}b~S!iwE|9hQyo%m>T5gJ+E-0;sC%_v;CYt2t4uVydbH8fCDc?eW5<7CKtVex^sILHt@RX>Fxs)+lona*zRBD=!}7W!p&9xB@SJ%o%s2U%4HH=kaXEnHJ!#fE|)S&AG_Im&$lgmsJa?Ud@Z73rF)daH+KOs)U?jKN-92;T~}x{j&5N|wgNowj)lwjaglY4BjFx$}aQIKqBY5x80g zLN^0VGgFOo#T)U+q5lM8Wl{6-k7OOlf!hgvYcsUO43x<-NP|?Kv+=d@o&WQdB*^Ja z;-B2jEPp{{q>XcrDf`ZyvoCfA&lz?94P!*6&;z8l>S!-H6AA?#=e)m19{0Oec`A%L z(~_7Z|At1?RQZsRSFNF$UdK{Osze&LOVusd%uAjlQ~%dY`XMjvyDLkct|U;2NY)=7 zGG{`$h-+-D@&f+_Giu>|37z{5(1TQ8+an`OO4Z7l*6+FKal#h`da|^rPyY?JV!HSp z_(TmB2TjY-1n?V5&s*r}InHeLTa|hxLp;DBnZg^vcm8aGknz%|vBIXp=89QgXBI_p zJK8Aqtmdwzjl_bWzz!Bs?*MPUK32-r^(Xfg#)Z&%=NHSlIV&%_Jjegmg9}BNq8>Et z@%S)36LE|+_7TkN7GlnJcf|<->ie# z3D$ULfPw|0kD&@lAf{lM_t<>GMfFAwIurCwS8Y|Ip{u1>LS5FjaX~_D-Bmd_Blu=}dp2+t8B8Za^*Q+(YiLG-N zJUMPEnEKx{s(Fju0A~v3b=Y?5^t-svvFoJz`nTMM=$m&0Vq8VSQ1A&eWnx)`s_scD*?aC*NY`tPP1S^#hQjL+~b z@z0Ec8DYYRl~yTUu|lTp zq5X$m_s?Pi$Gw#s=DI?ac0C+nyX~1g_W#Dfo#RT0GtB3EAdp?YV0P$osJO=kHm%mz zclCd^{HVU&azYGSBdtpQ?DFzR3Vh)NS2z;?XNl6%`6_kM1MyDhj8RH@WGc2x^=_~9 zy?ioWZ&Dw;`|m6C3Am`AeCeYlp=z2RoX-2=@D7?TR!DG32xk&j1OIWZcwX4*V{O+hSSmE zu{7C|JEsczKUL6mMK~@wr^OKy{o@SB11&frl{Pvw)NzJ<$sqoVZ#_j|rnt60A?2PH z`;vXbvU~r8rSRQv9_NiMC^S_mC&I7>u8GOz(}Y<31D*T!@n6G|DzJae5r6f~7c_KK zVo>_gSlri&0-357vrT=$hgoZ>5&6BK|Bh+b*;U&xlqvW!&lEl^^x#h^9$%EZ`D*H4 zC#RF9g*^kpiSund)))(E_W19Gu&^xup`#N5oBw7x=7>`IFtXXR{ptn%{KaSjTW)FL z(h)cAznf2kkB=X;@mXG+75!&w@KsF#Lmdv(xc(uYx~ij^Ak#9Ghp@e zRaC^OX!t|U0z-g+=Uu_5SdK&7(_ae<`yw_TBW+`NUr$%&iTZlxdwF$Ii_B)}f1-M# z;gJFP^SMJaUa3ZTCxD-w ze!NUB5=17l+DA=)wKl zNGRj_LMK5T??73fX5P*}^vj&$Jl*huN_?P2w)yetWeUGr$)7cqV#0&^wP$LYnrk{s z*BVo;m45p+MU|C(86Jy2R)v5)sGuf!N<4&C(Yjdc*H z{Juu`(wexqa*wxA|A=;N#Z7e_Rmk_H8zp7QlX;*<%8h!~{q6mZym`I?1EKTT?LjY} zT^_J{jEFV+hS901Kj-)Z`2RDa?u8mtXoqMOua%Wmm9KA;)!~*>8IKCt&s}Y^>4hhT zE9pNx&la#F{l2pp1P!wC_N*ilu?lA?rcn%%RA83P&aP;TAJ{v!)_?!bv+HCH6hULH zp+sb3mV|b8c9!<`lI*0eK73|R{wqHPDt(v|#duj_S>#gR^!%#I_*zn;UA5TQINMyN zKH~Opc#>?q@JED}d{DuxZf{4zBH#u3aMsEte*~!}szzh4j7E26MT?Ax0`_*@3hc(`y0moV|t$3uD{gLe;@eb*ox&XYnTIQh(=`?uj3rsso)Wn%ib-IpS4jduJ$? z)1^H1cmYgcyv3k*|Y^;v&-Lv6zEVL9hJR4F!+) zb}j98`)3!&CV?u_kHW%FPO$4EZy0UXr(^?vGLI!ckEuFMeJ|9?=3`8d;m$;HE^=u} z3FgE7MVr&z+4Nd=7-i=`BJX&)xT35Y3^+)IEocAqgJhz7= z4As(OO124na6Fa(BPb%!$e{vjm=~$-cKj~V4@dAGU*WP}w5W9Djw=g@NA|5(=JUQM zLyc4hnwnu*_os!I+lm1@-OgY}G7Z5inW?rLbcpA{r26H0U!0p26i%8u1A+A@g(Ut7 zf3j)3`11#>&B|x$yd#_8{%T9+cDiB1W^NfR^i>xIjo9iDO5K6d^@{C6)m-Q#u5qks zJQN{u9~r6K$I7==AF*!#q(H11pa%PCglHDXt7)e~6;#rt3+9L}N&8 z5Sjz{>CbRVbS_S6y!b>PKB-?0&BT@a@$D<73c6%BZ$azYzbw3OdYDRqGm8YeT%z- zeb4=cGuE=ATL6ybNq@vB^AwE8mgX8MrRjdrb87O=bPNRYH(0?cYfNKG_o|+`**OTy z#FP9J-tx~3dx>C{z|ey{Plf`*?4o;223;U)DG029xwt17>JH}@A`11r=R%1RNdUw^ zh~Xp9!wmzCj`xXqsJtLlyp^#X0})mL$@VdDYkN04F5ShIb+;SRjW9E@MXsreNv9^r z4zh7N6z2qebStB3?Pe-karr(nFYy= zVk&f>#o~Q9FjzpmmTjpp-hf79A1>lP0BEp2U@;K@IhYZ70&^bet3x0j%c|fHQ+xpr z4{4i(QzgM;%wGxu26(P`e~!0n6oUJ5=kMoBOL^@FY5w_N-%yB$BqPRs>+MKdk00zi zH3KfCd{+Vj9;5TFQ95PkZUoK8 z20#Tg&>fqY7S_$DQ9c*lkqw)wgRumW=s#97oX>n)177`Lw9HpcYqFx51v0=e0+M;4i<~oPpiyuhzd1zB2o&wg2 znXbl^Pu8)sOEoZVEzP%j6z)J|4x#L!Ll`?%;b?G78Ri$4JT>}V+=qE_=hssc-fIka z67S=|@wVKBgiG`ooZe7&1&ws`HS3GskOh9ms8W;58n4fzZiA)Io2C2iWs{23iB`3= z)R4pp-h9AfW|EJ*0nCN$Ya%7ehg~Cx^8GR0Ff{?}$LFKic2nRy-=ho~bmOrY^7eRj zkjVm-rtj)Ya*{a|U}I2YHN4refx}Vtgrdo?Cm%4EfRoD5O8aSHAjgT06Ap`OiJtTO zAn^TFzYK|nnm6G?A^ao0lwH3I{q5xY^v+$PC8nR?vYa$1!}CN{i5jq(ry!;7?T@k50Q`Wy5Yt|_7sDxzC<-Qky|f(vIEZSIPVF0D;BQ0m)^>5F zGg1cqar0kH8RC79mqf_r-Ar()Woz;F+mXvi8Oqz*cS^z3gO(+0|M2dVsRN5|H4f@f+%@@MC2lt1By2_}}Bz4z@L_m>lILZ{Dg_n#KrPfKH zVEOh?F)3<&ZaB~|t9PHX7~2m!QuBAa|C z*ZC>cu(AYl=>*^m>?Q-AK*$X;_F+PuKU?Mm@&+$Z@#MXW=r!Kj+19kBnuCRDi=sr~ z7Jke>`#D2YG-*eq9jTD=|q!*Xy&>VK4pKr*DW?J1B-L5jO6iSbf;D+VTLsNdt6nOjIUUr27 zCe@C|@68aWh)DwtFAH(BHKDLBNrkYWHTv8ftvx^NteaYCOav^@_i!MJ-RhP!S=0Qf zRiu*2ZG{s%XOphziw>r&`tILU0%#+x%`zO){^NCeo<~Eqyyt(P=xS>@DG6s0ibY1B zD^#_Uk1Iu`F-amKg9`P1ebjW3-f1d|+@D>_vR3rJcoSsC1TEr!R)`?f5TpmrIICVl z-3)9Ia7((<+E(dF%<*=r2%rI^gCH@6+>@Na>U8rb4rV$xSe4~YMlYv6PRgf}k*eyx z#g;*$DUoF|6Ltrp+_YNZOlx7w^Ely$$0$en7?YLGT^aP|Ly$yvteKRFD&AqliqoRX zKmZ1@z#0+B2rcqm*ic!|q{sdH2qo|iZl+Dxn0|$sQaxG-Lk=I@gxqH3$aDG38=I){ zi_<(koxB)v#~bC4eEV@F7-s1_5Mo*QZ3BL$y#+#S0Cg~WB>P4N+dorFFm@Jvm>qi{ zPK_DBbrZ+SNxp?5_K08rWz%!`aE|MLk&OO#csAxkmcj5_>{K8Q`f9%s+Z@}}?>jiJ zxMeMpegqnz_jLG{Bu~95=jtnoJHvl7=q*MNnIaE<9<$7}Moih+b|~IEJ~mpg^?hAl z`@5eAdET_(U{i?Ojw|^CdFMQf6Fcm6die}x+^eIDu*{){;7HJ8Z2CBSAiNU8AZth# zVW@0~hb65FcNb`QE}WKbVW1W2>ATdZ%D7xivNU#gtHz{Wr*QCwRq#Y2o4YT{p`xd^ zyd1D-#G^%n;@xm#f8fF-tr0m@DI460v_PiUsXJu45nF^)tE0_iLB7>!{7p?>Qn&R1 ziucB>ENQw>=*0#Lf*vTi2uJ{8Q0hea<%Y?Ys5Bl85scmjkpkfwKG*X(8W)+5IUm;d z6l@1-vnUq@9a|YSLV;s&(vb<#pgc@10QGZRLQ}MhqE2*TWo3sF-Hp_o&-1#K{R`pl zY^*=^->N%vsUfgpHB20#Q(Og+JJ+9IcyI{l<=R)msA34do0e1GO?&d(-s@gwM?Y>h#M?a z40K`?(_O#)11OUu1qS1TabeT?KCd5J5zAdTBHh38WsiE;{PD&M+DZ%4WL4 z%_joB4n)Sm-LtRR72c;yl4!y;QKO`HPsC>sP%TvzhS%F;u&0$RO_a=;-l#erd+xWs z5D^B@U$2-Yu?adg8t8X`wtDAP2p&)O|D{}1Sq^Y|t)&zrtqScCIRYnzMwclM3j^tvuX+?QQc_kkj}D>$qbpFZ9~YApYn-FlmoWV<|l`V8ZH zTWv3lBrRHv$&7!JG^*$5MCU$ea<>iy63i@gnheN@iF?tQ_1cCYzM7*t&wAW&POFTT z$q}6a0issJ>uxA~-J5lPUu3)l@Lq8y&qP4kkzcWxnOSt>4DIIXumKa1qVjW10`iTj z0v{>};c=+XlO!2#6D}voDF8NNRsfEnX&ReT4=~G5@j1I5%3Z}IRWP^*(tXl& z-iI>E_ZnaFC942N6Y4iOSwNFaAnc3_WJDF)!=3HEakiF(2UH^J3am1%8gm-br>lvY z`l1dF4pXgtQ~@tQ2+t$q#~GOcK7WrW`o|A0GE_s$WlmaH@5hBL=<6MGc3Qb#^GB71 zgmdou+Y%NYmCIx2)H;=^X^h-XTGGg}`s)e+X)K(DLz2n(mdfwqPTosj-e}c35>Zu! zw{&;lakOygPa;L(MyMckrUo!6CP3T9^Zd8PQNxJevt)hm;<-UOItSN_XJFL$L@+UG z5=VOLm=5Eg#fB#FdcCAy)lalms#B$PWnSXJ-d)Rh3;CJpuV?k z>7T5j2CILpRU(-y+AojRoX#dS*Xri%pD*}NC`+w0pA3sr6ltr#l^+zTF`1;wz4Y&-g!o=y@~(cmT!D%?@(6Wo0O!dHP`6vjkS71Pl(yzeGm8! z&%EOk|NE1yHJ~tmJ1p|xJ25?N^2lTjd$fiq`mPdO0u9n&&S75hGt%<%a;9f35WPt9e-Q_V+QZl88dzO=*|I+5mt3;r5k~m2z z7x2i=&mXJfZj2evI$PLZSiPYBquPva9UhAWdi{D1$QkUlZ+~-m)YTay6!)^s6Aunn zKD*I<^2u*Hp;)VZlLe}!}AY0#b+x^+tKHwHy2MwE)FMR)Y z)c;Ad;X+cB=-d*lJ=YNg}aG%z*a_IJ)X;y0V3!DEW z-D`We_uQ|Y9$j3FEuc5+6C?kRePX%Z#f|Af)VlFBFYfV&ogcIY``H1B{vx^=W zvDQbOlE7M7S>AErUd3odPZ{^!uriA*{k{yHnF)Rvw6w|Tst>#cH73n_E2gVIYhyH zXGr09irBc9=UIRs9PB+G)bm&fmH+Z~WjO>#QeHmh`5>*A`5nDk5gBOpi0&F~o-OSs zIwUA@PBcZbQvHb^BARCRxTbWhGg3Zep)b0R;Bx5U4ol?fZsBr#iK=Hhz?oU!&qD9K z>g8E^0X%vKVd2xAOtz97^|NL1(B-a9OQ|14V+n+sw5xJkRx{jbaDPlvrrUrYM&VBS z7_1&WZYYi0^G~XUlCpBpZbj4ZzS$?iD*uFL_G+N-_3=Wr3i5`GVw|C(ytsI3^ABa> zE%_^B(@vTUrkY3!WNMO{Rnz^jxxcebRMGbW@zTaX+wQSoi@}unU6nx3Pm|ykZump6 z>?wsfKU3e?oVh5?jl#ixZoBhc!s^MD8ldZ-y}ud>SOq%GQe5Oc^-gP!fM=}k zlvefvj}Fh@yr%?OS~CbOVY%<6g;c7t&B@sThTtb514(-vpTHWgRpHN8Y*7X=;*H+E zKF>A`bemgb1zM&#?h@^TIedSjCDkFYw|XQ3C>ku1xynNQ{_AHP(5=>Xy9jWT5J zh?FSTNPyZ{D^kfpo*c*@FW8(tsDsTkzCr1-V&qm{M*ZoBCzD^LKrN*rl{98Xl=*&N z-U-9S2Us5#-&o10gdj%|KBbc82amg+e-=e4Ro$~PFQvUvQe>jxJ;cCrM?_>d;jN6tYy=x>lDIt}P4)R^=|z7%1@{Nti@H74@UB{Vt#}=wN{Roms7D;b^Us}A&HD7 zc?t(_Zw!A=K`q7On~DhHUBErzW#lT1pNBj-$sUJ#`+e^hg%RThSGID(7?(Fn(jL7` zw=__$JCkI;|ALl!IUKz#ZAbny4{XO|swqBHAX-^ZG-+6MFB9!bX_Q)s!H5XoEt^&b z=)4!Sur%bs+&haGF+C@%U-g(~HbPz!v?)v&ruzAq3ByvAsZ$x=rve8TKIlu>uqzZ= zj~0b23wNcY0mzYqoQ;6Q_nHpd+T8tuh;J%zZ~N=w&zu=H`H_2)4&S0iHwglI_}4zTy?ot} zNvofxTrv8)ftH^`54@{N`xjn$Ii!=F+YYPi{UJ+?MJ|TU?E!gWFhFhyQ|vJ9H?)ZA zcYnpAFi?i+ifaULJNz*PI=u{a$<~qVl!{+-Wv^yW!7MEozGH01&IR8ClxFp;rdh4?}C^q1<%9Qi0 zlOv|q(z*yLUQQjXp2OG~d!TO=DODPR%Z}S&j7<#s3Ixoy`?dh%v&Pq8v|FIP6W7^L zNRj+9GjEJKgcX}oD-!X}7omolB#y_zt(=6DtK1^SMH9Yvl>#ALJ@N!dkm9Z50{JI2 ztYaeV@T4iB$o&&@IW!QU*kC+A!+x5WSC{~>-J_|H37rrq0GKa#?-UJz*+3sqd+*|! z!+A6v`n}}_SihkCSi{PXQrhRNszj3=QXS~tRq~3o%XPMOj3SXlxJKtQX-c@k$~qw3 zFW=h!rnwc%5O9$≿vy!a(>1~L#2jLoUsjSejz1cKjGr!XzHXGwiVjut%I<&$t z`b+}l;=ys%^=G7U{0;l-6&Eic@x2faK1eB=Bm(S&p%rvyRW>n5t?nyzYeq1b)5UL+DvTHZOK`2B?BK#HeKUkzKU4FSiuKvy^(1h&;2}{DcX@%VWtX@VONrd;NNc9*o+Yt zZ--@fvY3HxhwK@yBBF*@tFwA=^Wjqc5VI|%V;2}9> zQ|Q?jZNfQ0O2gsP_hb*}U-h>_)wPjJOA8gZ3d(tcU+$_6_WU3(11LlNs{QO&`c8Yk z=3~$Kss}CA(jcyRQKR-i@FC3p5cnn&;<{KU$_*`Adr`f~8T?X;|8FY5)!iO<{Go`n zQ+*X9ZpJI{ndQy%eHM2pELXZ2Ja zOvI-JH7fXHhF``k@uCObPg__;h;|9Xm>>ghUwK5;fT6_LAUpDj<#vmggfO~8X~2#q zULm}%(YSWSA~Aq*0`I>FqiWo%!mIlP#-Nsx=|z6@zouoH`WL>ot7Jeex0F;STB%NT zU;VZzX#dppkF|gD$V1CT4g!c;nfyS2(Vd&#AkKLv7H2V2Ad2Jt$mC40+2%2dg={7) z{KP7VQhFWCU9HHBYH2}|tygOWaGm^_Y_fR23Pcs$%%oGq4)@tI4y|(mgwsrm4+BDM z=jW84mNhjxsm3fC?pT5V?`rM(pgrX?Zh$%@KM)qa&|Vd92T$Z_Wm1#nt)Y_>DMm?;0UFgT*GBbTZ{U|p230m2p1 z3`!WtH4Kq{+(8~m9H&}y4^CQVwT){Pdz0FILuKFf*xF-uXsgu8(|)};{IaCWQq5uZ zATvOuaMvwGt5A8O30y9LupIyTp?|0)-3D=KMdJnK3cv;Z!2oEiS}%A$UdPUJQhff| z-F<45b$!_e-b6?=c*>v%R^IVzuBx~Ph?Bj*hw|=X1%0?mlf2lR)5s&8tk41mC*jW$r^xGx8=AWN3mv=a8#^D9N;2fp#V zk+EwzK(aU)e58BIC74o7#2E?H@f48MT<4$4U4%x&(Lju(<{{0<+r0v`P)fGDRN)K~ znjA(_=ro4i=*%nO?>>^n?9|5fzd8)4m!DqSBj>kW_uk!ssJ+KKKgU__Z4>78PG7ti zz1V0neVTK%zj_SQs2EfOtgJT31^-RNbcxl1!@0d_e_#4ryI;YB^vqK1_AO@#?S4S+)zV#QkNwQ*T)-Q{2d~dMKEo< zp&caca2h*hxV;5Y^D1X+t5t{}-UU=+{O?^bmfxYsYDTi-oB<^yB(}zBS7C*uFsZ|m9*|p{pf13vY!@>sBBa;jx6-UEDD3 zDf~uTa=OFN__kVSsM^-zoKz4roK_lJ^5r?!8)D2~@FPzZZd8^2J*z_%Tdc6)BFv~= zQd81mS7-X*m&En%5rnV5K}6y$pFUi~^{G=OFr)3iA?FTmWffc7O!g|-#)qM)!b3u) z8o~QTe&hIXb6Nm?e&33TISDEnZTTM19-3IMDB2^S30!BGvv0yaY`tMcLr3SZpXYty z)Q$JgeU={yXHo*vMl|^Ef&y{IUqzt{4gwMnw7;V@k^7G{SI5oBn&$$KypaKNB${x<&X?BWVg3oltv)he>nph=54|2%MVk`7r z-7h+K&thl(dM+P%vYU01iZ5A(%87!@0Qp^MWh?pjC4T|)pD96RgGt%IH5~zugYGD{ z*6^exV$3qg%S0KYF5>)-t+HYQTrla)rF_xvgj_>o%SoUpq?!GHn2JIvM=bTXHGF7yQZm+t- zS!S;A&kZ%DD`(zL?ekWi8~birbKm!8LV$k2%Fj-*m&8$6=o-(@+L5E(@n%IP^~=!? z>U=1l-yJ^Q4r9~%HgV1sCC62u!gzai7`GMKzAmW_$XY52!7*4Yzc=NG8?a$;g;_la+f9*~dMDbQogIYf5B$g5N&7GHvBLl0Ah)NJT|bp{(c(3*;>CPAZA9U6 ziBu4~jiwTX7N!bUkO+whucNTrCuJsGv_nl5xB>18jQK_D;(e+_zLRq$i~yeUVO++_aDg#jVKEZD~TzU_X6EgC7yA?;y0ASK1`yJ)fB=Jn15tJ3IX@DyTzr(nZ2G-9*VTqox1BuRy77 zZW4Ui+_}57IF{jdm-DHuN}4X%b3St?U#UN3BW3|;$NdUGbQt0eCbRXyF$h4QDB{&fTJsVAw`tEmQN2RM!H3On|vQb`#B~E8XD^6KH z+ww15W_-u{xT8{c?^g=!BBz%xe8$EngBI@;f~EV61;xhi?wY=hyVUG zHk?xETWxK2e(yXuqa(XRd8AzKu>4}mLB%(7cD4yVod@*BT3Uo6{aRZ5wEDJoc8G=B zzJKo%&dLf3LK?K;l+E`0UOF~jetUx) z_Yn?&kNU@;c=t46<0}j4{m4&W-{?Swn>5td4=F4{ay%_)n8q!ETkj;?``82hTlj zXrsBNlt_Ub$6|&hG4r%g<}p*n&}9|&qr`p1Et;Z6-ZKL_!NWD<9diw|G&eIj{XUIm zn&_VJj&I_Gb%ysOgiGWU6@g>@F)p4-aG2Y2c4qq>ivH4}(Vgx-S{rLDBw6{JS+<{; zsIIkJQc@wwTV^X!R8hh4?Y^YM8s2rSSN2L#gNmxQN!GVzl2pVWxj;^NO3;3Otk|pU zL$9Qox_WL-j;hmw8L$YMxVh1pJnvz&=fYW4pAF7lnDoU?3Q95PMgUE|FmV%cKm9g? zz|K2+&0MGGOHOUP;rr({mX}JG^~I`%NpfkUZb94@!!JPZ^fKzt>00!dxpv(d5V&Bp z5L7pcw{~-=l{`)M*#%6|+p6@i>nE6@VkvxX$Zx-!J^-}C;4>8Dpk~Ep9+w56Xds#{ z@UqPa%taMO--%+@Pe5f z3K{d9viU13Jh+0Wmu@9>S|~6&TI~S^;s{^9t70RLG6HlKMI|MjKo~l1;W7qr^@pLk z#3z}X!|A4jl?2K>Mi1{$zSJ>}XoZJsA2W*+6~vmAMU5_UHQIVQ&miT#t2N%8H(Gr& z81k;2?e=y`5)62lwXZ2-SlJ8=Xi* z^sV8=4k{BiU@h+AW9Y`bVM09i)3~^~H~f$|&40E7;_~pvMxR5#jm}i-GHy>4G+C*9VkSkBom39blx4WS9W4+Q>GXp8 z0r^ulf@ShkQ>G}$!rjKd4dA8IcD=s~UziN?rAyrI4$Y77(2ms1p)=zXQLzyc zl2q$lMJh)Lu1m_At#%wJ4$L4Kq8Q7h&&b}lf4<23^|Cu4cmT+@Yivb7>sf`Yra^jGh;&RPXG{rzGpxUf(W$0ESfj~o> zL`|Y#R1%1m?7?F(S3ZT{!x|J0axNMtRN$y55vhV+Zyu#J-;+gcsR7g!B0un~I#rdP znv{Jyhs}7Uc^lT^FFRESsK(u%>k#%PRUfm|Dv4mizCJ-ERspQq39lh4;k~5)(Es?+>T#w z$R|%IBXivS4Me+XBav6yH--1@XH~W-<+>D~R%J}pxu2dhKcxIgOBZ1<2{L6hs@P(Z z0Im-t&_bdGWfdnn!GNsFPmFvtdFn@5*C!|kGLncOvS`|kjW#{gyaL`i&Wwd?aUms} zkxP7&2FhS;Y3WOFZH{TNnvAkHh&|X0zQbhJXTn81a{V)62Se6M?it8);f(@q{vdkr zDYc=0drdT%YHx0%%2inNBLgt9hLTh1S<|-o6lj)JbVSP7|DyRKEklB|6#$UvV(qKv+bKI@O~wmv97nwM#@Q`Lp^#4OsSbU5%%k)oVKb@vUmqGRZj{t+|z7mLDJhmqx`sr%is3Nj!mhp$h6q|G)MXD zLJT`OZZB*%yxH9lqD0`A?s~;5`C2!rxvgDQc|7fKLq7ZQuSfTQT-flv4Z;=ZbzT}4 zXQx8GtsGm=aTR4rEK+x{inXZ8LSU)+wC?UIButAgBSIuT7Y9%qo6T!AKvCY1a%b-}j&38p3iR_}=7(9{w^@Ls!2Mh8lTjw;>GKX5=?|#SiC~gc zl|<^l@EIgWcVH+V?1Z9cxr*X(zMz#)=es>iO~kMxKc(G)paizw`-$N0?d7qmHGg09 zW^Vl(%2xj;2r7eB{4n`+gM~}Ll5!lNw+A?6fg+JYLP&t9wK$;Xo%bCtdbm?-t3R()mfqQ_z^k>n{#^7=eh|NiI7k9eBY5mJ2V z!{n?xA&pJG?>LGpLy=G;tO^7rMctnIyNnmcmD%2cSOaO#7h2r(k|C^U)BN$Mmo~*~ zP(1hArZy@t0G(^h#slwW5={Q_&Lp#gQjV&FujvPp+|_gDEC%v$OKi^98)LNT)j>QI za5?eWSXeb;eF*$Upbt24)UAep0!u*?oHwSwA}-4Z+x2;Z?#~=Lm8#`h#NHMySZAN zsyrpf>uV`!=i|(_=iO(TBL7Ri_AY(D;E zLMy6-G$x7c;U|Nky#1eOIxj1=buNVtY8Rtr9DSL^DCbf7}>~jdGB2cWv%**0kJ>C$Qjiba&b5H|?@}j~oXwc&E|_i-g?=QS+-Z*@`;?*=Kp7uLA_*VW-{qK0KEFiK3D^St=4lTUzGII5@NXRw6RkrGV3%3GkG(&~0v1PO`_hrt6u`#-w zV|MBLui?tX8dg^MD(`kENIQlW`z%r0+uoZfJii?ia4vx)#HE3geYvCnHv>Ft-r@q8 ztngsoCjBj#cZ3c~jf)dv&qC(dzqh@Q*#+2^Lm)tEy1(-tIlAt36LY;5tMV_kshr_d zP}V`hOerf_v+-YGs)awPLBLTQ^VFq-ycl)&yw;Bd#i)X`_T6k&!S%zK3VnQf@_F^( zAYs#hb|y1%+`zhGt-_3k~ed(M~cB$B;8c@lrrd)&BzksLyar}#@f;Src zeRa6P1u%p^nuS~7vI#in^(Ydd-hy+j zb!h`;T3VXmCz+#8kx%DocsF_V{7wIA8JJ}j0QovghE(>GlvMmj7*1qHxz-lz#vVa; z1}vyXlE_)1-Ps|CW{Y*vu~B$j(^Nj?9Pc{DtcXO7y&nBET+p^PQn{6z%`6z9)$_ zXisxZc$9Nb=W6)>wuotx4I6R9OQ2y^&tLTYh|X7yo-p;sL@FET38ZXl1pVS~eHp@@ zC8Uhz3xLxF@NFYnJcJYlSJ3Z&H@*PgeW%E~@qJUO6QXEZ$lbP6F8~ODx{PSlV_LNX zKo5uKdGxdsZYzf#K%*^+)99Ma?AN-SsN>ToQ0jva+jJg+rCR!>DxY=cv zNX{?>Yv~qF4*VH&6f&pjWLFX}PTZQ4#NZiiveQUQqK5fxe^X_SeBeW(Zg565VX`v_fz)nQ!q4Y7=r?}N5Eo$`wO>k1wwhF z*1O4NDnc($d$FrRwtG=%D6!{m<qy3+_JE$G#4Xddb+e+ui&DVBtG7pxf00F zFKs6~^e|gxl!OxHct$yxo;(iC!V#JxlE~}#`*4%^L$*|QB@k`KG=&482$RIyv;`bq zKhvIk%91lBu<%%-{N?g91zsLH`6q==&;$euj&??p1LrO5w8Hd?{rdEd8h=0a#dvc= z!hbvJzGh~V&U6G75EAqYGwkJe5=8!dFacC+aLx7oqYFnIwG#G@>X7kWm?P&UU3fZJ zdvRy1#+8#$`yZL`sasa>J7htUmJiq(jy1&cp@fY^7s&WIK58Na8X6izQ2E6x**LcO z`MqYXH~{;M&5A{bub< zWM>eb3y@QC8T!o-C4Z8y-Jgkky6lozUAs9!FHJ*P*n3o1sZEpLx&1T*3H&^+dck@L z5UYCN9+j~j>#Tz8-DG`UFch^ZYmB6|~Wfftwpt47;{ zIhSnUzz||Oyh*PF|7zQ)D_U-`xNHoj24_bJW5>v#-&e7qa&s$715N5Jgnwa0j&$%xAc;swXVmJ);ag{KjC;Nk+9C>>37<8}WrNiEz?Jt6^ z%nvw;UVwF3^Ay;!P;*T;sISj|G=0Mu!#WUuVsO{NEj@P}$?ZKw2n19sF$cn|bYKoZ z8absN9N00K07>{pT+rbQ(d1^L;8^EVUN046HlM)i?^Y42aM5*Hs~FFEz__3y^zrM- zt>qg*m4H~(eo8(+h$a~D{Zdvx7yGP3lIab;3sN4li1{5FjQ{*C*~@Iwb>u@j_RY(xdSFmdrvRaH9$OY)2 z%W-7$Aqd{$fP+yQMSPqr-m;H_-R4Iy7k??ORaVkdh4aGdSxHnM6y7HIyoXYiquBQq zuy<||{U+h)CK@%mDs4W`46D}>^cHTp=>7mMA_vTMyVu?nKf%rYh)ov*0|>>}FBw z$5w@(4KJxFV2G^DN&PY`{j%Hq*!>R$GrXIojx$vzcVfOdE9?8^!JlPl5O1J=mU^hY zR}{Lx4@tBWKV^+1G?WE~Tu6dmNZ5k!iiC4an?vV|(KoU?llb$qF~nM;Hyt-P8%jNO z?4otQx`=4XI(2H;y`2zJtmFe>1VGt0y#}q5od@btq9@iwXsOM-W-o-U%f=eb zIDZs71zHhFtJo-D8;vfMH5D)x+bREY+J-veed5}zZ;##|bSRpo$eUbIpz%!%p?`BL z=@kh(Q+dit5-f_g3JKF=>Ht3f&V)6=Kn>q`plXV?9)wMVAS=R0_}7^_XzkI9x*P&- z?@bHYcK|l$vY8pItNVzF5FoJpx>f*06mYy=pW|B38%B+2w3&Rm-26b@G=IHWjfcc|#~JU{Ov{HFIjo1%8N z{I{TD4ENrNctnCA=CNcsx;P~;Qw2Kys(J=TSe+Yq9KuoF+u*Y^iGbOE+hgxKN?`x) zxVaim4ztsDvwam_#EbKX36N#JpS5e=JKK7O?HK(`8^cFj&{>G(Xb2){)eV=N^ghcT zMq;z3HbLkG6zSmm*?Ix7HIY-u1`A&75Vf)!{(&g;35<{)V(h+7b)Y>Le$hhf`v(&R6Xc*?Uzn$&AaDL@N(Xv0LaN+#aG=rJh9s_rIlVl*R^gkY$ zjr$8K@zx4RLc@oA(P5y2(aeeK!OkLQ&1hTTds4;6|1fkke>!{lr|4n?tpGU{S$wvA zoPg>&fQNJ$eVpgree0is@-TSeZoc*lY~pVl>HxglgVjMGG9R-#&->;58kHPNf&#F4 z(Kn~_k2${o^#kiQdwEl{oSN>A_$e{IWXM?@=UOyk%Kdib ze#+YBhTbp#qG_=TGDsF_h3h_r$c|Io_Yw3n(jv(O|8~=AU&JIKT7_FP1Ue?}P;I_r zJlu!YRB~*7zp;Ea(%m0{nLG_<$Ad}+HkUQ5SUJ*afT3nH)cvTj{4cCKdR%J zK%F>EM|J+LrdQ9APIg-8_u$V(pHT~)YggWFk?JfO(BTV}?5L<#DfJ2eVN^TmS6%nXkyRu0lE~>UJ{^@f0LNf_D|n!D@X9)`w^IV|1D7R>;pTPNJU*X zg}6FY3!HS@?)1IH3Yiy`C}w=~Q_Jm;kkq#yAE4aUUoQiy$K>Yje&?may#1nrchAzJ z!fv|BX~aNfS0f-wXVzz=Up5gg*+_td`NtoP> zUm`E=Lk&S{0~O$8?yKh`*N@0H6VQNzTKQR!h5BCsb)8G>CHI475&*0*|6-5XaxrMv z*i0RZHTS~(Zzs67wxRVYd^V`14cC6LP%R%>s;NshKx=WiC;@|Ox>3P&cc+@159CA$ z#fZK`mvtvZ)C}+WII#VL6~^B%GASbWX%XM9wi02Nif_Czn&HM*^BU9x2^pvkTnjIu zkMEO{Hn*QCwF){8z5q(RF8WTM_zhFK>mRZOudBVNo6Bc`uXS{5_Vx(&GlZN(N-rF? zBumEzGWg)6-P+BzRTBxTzC8w&j*4_t0Y35MtWMb~FUNkag*;B+0m4ZEMINAzyq0#* z@#qyM<{9PrD@3g%Lm@rU8;Lx5yGb(uFX?9o1#tQtUsyUhGoLCswOMC$OvdYp`UmBh z{n*^T^j0X$4Jtx_ahg1DP2-xCT|^>&z38wzM_0>`#Fay~e9?z7c8J+64;VA9JkQsf z@#ZV2EIF*<5eu0i* z%2&_J82p^3Uk_V|Nd+u2b;wVMjr;mMebBmWpTWT}O4P18OOoh8GLqXa!Yy#-(6&4_ z7F%Q3_nC>EEl}`{xig2?dDDxWRV&a+@YrA>N%&R|PSm%!fo)+ualmLJk}+r{8Zrt= z(4Ih-YJ9IR5{-f1A}P5iv50jxns+bw@F5<)nDIbVpmhJE_YV+JK^NW@uEXU1q^H1So6K*E?o^N&|AH5aAB%^y?3e$pv6w5a%1?V>8=P71~I)ZCQZg_rz1P!z~ z=>_Pc2wv@0ak>68x$hp>+t30BcK6A&LA0I68pVuV>y7SPX(r(DVlAybAP6t|xt98V zkBB6zH1~R}yi%BzpVr93ZY+fof?k zp6@eu=c-jhVg2QPdpEvi%8O|TY@JX9o)EQJ2O(uU;C9^O8EqO z!u?dfvD|i1SY5L*j{OqciqL!J)lY^DNt&-5pOgAWl)YL4uwy_ShcYui8fdV1ilXyz zA0U;DK0Il0+7g0bc$#`PpQiGW4ew2EjFo;&8=Drrxl2BN{D{f+vrg9<*Z6^)s!#DBkdBPqfFFxn*b)^IW!y_j8DT=zlvlQVT!DhLuvk8vh>DZ%dhjhE z`e)1j5Hz}n%~JsH5uT-f5kmgfnV*xB(d#BOfMq$^YMHBB(v=7k6#>(b%^wSKAl5gLp8qF^a=`U``j4v&f?s&jVHs+em z1$1kR`-JtM5p=)2L($RE zDYtgc`%|-jutOz!kiOUy7`gpR?QNn z0oWF;ifCg1&Rac!4!mmW)79o@wz!XQ^TnPM*q=&0{p%`!hlkR6kU8aau(ubVZY*tG z^!Eacj-=#zn>WKYU*smqbY(T(QoFe|vNhi&|1YpP!8p0Q71@q@U!sAIE8rT~ERp=T zy8MVBI|ukdn=L^AZ?3k4cS}oa33%Dh`&%6BOA8jO?>_m#4=SlULh|iGJ%rwh%Jc|8 z2~C@$7MOjf_&-+W*|?SLpJ^Ru5|O!F#_|+5eM5YP*XN_gQ`3_)v2kH!LA;|8O& zA{*z2gTTLxjhbn-a?52r*!*LAn>?VC7BpKWVJhnC=qhiucsy9WWsY>Bf7aJ7`afJ* z>xrb$cUQ0}`EzJxwFB;333!n5iwpaNYkM}dD6JP}Fc&rP2M0ULtk0I%C;7l+9s>_= z2fDPFGn44Ln8xdm8$9SqJzl-LHU53SVOk*0rpY~UI77se0L;gcZhB@aS5ZvQpDR#C zp9vgHc<6e1dcH|cy8?ggfB9mqCcL%1hkPHk_<)xTh4hvH-~QiE1~ioY??;N0kkt9i zmvx&!|5|42j`Cto82Tvq*NNFQwmj*y&z&caLM zOOITewR?`-njz?@kiekfJg1T(=GWO9@nvkB4y&jV;k#}Nx^Kt=Q`ZiY%;|}eyh|gNI_)-mquE$|_$KE{}kRK2t)s#eujDJMf z!>@^i!JG{Ag`5p{9#tp<>-vM`rr1^4t`1io$A_#{2&!-INRmf`!00Kkje8lMFIF|U zucM)2zAOf;yV(xaHsq&x?o)=mg}}OEYGH3ivH~3bh|e}=EpN4yGPb>1m(3gB4jr7y zzL1MVda6f#Ob%&$oN&%p9zFuJv)cI*vL(HX3Si|0y!Y()SEh-2LHERWYlAEDD8bbb zk+QSN_X!CYTuD;{0Z)!gj*En)e}^_Uvj*@D$t^O(V{})oYz~;jqhrheAXVj z7*gE`Q4nsxvHdRfj-1=>6R>@OM$HGcl1gLCl|#m+IqvSFfvom{b0`>Q=Y*HTNMFKe ziTy7mmsuq)j4j50;hNfwzYGh$^`*T&e(c?oYts~PmD)40=B}k5kc+vo2MLP@+*Lv0 z+m49vCOUpRvgcp2@`JTggFGI06G@jJXRv%_@G}MDOvOxED}&((!Ti`Q?k_!(qg0|*~Zk;@Xa|z5wuL@%0-~breOj#kxs|tT| z%$~z%W=qmwyf2u0)*eU@5s{KQPAk3yHb_2S&~%IX`W7klJ<3C^JR{}*Q^n`|85u9J zg5HC3PGVRQ7arJA<&E{ywKTu5ei84CZL>PqZa>ℜmv7_`CkoB}B~w(Hpe$t~b)D zQMj`Te|nh;Qr+)-R)j^9>BELMBI24Z%gv3Yvd2C|e2Y4sP@0X06%$BitqSoWU<0`3 z2m2b)NLLZ+aV81CiFzM+0?}kO8w3De_q@}k-XKvPxCLIbI7F7suba>?hLe-D-AUkv zilVj}`%GX;V3fLX4by2m5_e7J-;(5{>c-~128!rpm^Rq7x_eK@34Hf zT$$<+9cq!fEA`FEpI^_Pp7L~89xoxCF+>l(AHRbAyMiZ+@g`Qi>IomhhmRIoNed^9 z>}C_1-rMV#&%rG|pvx&I?ehHU`7A^$0cZw#>*=kA z!+a@x2q5Sd^39=cM`iuiAwsPlG;qgeIySm!ec9kP)?@|Ww||2^XwK~<8}u;Pud&oH zbc+SMSi&5kyXgOz{{VmA&MLp1FVPcQVV9UUVtAwTwkj{#tA+I+4{2x$0o%|3;72c4 zLK2eQxGX{Pfj4|#KaNRatK2;P!*7E4iR}n#xx7UmMtG9UGii7_Yf5(09#yB49T;O_tjYYjPTc5nDX zFda>0qR~?BtDIiF9w(e_MhB&g&PPvKo7H7?d&X5*V-);*ctn_cAV7}WsG6avYWVRR zn3QMtd!Wk=Tl4Dp=a`C092@2y)y!nJF)M=>gYI3AdxdQ_LYHsqad^?8F~!mM%CQbv zs)T`WRZV#YJb|A%xV>HH@9Vol!K3&rGu}e1R-okV_0&>Iv1H8BUoXwWwCaCourut@$99SnI%>k=kum zSxdp*^a)4_$tq~qb<_AW)smO}wq6g%Ts2@8Rn8In1C%w?;FD%d(+Urs@uCGU4|Zm0 z`EioQBlrXs+fL|&=k+<=w_4&YNOFF7Ik)bEXz4qxx+Ne5S~~c-_Mn4*5?S*$1emA} zCYH!!6wpM=cVF3Mx--4<)j$Ft>iNafgKnKr&zCy73Z&BZrdR+FjI%+e^yG(;JubW} zT^w|6w0CZv>DLc?m^&&{$Eck3%N~XbWtybArGwe0zQ&PqIRA#n2jDS6(lEzsRn@l z;nyL2=qD#Z2>Wb--Ehn-ODhvad=n#8 zkxp>rV2)md0x*>ID^uRR-5Lt?|J?;%FL|)gQct|O1|+<7zx=oKCAE2alUn#_YBry!d zCw(>6RqG7Ur3th{)|D+B8V? zh7JMfMoR5HA+QHSt@N_bS5NgqdkkD~(EL>j82KF7>A+T{A5J?7Nf>fU26DV(9EX

*Q--k8r_pMTDmg!@mP`tM5cDkfdG^P)%|b%r*yWqcqZ`hY+5t; zFs)2Cq~J-$GwsDiSI~4aWN(c{>g7woeY4=$*CBOzG7;ip7xFTezGus?|5v)-L zHy0T$<|PQ-N%cT`aB4Q3dlpvYLCamDUbLYcjttE&#ib)1@Me>?tTgkx-Ah_BtlncsdB~lZsJ8@ZX-eF*Gmo$ zhL*PucuWATp6yqGk4x5!+4VB_b;B-qo^|;|m&$W6Gj2{&fRZ;rx86L?&5qWzD&GY& ziUD^+ur@_V0Sj|=uociH$(8{AB1`mrjKJmHZD`$;2jhY`YbkphK+wAClR@F=6EHF< zjC&&dtDlI^yo!(Asr7>e{Y-U{Ol6TV_PigFT^77MuCb{0*-+L=VDdg5w<0n0EUDko z2ueRj3dfqYgpc?u2VQQ>Lvra5!olzQtsZnUNdO0r@9@TJjU3Hn$#mj42FCJ#k~+H0 z4LYo)g)Fb>R;@hJwWLrg@?z)846~;&Cp8S!>tkUP+Ww}m!$t~(0=Nen#fowu!FPEF zf}oXBV{|Kzg9QK@CpAB$UTlRTbG(sB8F0aCU7j-OfH+V@gtZxwWM*495pct0aGyjo z{7t>PA_4W%tNK__?P3Ukgs<;!^eM+($4-$L{(f0uaa)Z+13pi#vTj2tqhGvisNLzIi$s-$U}8$4 z?4ZHf&;-)-DK8~<6fv*4k)R*FOpeKgU!`qfN02E`sm>j@@3z-mPnyLYyj`(tEhThL#jVYFx z)RNWa5bGl1yS#XdqVKN7UfOc>8;A45c7RA(#5#;6iP(wq1dsG7o0=MxRG<`I!jtvf zQ4#9su6GmQA^&NFq>7H@b#9v3SgZ;?ur`L#O728 zs4UxhqF>WmqK&qwK0I@nOMK|=?StCSZpHftTG^Yn38PlJcXEc@8xI!@ z$R4ex^mDWoTRu7Z&JF9>f!;BNSP4)3SnmbzV0Ook)M$N4C)rhdp&ydj@4v}t1`J)3 zIL{_EJ z3~FFnw$!qpKr=jHAz3~km4ic6D=qjE7SjgUmNfUVBJaHgd09)%l=AAC2~AogfCieU z>Z-7)BY#95Dm(&b#21Ef6jP^VtB*ZHhxL|n3Aw?CT8?H30ZG7d`RfBb2Ion_l@?E_ zGVRxC6{u$`M@)5tNn;Uq2B%CDnp$Ry6Y|dYqFId~e^OF)DYQYt#+{p8h}vE3MkQvy z*l|*10znQv362l&dWm1#VCZ|@Ph2lN29mj$hFR#WLL#Id9Fo+IqBqz??u$U~3Al&tZ~Pup)}kxkAeh|P zqGek*ODWo5T=d8leat z?!V2S@f5UPA2$%v7PiMeyz-cj{>>4e6YjvUuTNw0k*Gey!9k5yyL-Kg4?iX`I!vdwkZc(w3-a&`g@lX(0iXusJo#i7l#UJJgX%SUQLQ*MK;~yyL zc7**gC5QUP>c$?XxhjDJ*o0-ounF{=F5rVenhtekfX5G0e zaFmn1{4}teg&9?q*0>w(&%JUdttQn`RPztq_?aJl829fN@T3>LbId=#eGe}$LiTD;P{#=&mO;|<)RQJk{PJbD7+pmu`VsD1-5q_DpaI~`BO<3((O*|xFlrU4pq~&99%kt4Twz4 z6Fmth<7r)*sVTqT$?H1oGp(M;bR3I%`rkMI*qlWpo?f3S-eb%+Ng~i=bN+e=TWK6m zAh-5l)$_Tu$?|XJuZvi^yBoNxR9*vM3ZUJ<%c`RQHeU73TD}ubUsoo0ARodIK3oE4 z)Mzy^l~B;3Xq$g}Sb}qu zXqG1i`q5elfMMdH;EP=)erSnZe66fU6f5;yPEH>v^+JG>Rebq~G2QKuYUTE2TQJb2 zus`}DPS=V|Qb0h!dv)C$SHKyb zsj#-2;RaW{OPzIoEG$yI2ogMgFN|+_SOII`<3+1^`*Qb3QP3ariyo zaRV&!%jX?Jgj(>h;wsiNGrJ!qyjA(Sn!&Mlz`5SA$~*{CF#0a*23VNKKaIx5HAV6v z?iZU^SAzp{xn|=ua?n1r{GX};Kdj1+;WC9C+u(#Wty}a&ML{_qKmwhhj4VE9F3tHs zCfJf8CHycFILttWC^p?CY-I~NJEk%^x}vuoZ#!;4z|Z}q2)f*9gMFm}XEu`VOvUzR}Pl@2uMPp74{-f4WY{2lFs58eEy?) zbU&toKLh*dC9`?P5=Fh`(qIFDT#W?7oh?tDb)uHUfx=BJf^v))!29 z_u?8N@Jimg-92$RZV(8(y7A&@xxFwIT=$v1zX24MB!-G}Z3AC7ieb(*#HO9n{LuqA za+1q!%9`pwWn-F3*(HERzDg<^9Gh*`c3`-{ejOVChK-t$!`m?Z5(H0{Bm{pNQu_4n zks*18EV>*EJYQ4kd8%5H*B$vz2>^6~lbWPdd1WsXMnZGG=NaO{P%}gs`3A5l&*yKH zR%6VU@%NR&i(Zoq{5aRMIbmZz`lq?bSqLne4XXJk zAyiTugq;%4T-}HndXD<^wV5|>Hv4k)k*OFHmyom8jB;9G?CYqb(@SO3dAlp%^{I#h z;{)!StbhhVqIOV4H*>-ff4~NEpXzy-VQxUOe|FV;KIg5b8&BXS{hPGlNG5LUMNR^2 zfI$id5)2wlH#WU{jQ)iC?g5R*?GJ{_oG*Ugdlz>OA=Y0__z+TI3n$+okM%eyK+_Tc ze6U#f5N3mV4?t?cWtv5`1;5q0o!arOOsW9F-;{-q87%{V<0I3Rq*j0tG`xu8 z;@P9OGWHs>fIYg8H*FC%vU6er7sKxEp4l9kRG9x5d0SUK-zyLLSxJ$mEGVDdNBQpqL^BDXS0RTTz*8prl#*A7A%0WoSqor?v(owt`|@ljcHxJ z@Y;qtvpBU0k=aI|tU(4c623zKQLw7^%0u7dB(}=_-1mc?4w*gn?90JShP-9z6<1h6f45)k0PMj*wl`9yuB|e*l;GjEx~%Q^ucJ^rU2xLnBV>{Qx94oI zcWtzGQ~3!(hab->K>f?YgBp9GIVfu~mZnYQc@1c9*}vJI@7suAQ~__`;6paeBwfwS z%u-CyF@asLKXx{r?TPMI!5VgUf73;4av~B&&WaXT?enky+4`@1O1cRv$JpNl;q>L6 z)70`AB1==YMW;j5*PB0n&oneWLE)?|cywg0FnXdJJ!tR)EDua?_C8PVz)cZM_?YN? zh)Us7&yAnAb#qQ}gD-jIY@Bk;_EOw{j3veUa`%b-Mr-=e+$msF$9SENXIz0~0MK}(rh3_HM(Jcj!x)m*d!m$7m{l{>N(?bx3 zDPET-K`Cj=+jwA>4C+;bbt|Uy1&CxOX(V|hNHY9U(rMXIFPo=F-dy%u{C^2^O78bu z{m9ad?KC)}#Ic-Evh15ZqVM|A?E9-hV&C?V5eYE(rvj)N0x|KruT{#8fLtTRU$fis2LEmhYhVy|eWq4Mt}ji_0sv)s zy<>4=WhC)_gj&zYrC~9>mr*0zpVcG!R0_(tRo!zoge`y!a_S2Z-3oUefFi$ocfnug zS&;Vl^R}H6aCn5!sV9por)*mj9btht+|)lE9A>g~UXE_0VC)ZpjX5D~Rn-rG(`XK0 z1M*})u@`y@s)sioJuHO~|F9zm1Hi1f_kw=Es~;!m7duiu3}4V_f;5k*@HGVP>jYk# znS%G7z=gclw#BQk8}d$ zi_V?#4~zeBos6yhdGt^-TxPv#>UGJCdKXZfhjgzd%*{p)Y>s!xN~eypOJq#5IKhTb zI#iF^2x63cC%?W%YJ+}gH~mIhEPYl&`g?RxbQm8mNBSvtwD{60RH*>|CND^g$be^9 z11B@>S+IG^m@Gc=%do#wZ|%D6ypAXalDN?BgPp{jg^ z`Or!Rc&HDxa2RQm8|lW4`3fuSb69AkV%A^?xBV^aeY6-I-4kaq+aRqK<1W^fm98DY zEx99?8`}Y8-ue*gQI3+6+GG~S$YBAd?%}gFP8J>{Z8 z^Peo%@sDRSVt&UPQ5}|&T^Rv@?Tw&F@lfgm_2uD=E+9+(3>I|Nv zLQE3cDfW)7K}wqB48n>vx(g3ZLQ=-zy_K#3I%xq}5KRS*obRsizr-LnZfkWPw{n7w z4&e%z^ccfpSF9i_(!T8hR(&(2>gpz0{5T!sH$03RfMp$O6O;oV>%_xr7!L>NKnFD&tM-%`lb$cQqvre>04_Gs}P z!;jEzBN=SlQlQ7l&M1j0O)u^NiVJnEK>SE4DDL^F_*X)tSDEzTEMXcJN>+u1zIacj zk3l0b83;SiFTlmgNDS%W;w8Wc`LWv3Bbi+>Iz2NvZhd~eMPUp^5xnHS({bdXBB9ZA zP3b>PR1d#^ICu~npzTbkAAR1uv%fVcJUlY;X?rKEXH7dAq~@T#OimZMT8}2Z6p@5M zCyy}Eyj(7wb-W{Yre*{&3mp8G#BV z2lq3#gEa4EtIylc?)5Ml4})V5u}FOES?dYw&mb=f@CE@7J@If%j$@@N;>-NI+`|ZZ;pL2I2E4C_2uyOw>GH@@xQ0@+kyPbk&iGqVv|7 zF^Wm}G3WJd%|ve#?p|(dt2DSXHce+)9eEyjVr5wKb#_m0oJG>{shhI1jgQ@IXItj~ zUW@}l%kDcHDusr=s5mh#_M4lVunk8iC%W}BNc7}fBU(k$IiHQ)VzN_uddq{!>B;%| zJj8Uw8wJEsdy5UA;-pY?jGctfG<+!AcI|90EIyNwl6G%87DT(b37Rqq`}R-xV5v&W zZ3!^v!2S7s+DkJx_u0D&rToJ*JFljB9wz2A zwOD}1oB7f@FsL0!=CKh<(8iWU0L_nMs6(9j`^`Ac4>*vpX5PzVq*mub8~+3_!=& ze$C*igqG4%t0I=eobUvr)8Z{#j($ySDI|T|8(sTuqI-+skkAI@eQaY8HuK^m3}V!F z(Qx4JZpVL~2F4uUsDP?S|- zme1_ujhh|WxM8D$BGhH8u0-uGr{-=B1OCqVwzc%o$Nsa<1PwX3si{k~+3Sy#vnR(_ z;BhO~Z`E*NjmClm2U|-qchcg*D+9GzV+Mqkx|QWmoLoKiyBj4k@!7AA833#BH6x*_ z=s{ADuwDj7%`jX{ESsqP>n~Ad{VLuHm&EtY3V1b;K<2KD*WM`l865rR0`aOXXDjdX zXDuc3Q#!;f;4{`m-)T+tZ-3sOfrwaEvatx`mFRSFu{alDP#tli>}r zkk>{}P2X}}h`~7o?61mGD(?y3ps7#JPg$Sv<9VXJHfp6w^Daw%p8ERrpB-6HY~}2j zt`{T+F0LpCN+9vzxWog z_zsSd+V$7t880=NdHD5d&gR<#WTMSy3m%;Pu9f8Ukx4(o#3P6;T(4lDqR zSfqT6?&%{vPAo02eR-fWC;MP7-;u~Jj29k_KyK<@;@oy(oFp8HUV?QN@pbWsYBsp7xNC6~zF?TbYo zj)`xCK8q(1PmE|@wP8|)9<$i?*#e^h@a7VUDe5?$Fy6EslXIJe zg@<5(1J?)-iVLoY_>nG*gEdgW|Ht7M0)$Rhg(CO4V4_c0yQLQlA*(`{N{!NsB|5Dh zILffOJ81fw!ul|NIGw5bDd0zHzSsLN0|;egdOFzPdX=Q3M?OtB9yMGLEb+kBt3s-< z4~B*cQj=p$+^D`F)B|BVL8BhTf{RmZ>$_rQt0O%uS3%HTY2{+Mu467m2|t3ATq1wt zh*BdgnLA&tMEiJr8vw+xOah|Mcy6Vo*xBAM4HB)Mkv{=0>~Y9wI6$raNwxbiD6qVH z$_)XtHKOx7++|j{;;4_1uf|Fngs>_=BS@(qKS%ClDTKR5dLLJu4guy}q$O#tog~1A ziOpJfoCx(LD$K{nX3a}mcu-+jGKZkw`nu7Ff4X`7r8j^S%qOt}Rd6L_9?&p5D&0Bk zPvy6B`@KUCqY$%=$Fw0pIefXk&>NHv8EyOO%HX`ihrpyxwJ-fd;}_3DXu9@s?3-?( z!}QzrN4Qt-LwlufzHT;a6j{gNxt+Q-H`2v>68Lt*oQ*I5LtYAhQDn?WA^}#+t-?tC z8N#ZPm^I$}XNRnNAW|kFVbp(8CM;&deCaQ|!x+gKOH|_kS{OO>+g8W-tiO&e!(ks6 z^=K=S%)TVb<`~6MLQLe$kUxGEVBK^3Dg8=}qh4TPc6f|=os0ReFa1gA9|JIS+2i6E zP{`Q~r6eu6>FaXCOStX%1B}|SvZmqiI*`l&vM!5=%QgsNCCiI*%}!{xWi%9^vY4We zjoIKyk6*o!CGm2DkiBv|l8L%@Aa-J&Od?Id?R~Lt#B~Ivs+u8gAJg-XU-8$7;6ucw z)C@?RNfZNeF~~nrA9(yycynGc0)UqB+@?}tgxb+4mrceGp&$UV7m}49qC;X>@-SNw zDfo{bwki=e0>n~~MKJ`~wh^aM3#ObIZqd~RCJcEmH2D19Of*>&FM)!T31GQD$;;@t z3?IX)EkhV`IyBh)a= zf5B@#Ncf>L#K5dk?S)^w_XD$UZB(C9M|9roY{SjWn3)|D6%nMCVxs`L0AWqhf5P(L z&vQeUqbV;Ocv!5KNXfL|b)0#XESyecQo}E$a*4EDo+KyrCHipV3HRyU=*<2n8WVZVCo>SGK zA6cb|w0U`n)rcFz0a*I$6c}O_hkt^y8a>eb3vS1Nx3n3zRc-I$+TpJ`7WOXBJJ$!m zdSrNd{6=tN!dQW-pZO!0q3tQlVcD&M4JW7|ap1zojFUjL-@zdd0)CUxdqo8W&nM8JU7f^=kU{0xkdLRJ^)Y`qVn;Cg72Dvmm6DMfl)8RC7 zR%0k@>vC|J$0_dhWvw@iAhPq|Xr*JEBzw+8X8}@)i5>$jn*;VDf)py_Y21*F)(S8K+g@XpIWSxnRGrNu$;^jw4 z`TmzRq+tsWetkkSTT>EmA_r)v5p{#eX7@QtL^6RTx*X@Lmo_6jU#BtTbd4X5$x0Y?+B9l08F4)*%g9*?aFTno9|GG(l~}64PgRhLe?ul3d5Vx__81!O+j36BJ2Cm{qo~q9}o#{)k{tN zOe;HBTt#u3I8?9i;HgJUT)oupm1AjFD1zuL2Th%?aVJ{Ehnl`8ul16BbPH!-VJ0IK zY`Q@f+Sliw7<6bb{swzqJ>$l)62hq@_#!7?zfz3&8K`f>q|}k@QJ(s_7l^7jnnkx& z#+T58J6W6&iqgKi-}Pa(`Fi|D3AB*zmagw0N*yMTvnW@ zv`Wkq)k@(j>@F9cUAo1hx0BgW`JuD`Co2-kt;M=ddHh5OFO)0(8OG;Sp3E6&s0a%v zFwJ&$w6OCYUum7+P%a>za~fOz>9fE93S+5)$*_2(DDGSLN6eg+(ySa}_Zq!Td8Tx&_L^ob42U|r^S z3r|w@!Yc|m(jJH^>FMt?Sg>G95an5(VB6vx^XuEEjIHh5Y%yum)5Zn`%hTAu8N&3* zzkl3lOTFRGK&UcZ@cP6z#tS6opcF)}w^QgK-gjm8v?zoAofmaVL|t<;Z9PKrW(0`4 zcA6Clmcx&0esPShJ+^6^P=x<-J&1wHN8cZ|gOdxiIF&Y$70 zd7qodTsO^eLWFmq0kIY=sJ( zF9ytfP&nH?wS*_Jnr9?DsL%9{;Ic2wvKH(3w-dUWF=e93SerX<)Im*s4n*iR#ujDv zs|`V20l+M7?VDQ{Z7SlgJHj(ktp7|@VFsZBMdx}U@jw|ChSF8B8l|+`{)q(E{PNG< zV{{;>GbiG)%F+O8r8TsdY|-@P`pcIRI4brEn;|7}+qr0kVY-JlBc}Ci!|k@DQIs*vtoy{AIoPq6Wg8Lcu2ktpM>f zQ?4fp)G-!rMh_(J^l{1QZqB4~AE*6Z?z;5*v$J%TS8*suWBTSb&?-9bXCazkxjN%#LOk+h((LErivO2PrnT?u|NqK*z4J4B7bHSiBwKMR=gmcT0Xb5DO4A& z71jA5^Cc^xN>B2P*u4#`W86gI3j$x2W0cC>o!dKB{CR~qis5NL2n@Au4pbPw9y*Jv$`rLx6{ZCfTLY6 zRX6iq_k&GobIw%i236k-%g<#D)?97qqkDpB>Ce$xP_?nuvbp4T7>jx$5YFvZFP;kc z$~%K%o`JNx?APc*tMF|+#8G9zsqbSULU{L6?H&Y~n*RX44qqG^0lRWUEV7%uMGU-@W#S&)Kkf0n7N*(RIi{ua zU%HJ!*8r4#O75uS-XTXAAePfTabbUlz36(%Zt4esocl;+ zr3TJ?_l1#vhRp0Yfq2McTaM0Ni0Nx!fIrzk`aRsm;L{sP)})=ES63qrr6YWsvvW3n z_PsY!RJJ6th9QdW@2^?zbZuS?v&vU6x&bxKgv-3iWwmJMXYWhO14Z{RxP^a5F|3~t zjGzqkvp-50C%Lq|kg)G#78cBA#6~OtTtl&*6+}GQ`5wNDyb(3 z+9tPe8`NNOeXc)HEM7<~Zeqmz+tY5&ip3waO>@Y|%e=3ogmS@vj3(iY9?xIA0OOAR zeI=E%ghnT@>4O3h&=j=^fQ*$nk<10X3X8bOTaJ!ZQe~f1(=R{j$kLpR?LkvsEe^H^ z9W`jp0y9VMSHuCuS)+;gii0m4nKqbt50|~v9&o!&>Cslk-p;#6<~lw6^0Ev1?n2O; z!0`_EL38LzPbqrvW&D*XK-_Q|Jm&Kw*dU^|20KfB8n+ESi;3F#!d76!351&K&f3gW zX_ruI%}nC_<`?DIetLA zyYv2LYGoy}piX`hOT!AW4JZO5RJdctpkcpW?iOtgXkas*2RY(?v5aZ?TrwuJtIfH& z`IpbpcD6paPSYEaP!3A%S9&@)E7V0O%0vx)f%pEmBa#G7{yoEYGGgk3U{OHFR5Qpg zhxt=Wp;0Sxhih`%Upr(2LClicGQpYo-lw=zW?WJFWXGRhT}Fl&eikQO@rQm=6<}a96KGd0PyzO!C>wNHCp~vQ53cjC;99m) zu?^d+v{Nr3snM}FGA#fFPL$nb$QgmnjH>$WNxZue1OLtS7~QBzc6pfqZ4EOW06{%4 z(x6r>mR;>ldpbfh`Y6!sO;46A>Vzq23RA#EDjqs)9f^!}_&~`phf44~q4m_ea1@s+ z!QjwPT27ADx=4UT$oE^4zk+W|wda~VXZ3v@S+S>YdMK$WQkWxTJpzanMFpeql~rh0 zgqg-(Wn{VmylH>{d839Z?o80@*f@Uw=1m$@a%H7Xbz^2GNkPG||DB+~KpP`n5xQ`t zvV)`;o|6$gv8u{jK?+RDypzyuycF@_cde&1|4zlV4D9~CmC=^!m-fZp`~5E(cYyAt zrW&MWOo56hM%+=fTjpWOx-=6(<6Ny^E7Pg9`pD%T4}n;9!;#KT&+p&H^1jZ19{bwy zU3QW^&wEji>T)M{?uH4m0Pb!N|C1PaeO}S;&UVV56ckcW% z>Wxd4N>!ahmi1X#SM49(E#X5(biF#%+8c81h+P)G-kD|h-}lO09#0&5xWY@Wz!lx< z8aDQy`PqRB2p9Z|JSSek=5S8BXEBH4h|-)V8+UHA$6m1a`QMHokx_w>B_{4 z%fz|2#_nUdyI$cdf1|pbX@UgKF@}&;24U;HlX{9g#vEDYDo>uzQghmm8`9FvDfAqT zQ5qV$FTV3PKS&-kQ9(rlP~A}e&4Hni!;1siMR~Wp4s-JaD5m!XqnBeeS~s}2?mm+w zL9ML!-4ui~kin@C{OUe%wpo+jVf%KUE{_LSURxpSF#GspqAWr46Hd~Pv4O&gTesW{ z6LIMKRXb&!W74HLMn5Yr?GX(}D=UP5-7`_;NOhgcae`Ua2pXMk{z zHbjv;v+&v{g#J8of2N(>yK(!G$O~mQw)OnL!6sW5I{G|#=X>6A-oTT2=Ub_T#A110 zvCTKp{{DW`_E4s;wa$Wt^_#b$E;|CMx}ul6?)QHz`l*r1&3AIwtRuX$h`abpOBHRZ zPAmYQ`UkX_Mm_LkNxaU0r@SCGt50?I4N2Z6Pr#ApclFe>*0c!OP{gW%1#MIclJS|j zG~Vn!lQ6US2h8{dwzN@DbW?uKK`8iRi-(?x=KI-xWxqIJyz?J?9y{dXvPE9iMIw`z zVj=e7mSmd%F$Sc>i(9E%y|%_?Hbs?L(_ro~kAFEbBA=v7*|(Om!v4}zk2KA^=2U#$ z1@ojJ=$}luoaf2!=YH<{B!W)aEVgBDn!Am-Jan{c08p;yxYXz}H3nx0bHhhUZYwS` z!Waz<$uODA0r^84VV4b6l&S*LgZ@ZHmZMNh+h2PL*98NA*{9#}J@9v?s9?_2I7QgP zm~z2<*Zlqm^$MaSrdN&yjL>}diTZW7i<|k0i+S(a76Dm3FUtQbLa17 z#1PjonJ?Gy`Dq)mUOd|Z0G_1KA7>PW_ZT6Pf^ue!D=lHGc>S`GJ00`KguvVnRWIlOD$_0jF)sbiel9)GC)@%G)dFJuEnQ_~opTj3bqXxy1kIrJqVC#PiEvy;YaOl-tY4 zrN&Tt@Igwcb{mT;=H+jZFW7~PLI%Lv`9SVL*JIUZec2&=1$0WbqRw9=+Am%TJ?P@# zA?yH<-JqAUFK!{(uCWGfPY|oEP($P4!d8(wDX%sZU;8sSpYa~dCdhg$qzDyei=E@n zO$at+`eXTwkp}Bjmew_|J z#>n?{{}WC*@rAQ6s6}HR&{2F}_&}q;FHh0?EBAUPI>Zt7<4fOcJk$?z zvorKQKF^(g;~2jx1aR*!GdAZI6qdFZ#CP5jbP)b2BtJ>{t`=RuSfhJ+J&1JY4P13KExbQF#vLB?ca#OjBvt-IW8=lgzKDRdCgL-xst=P zw34IzP&HadQ?_{esd=jS1O11s0Z;iE-c4@FZHpqDbealOP#VB;zM_2sHJeh2<@G5M z$GPoZA5MoRY<&5w=@zrr>0-_2=BaXi7B~NXU*3Wma0sJro6hlOZeD-THS_-a>9A#x zqmC{YoeU(Vnp*Bp2=Q<)Kb()0Mklgj{vA^j(lycwf+R0NMgh7qIPMo(Uhzh7!}upq zWC@-JRY=42ua2M;O3n&7Rq#ASBtKtDDjJaR=%qi0^e&)U4MXE}dg;g71E16Rlpd$s ztYEb~E!$lSf9?4H6jU`~W*l-kn)`>xis z?CMFD-t?J%47A?lg9!1olTuKztls}jT(UW4zxE7%7d`3bm(@|Ber3NwP0XJuBE zS#;#d2@2TqZ!3Y2HF9-+^uexXmRa*CC|B6=1>a2a;s!giw3Hfby)9M?a^3vJ%6D2@ zNZ~5#knp({y+wN+^G6f=i*cTHEU!bya`Qe#mLxsd)Z7o{@wj+f67!TwGa!Igo}9W7 zWHmKL;SI{8`6c=_0@&A8Ly; zsDF>wlB2{zaqBtnJ*YlPF#$;^+fv=Kta!8%8qYGnxB@EiCyN^X3fNXpkcdYs!*3Gz*PxVSh))i{JA)qm&mN)8Wpr+i6I zUUqh_Sh`#LUtuN1O6?4%v7>9}3^G(UKpDr+=lMy8m zx@yej&7=qgi%=Vo1TD49p)mo~Pe0y|JgJwiXQyrYaJ&J*yrWj48~1SAF%&}8VAE*j zKTyW@-gjm)8odU@V@qMUoyRGMA_o{b zF8R-)0Iz}l&so}&wWnf+oumgbO8~8g9h5b2=aR7uiBd0gWYZ=7^HZW@1n~}gcl1Y~ z&G*i)rf*E27DHlRfqzabkA7j_8+*nKAeTsC1DxJO<(Xk%kzd!xu_ans@Y%Yy^&Q4rJE9-Wa5YNftJIn@!-0n|PA z!&X@n4ZBN@p6<9FgGcpG5y1@*7;0?`VX%i(eUkHVJ7}a!Kp)h+?E7wr1I)AMogXp9 zIhO^!j|rDpSWF&^d6;S{#vQi^A&rmE7$x zgX#bRP+eVVrJ1T6v2FcknY6emsuH&`KQx6fDCXwoZjTwIe|}%zRx=%EZ8wwPIvFZh z*mTqT55r#L;ntzu#(-{Jeg4b48*>ACRkj@6fP(=ksoupp*X4KD&LjkY@}l(qdY=S{ zbr>01tO8FLC`?{WuBc#&kUNl|mYU^4U4HaPSa!1{0wnLK+~9g5)`Qq+-P^Yjfe)Zd zrer>QJF;RwBigtH)PF(%(UNaaMGd4!LIuU;*LdkAc7DE^05M4Ttx=$$bc45I2e+sO z?I%_2_yQGc&*Cpyiei#H#hrt# z#t7i}+5^O{lPAB$4H<Hd`tnpgE-yRb3ySdiVdW_q4e~xnc!&Wok_gD=E9(laVfd z$;nj-51)Pf6`T4&6Z3qESO%dMfJPX4W6o=a#az8do+q(Jg6?qDQlGK^PhQALM8V?WL zfV4~9$mrn^eOIW{PXUhiA2O<{blJwZHvwpes7_1*$!R+{w5!50LDdVTUFYt;qkIe= z#l@4q?ezUVbu+9{t(I=@a&*J`DJ5<8NyH_=pu$u4wdp&M`X7;hs|eio-frcb)NTCB zgfJsw4Jx7Z2m*JRHnvIBtV*#z+O}YK`*}K8}=An6Tx?eHsQaeJVLs8WTtBvSn zB06RWfuUxW+9w!e(g*qxhA3f^XTm-^U1Ds`&k?T9>bcy!bAZc7>Gf#lc(v-djaT?{~iMHjfDc8nb4v z$c-CRIv{deU{EzVY+aO5?eGK$mro)$%FW9Y@!YhTh{?)OiGD_IEFX+S>Ncjkn~TaB zf&R_#txN(UYJT`pK(X6y)V^b)_bO*Qayop#pa!>_#mM={HmoHq|9HFB4c_6@`^twS zC=?LD0g0eD=J7{x9{k1VTfUIFfX||RbB9yzf5fG>F)<4n1_L9i%~t>F;^0H$mX>T0g9G$>p^Jp`Aa2reVaV|Aya*ZQ7XcCqC?h72>`eR<#5E!_1BqUn z`Uu|9Rv0dVfMn!@13+l^IQYBO*~W3NEh83P1vLL@y`O4m`>=;2l@oZAJ??uwiQ!}n zr;%ZUZHQ+B0EGK^58l_xoAEso1f57g%KpTD>fIfn2t|4YCp{NL+NXr;7DU;dK3_pS z0cX-bG-SCi{OQLJE+kDbba;PC0;ViPtiJH7#)*-E8WR>t0)VdY(x1QZ^e`nEKzmiM z(OU-DzfMk0T#V$1gvZx9S7C&t*lhprM$62Rwc>Cc^#$h=#wm9a>?CNTkA{GZ82L?^ z4aSDU{pBgJM{~1Nmhcr6s3nPjG4!HFGCU}D8ncnoyF>(FI83$S7w>$ej22X2~gWm_j~5pElEns;Y15n+@PzR zURu?O*Iu2T013^Gt8#yDY3b@l*gmqhZbc+hq`^dPFFx|Yg9zb>i!q73GHWX%2Giz( zG&SDtF4dufTB|n(4X(B`p};s%MjJYiO|Di?x}QmUEJ`i6w}J(hJVekG_J}`ZI6g2y z5;%0;c}^?dc~D;;`1D~7Ry*Vl=s*D#F}9SP(X{gBkhY^s5|AZD*-gh+0K z4KZvJjv&&2N8GgA+9&Z6K-B}dA9WdNHJE;igNA)17>Q1vh$8_&*fF2S$K}{?Yi`nr zX(AyZQPD+;J4uyg^tmY?E)wYMnPOa{UbB)k(B$W#P>&1MWS zB@4Vb>9?E1)^QPO5M+NPKyuoVYp%aSQgu;3HawVifiBhV{i*2WtSr)*Bp=zt$A7Nb zd@CgeHwLn)EkJ9CLV+;|90E)5n6#*VlMV7Kf5a9dq8lZiTebk(Psz)pfWSk{%SIke z*NjFU5CSU{YH<-bZ(-a3E~Y<%Tp2z)0bjBWj&Xi=>u`ftT~0;Y)aosJmmwq9JKgb; kq5Cj@kooKe8Y6ljr#a+!*gKc>69s>+;nWlh;M1& diff --git a/_images/scatter.png b/_images/scatter.png index 015b8f9e12d3660984a34e246363e8b21d55c8cc..b6121a85664a1e18085af800f74a9e8911c635ab 100644 GIT binary patch literal 15143 zcmeHucT|(hyLA8+L4~6TC=k#ih)Pqc0s$0h(v;pok=`M+&_zK&KtVc4@4Z9lARs;T z-UR}olhDgI(etbK{_eW#TkHGpJ4@C{@=oTRyfgDWd+%qD-%B}(E2K1}5D4Uol;m>- z2!sHO|GRhre9|#A?GOI<1TLlqSF|#OJHECxfXKdvTbore z&3eli4!5@B=ispTdjobWTO$qzraSha6B27lbvp=z{5AfMAVWCa1OnmzD)s!Sl2h#3 zq_fl4!O63&9+_v7k*xg}pBLOZ$M6TA2+L-2(g1sgn*Rmwa0NCh)>rCT7L%sgDqrT_ zsk};@A?#(i8gYrX^J?<$mp_k1zVTLkCzj0(vH0=XU~!N5?zKo(Mmwt|_qx1n zY6ru}qnM_*LVHj4o-C0msi?G^hd>0`&~O3>B;n{H90Iv4l0XE}gAhU?5TZZO5XcQr z5n@O^VWaZ_p+s;BDGc1|f2hw#%lN(ApI(f-K{4boH zogZ*;SnZU4k$fI{SGKRrVjP=mGeaz=MqDTTfIKFGKs?!Z zQD>XJ!stoIX=QcwD8ug9(RH(pstqBF@iN(+#jbw49$5PH>2A43l|!!kL5HsCc$o!q zqxJ}?^cVu!e-T0G2F6YE*jmpwKcID9qtrBvlZy-2p?g|1XeWGj&_hY)TZ+J$HqUS6 zeFf{T_U&>?MNtu_+jbi>4VPi(>!y|EL0O-Qc_Zu(f5!WD}v@j3EH7O@)pq{A$^9vL!{t4oVbnY=`#Jn z;ok~V=ipGrn3hz{1m;1885|=;1lZ#&UyjXD_D_R2{*Y6 zGs?dsC!G+~ZCu)U0;A_ef!U*7topy)D$T~!@wLb7Anp!ZUl=L_%Y1y51?Wtu|@ zdBH@!DJRj868%;(slF`b>=KjyyHb5AQlaqEgC*&Z#jcq2v%~zeKDWKebjN8o)jJYF z17LySmW0pLnd4oHK!b=+@kE}!ABsiCG?m964Cog|)`o{J>nVGdgB3sRG=Bw#8&J%p zXJKPgHZjR$G?}UQV)LRW{eX=>JBZgPG5#`?tC=nv!+W2DLtacw>~JvOy;*1-!d+~g zWLZ;JVK7p2pQ^tWnUNQzJOelJG&%OqPhg}&!4^^sZ|6YQwT zx|B31(|^#Nd+fn-$scL#M!1mD32CjPu%H3pxj)0SKC0B zT{^8BY&1Ce8YFZM!mv4BmNl_@-u*c_)YInp@dE;sD6t-6UEm7{_WvqKj~r5NM)k1? zloq}9evo~qy=^76BR#H(D$|ny{2(C(q(M4($Z9Uxrj!@YDXBwybN8sT;T>}6(nKg( zEXqqXa>83%y(n=ZJSpV*Xx7wpG+EBFH#HBz&-vJA^YsQ^ zUmZL0p|6@&Dk>5hjn(Q8Zzw6teoyp=FkTW}FVI>JkJG4t2WFY=-v8rswy*OzrXl)P zEL4G&$_%H*N~I{L@*~k-gJrTvu{d8hsgcEMI0v(CzhHFEnuQP=uBl%1w1yLb_>)m~ zqoJEMHbYXoglQn=%_Fguq-gcWy|e8Vwd8PWFR~8j`;3!Q-fMY<$v&9H%6?pFtc;Y+ z!s1)xqV2oo#fjvY*08PaF!dVqZaQUWV@UJe>iA}cp5?6+CV*MJ1l}kQc z_G>wWs=L=x^Y--AuMNQ_p-_V3AQ4|S@!%V2?v>PL^_~PT&gd5t@t)uzgV*0*iLQ%W zd-V2l{rxg5YJRH%zo~Y5gms&It|)>if(^8C72R3t875|M)sr9r`M)b%q;5Ga20PDi zrgnC`B+O&d$Jq4^rrApGl0)xtY!k>JtRvvCT9AAh0{LWc@YzL7>;pXleftXC87)E3@duquCUf73iakJV z^3c=_%`7QV0wK1&z1`G#UEbp`l+omPe@i7|)(=)j06{ z7|FYfPa63arc2$CUSL=iP-4X4a(by=1L5G%P?;dFVdssLMZUV;3Y&TU+p3M;I*&7UhPpy2(hmqGS68r*d|^7ey7~V8q#!8XXJgClXl+)V7)oS{M2CH(r*i1rxA6>V&&8BRsR0|@GhR=5@eu{7R?%;XSriR&$ygQ#JODB+TgfVBw*qcn?eUE31WpqBa{AkhDTU zR1C97Nhx>kfenkV-iSV}?;In!rwJ>AErWnVPB@2dUaEA2>GsdI_O>cSr(tts2(`>7_pEyOlT4b9-;0?hFsr(HqQReRX}61iLWcq3nCMG3 z{bERHT*U_8`v(zUD<-pei|ohBy5R9dyPaI4)N!sd)OO?;UL^>=g__m0oX%_k0`nl;0}T|XR)`52Kw7CuO@4zj+Fq<95=+w0J{S?F6VmvgqxemViF? z<7=ezIy{$kG$AYcqpck$NHy~Yo&P!X1# z$qUtfBE+b7rQ-!e%z;BQH2j`a6QOh}E@l{Z%SqF#pwXov%O=xc;T=xqK&sm)f)c$o z-W(O>;^0v60B|3T0tZ@^j<%I%sbn$0rP$P}u4HR#Y(nK|*xr~WIC(M+XjgAf+DbdLh2N;Ai8dEZ;ywv7p~Bxe7HnSPqi5GHM;$j*ORuu{K_VK zM<_N-Ri}5V#s$~JaQaeKRu-|A}H)N(AJ_Ms99Z$>D)2vSvr+ zu|P_Va%t`}7*&9qa}9-Oj5Rv-v+(#H4-tsS1rr*)i80$999Da7Nxd0^sbv}Y`Bpe)B*+%xApQ+m-cv^O z(1*gyi8f7Y@ z>NRln21jnh_lK9_Z2fIHX%yQ?B=tlKU&>;>p zygkt!CxGj+a#sZK#9UgwmhE@q4Gl|e^ewC1^TLlvHbqXorjG{~dzO5)mE0DYbBFUR zNP_a^tp+ZeNtY&hByI}CIT3QIx|C1fOhBynZ+??CuA9%29zS2{K)4zn67mLPU;xm| z=;&xj%9lG5Wu$geG(xTw_-O@%H5+iMS?h|fz2)h;x-f$>g?~=CU1jspoq-mILqpmc zg}aovc66rB&6}pi{wB?1s&Kbn?jEcN27?KsY)73Qwy1Tn#>{Tni`4DX3$$9sqw1>KyrwvXeppBo_>Mk%_K zXzk^VPbcVV+3J*!Bkx{QUaQSGJ(#6WJ?Bk&j?mQ9e|d6mYIxeQ*6LV+m(NW{_Gyep z>$ZW}d@IA_fHOR6Yx-tpY>Waan3D9vK$W9awlsmpBLlyokMqRKhe;;ktJRdwSCiS3D+y{T+KwkfHoim0Gv zTqb@)=&MbvHSl71lXIeX3Wyq&;5~_mUfRlQzBUD3Kagy zw&>Xe^pf>WO+x&*5DQ_dSp4qv000d4<4&+KP?L%mI`j zB+$T&{bw1|Gwm1@l?1O9h!>Q+|Z7Mh+Z7qL&>?@~rsNs;77waAbg7YHW z1QPP8hG4?W3|-LKKoJ2V4v59jyo;Wcjia~MaXVxu3)<0>U~{svkCBQ1NHp+oY4W)221Lrz9OM zuAf9CBAjNWIn>qkF+wWeULs}}Iebr#8B~uoVG4@at@L|HI61h^x9UGfAs9Hm!M$TrKbUve{2!@F)0*2SmX`R*NT+-o)5YhH)a| z0`o3|u}g&RPvUxy7b?Ny%`*KHFMpI4la8J2Njlsbb7N-VSUq0YGf?nzKLr}a{7W8d zBEm_7i7Bq_>^oP2cL}#7n<{H~&Om}$AL<#TayTWd_Py;GvDLq76I#k6BW(C{OTtyE z*>BdRj@*Pu=Q;VL0s3ZCV(#n1JS_zq(}9)^(J{~AKhW&`VVF|u^ygkqJq+=%IqTg< zoH?ZX4odsuw=b2*Yu$2zVH9Z%scL4%~5q{&g z`mpQxxZ$AH>%|XdCy?64&jO!5=djt;xJPh9PQ?<6ZqJ!q0R;mn)}1+9vgF0{;+4YvpnG2qZs_`-}xUUlOq$nG&5Y zHH%oUm?!)2?6%mSS`qJ$9#)O(bZSCEnubKIOilY@pV$G>nb`!Wt`F|tFWlLLX#KF- zp^D^yWRLLwtbN;d&0@M%n_O_yQ$aytRgfDJvE82sUp2nSGD?L8@&GDHEC9Y%I&8Xc z-7QW)H%>1UUmAN?{nc#uN`AbwIHj)tfxro26l3=SgYBlkEtb?O2haQH2 zFT;|0jYG0cHUCBNRU6DxPlPM0FbL`1ij6bDIL1;OAFBVQ023bq)f+yn?YO*>oj>&B z%bluYA)o@k0(5+v6!RW1Va?zr;@{FSW0iIf)We^i)g7Rfe!P$s(5zHmrxPJVlfJ#Z zokHJ{dyG|=m6Cep?p|xrS}cfK>WoUpgCM}fF+)e#jcH*iO8cDJS{)!TgXpBFp%HD- z%5&4g^vc*EjY=uTlYnTT+)5W8CbP0e(_?dVkR>w$G_W^neL=G-t}3}k&IwlFQHFet zh=|xc*Z_zvBxNvL6?44PW3}V9`i~qg{;P=KL%D`njJ(Qk*ZDD}Ha%ify);^&d1%eD}MFFDwx`u0pBb@k<;dImYeQ-|{mjq~Zc+lgK*Do(T zxxxurc);sDDxO@@OL&fnqg|opIXXOoAAcsmjt~&p2*c||eDfTqG?kM*TuUTC6kUCJ z;YNF*hzB~+S4myH&00Xu%i1BsfJIsA!P!r))N_O@z4P@6bOK)q7GM8>K13z%+2>ms zE3wiK*Pps+=roZTJR}JfA%WLRb{!?>|7I$H8nO%1NX-Uo#dJ z^%gqC+70q?uY~pGBHg>2k*;G;%Qg~a zcgjI9p`oF{_K*v|5*1B;=jAz9SV1LJ(xSR14j9Z#xHRbb}Ac)`WfOb^}2^2vqtsNwBy1Sh*fI8sNUskdml6}b_?6zpq^UL+F zzCc$NrL3F=*#_VwwlzQ}25$r`W1MT;1}y;}s`vq}_z#FhZCIZJT5}#|Nk;M34fEwF z2EKwiL`v#m*5nOaVhHsU_=jhfa%p*S%JmB&WLiRNba9WdBjFAmZKNiKv(I%)X#vM) zZ*uj`+j6OT^b=o}16nOaE4a&nUz{8YnK3ml>wf}nSU)&oo^FTlQ_^;$fH!6hP6mTR zJhOdEN5SXdJLs?8E>>3p14B~iGc)s6+7dBiv_lSu)4Ql~0>0)qW2)4HJjJARxg8ex z#;Asx@~mhLivy3df$+0Ed1aMhWEQh;p50CXFCX;^9RdyEhg)x~CBx$H^Dv2pD4n($ z9csvhn;~q`Nbux8(%v>m7dqi$W^8U+DP|z5AIi9g z{fV-_Z05osx^4~SlkeWj_GV_nNy@$wq!+fP_%uKSv%h=KIbOMGELGFNbQdR$O+Fuh z!!XG&19}vq_>fGL9GW-3*!IMo2h<4MZCY*JcE!Syjxfqq99f@AxEIJ*CFHwrwb2h* z3Oyk=NMZToGhp5&*2^?NaNMdgCqSTo-?!LFkX;I-MrAoej`ND|-n_du7K;8^ttu|h z`@ZlZ3|nY!4KN4JT+dfTB3xvrzRlvHs0Q_V%tX_%Q@+_CKrXKiFn+cHU- z@3+|2H;>k`$9vi;#ctU8vZxm>VrNMB8}temIs!3uP`mk%yWzYJouF+O^AeDV(E;r= z21YoA-cN1E0_yL9B=Y!VVbOrtoTzxYb4Yz7K8fM0KaEfW3|F&=Z-5IO@E_CcX+X^PpY1?nve>%Da(=m%PZPXF9s* zEaGB$xVeiuW}a4L`qcrQX4-n(UJtIV8Hz=u;q>mE{$Yt!A~d^--lVLZ=tK>*jlw)! z%NAN5bwx50)Pa(RlR{Ex@wyD5fYVJa!+Y9Gfx^wITt(^^&~8Ay()*Ox9r_qf6rQ!B z0aH5;v0A^ph`qoqNk$0ue1zmDVeRFt0Avku92H@aG3LC+M)ckhjG_LXb`*2(E@y>X z8*5kTNOHqvP#)RW8F#skwaxg`rBK5ACXftj`2ZvsD@vB}7~d5}?A1&jCKZX}^;eSy z$5{3*s?}b-3*bKa_{yA-&R9xA>(BeS5?LUc;AYQGrKbh--~Ym=&SiQ;G+Y1;c;=VN zT)cEX?5NaSNzW!xbpM5-7u= zKwXtDo17f7W@`3K%_5~c(cd$#u-doQe3X+-z390&G5OGY5(@k`!otFqKTzwSE^$;R zP_n3?-(6xaKwhrD;XVyv8XX(^beHSvte$fH7m%amVK}9l{kZ^8Q`O3D<+GZ~VK|;4 z{uT0pP$3U<*)2g{uiqi7A$QujaL?^%cQ8s{{IT{oW~M1>_d53YLpD(63Hk`+i%@2H zAy%N%PgK~@2)kGBu1{t|1sv3XqHwOx%Ja>K=M;^275x{j=AQZZnE!qrh`}K#Kp$o9 zfCx5i&?YcSC%JV*u*FVqyK>VgJ3Cj}ohQ_uQA+^n4l}5#tE{8*O-^v@JDDy+ptwcG zisxTiym9}}AEc?-MTgm#8laAYe<0&)dPr2S;K=#P1m?K@AuG1}_u$4|npnn5_&?|#(sYywVL-Pj&7GtobAYrlp!v3X< z0#hWMKjMXxQrZ{F6q$-D`EXg-(wXu1E$1>@=cPq#*tARKPHZ_WarCY_ ze-)OKj*nf(gN$4fz!uhaUI-hjb}nYG!76CGZZ$*Cn50gQ_R1@Y@(2EF!8uePY)5>x zpWb89KzVRgQRSX?Xg5vfMjVfi1MCOBvIc~M0hZ)+gu&a4#QSML*69V6rGXK~56^t9 zmd8d?!UqY#K=2BFt`~i9E05#4R@m3C83hF|_oiH|($Dfhp|7j2uaE9YUYl|Mx&Xiu z;WyX1h7l&iLn^{&{+yyUWYL0=Nu4kK@o#OL)JY;T7ks$L%|yp|4vZBsBV{-kZCs?qt(*Y80 zva$YpRg+9nUFhf31eXV}0q_{KUuV-S`}B}lFY|j$^K<*I96~A3gbQd}0aR>#q4GkR zptJ*ZoUqZTcG`NKAH{7FBKKtBIuICUD7tDkfyS<+O!4Y>_C!7SPLV6d{Bza-pdO(2 zGfHLU<_>B*PKIsr5D}9xq6iq3U1~N(%Tc+1iTViNbZ{qf81^&1l9f$P#0Z5wwqqK5 z#`pD09_V|Y&&TLd7oB86C2@IqmWr21LMpN9FBX2AWGv=9xf3N&Q&BqPWK+XatWNdW z7vZ-E5Y~qJZ2U4m(Llm4CpGfDwtm+^Z;i8hWyblc2~1&dU;r?;&(>6eGd!T4dJf$X zwS;oM3g{nYt`+KC2gg9shaD0-CwdtCmREO<{`zIZ_9|ko@z?x>P-9U?M+*I1J2ScX ziN`RG#^rd1Mg1Spf{R=Wb#p!jo^svhj!iw}J6F-3VzKL2k$$vtAm~%i`ha$KPy_)5 zLkBG2tK8&{eB9io!|S$yOBdqU&E(FGH;D=V>L+}5eZsoTXMy}BP<}w2pk$4Pm)Ws^ z$cs$v{gI_d^G4HT>_h`ur!6t-ceiqKbUSDL+b+^_{feq&jnLA|*NlPwT~8%pYa80h z0I6SKHq|$p3ppqH>HoCjzh>GzmqKBT(6Ns!6-;#xD!XmtGu3BFLxT`|0$hR$* zZhcW)$odih7h0{-#f>#eES&)4NHquzN~UDTU*hN@-BZX#M@H0j5Q5NXlOA9lW6Yhk zy={Bt#zPTcD3ObpNBDMc2fB@lKH2AI0)U*a+{{Rb+Hzsh0r!AqjC*tzv(S_C{j)%b zr+TgA`=0YTZ=0`JRi8#Np?WPkx5fT+W!Gb3X&lDHs}n*eTflvPwGrD#oN!4eB#%cf z1U%o@s(+#KK7Uxa_#8hnFy`~Et3uQTA(XQiTn}sU1cjcD**36+BxnN{$=&#{;)!g) zZreyl5z<a#=B@bx15svrNXrl>DU4zn|xChwhR_gKV>+=%`O6Wp+9MADCkj>p(iwsIX3)LSWbc7(oMd zco@%Id&Q_nl?nAo5N4;}Q%PN%Px`{4=F5q7!1~0$6l;eCbyGC4@V*!DI%W0av2tD8G7@2$WBNnnxXe`JVn-;M8MSkeuDKPo0fr_fCP8$=Z~x)x8scRGI;Eq~aS33DF8~LZ zwTN4H-8Ye!tuA&AKjN!9kd^9d38W==$vY@q90q>4_qz^BJER>%CppF4eF;y!OB~iT zYL3>c*n)=#28_4nngOUEB=^`C&F%pHN7=ip&y9eA!PGQsz3$AN^7?gj^-j0q)2Ciw zx=P$n5N@Eniv;p9e8Q#`R8b%h3(nWf{F;W9@y?4;cn@8P_3SekpxbPGMwMGFw90B~ z#=t{?x{v24pz^WO-y@`|6Q9g|6tW{|cZE{hs8KfjzecND_e1$Ae66;}uM>kw7<3Kj z{`3u2;^9$)*p*S7JiQ<<`^lDt!&N1wF8g=5x_}Vcp;7;C;m4tUhMb>5;?~Ev+yzZ z{~)pPRDE=xOeEdeE#IvE?f;$W>ffE8*5y3=;&|f|CW_Vb*mCEyl0?(sKz=3 zgmc!kU%CZ>h%Mk~AAqb(nHf;_9$yrc)K&tHCw{G)5JqAzGTj?MWwHDwpsm}{_Vv0d zz*yi-occQCQ$rEYehbiiNvt6)Nk9sZYK9S((e`*vP2I4(AaSmf9{J^imV?84h z=Q!nzca?_uUVzlAvTB#@;v=&^OWsRM%e-!W46E!nLG^gI-Ke2_-Te4dY&v46i?7sa z>kW%E1X528ERG-yvFX-ofr{^|V0xGaeci!g3~tTJL$f1-W0)yID@jovHrUPyfjs<{ zD!Pt$CbA>ZNh+_|rSP;z-hG=wst+G>4S@A&|DAs5T(qbV6H{~MHSi6eJ6=-&rKNvE zyzmkcp|~q!opcU(p5}h&tm7>)4yz-H3@2y_{@M2w{5VHYooH5eOZ`ugH%A1hZq>=u zz|4vX;HX7oWAZ?ydcHMSet$wAY!zVt{Z*?5*D^XgJLPJYKp72$-hpKr2*g_9#S8!K zogE7S9l&AEpFa-(?HV>_abW>?d~hp+8U=b@a*t=v!Oo6%;>hfzR;KGb(sjqRaX4I7 zM#f7(u>jgP7XWDgZ}wL}4s_B9VK>d1RdY2`op%PtOO`kH1sMmyqrVxgDyxNkSm5t$ph29>6io zZ8aqbq_aR;J~HoQLJyVVv5}5-GL3m>Yh@7@Xh~;gQC1X(f zk&8HAF9PC0z}Nr5$9v-=@KqE6Me>)Ki2OMEy!X=&oPGFuQd1bg!>a&Prxfw`U0dt| zHX#s}$&}C4zdgsV_XWsjg=#s2`hfpFQNQi`fKZPU0QA2EMa^fx0;`z9o&`29H1D#f zAE-P0i8mSo^C$+Cz(W4!B<1RWdNQe%T~Nah_}pWNCa{zIFHHUgWKe5Jx$^nX=HU0m z*k~$4RDf>t`$Yi^HSK<6v9P%KfQ}3^<+4$FwCOotk^2C`GD3p}wuc7~9w>;5`^5R4 z*ZMG?MOg4I*UNp}qC6A$tAUxIe5b%O+Zx|v0UJtMS{k?6M2;yNw^RfuV~wA6hJQkZ z(vuQ+Gs>){g@Cla{E4d@l^UUwH8=N0fb3EQ)vsZdojbJhIMP&BQbLa!#jkCbh=;rBB084sm!vR`oH+? z@a6wcyukYp3Ie~lv;70qB~nr)P0jITzOIgrP`IATQF^?47Wg|XurHTr{|{R)UD2!7 zX$zPK4?ub2dZ4&Ha33~s%rg83a;K{4QO=RZ8zXglak z53$S9LT*S3e4v)ZqQ*amgv`N7S`z>Mq{ap`e%T`X#lVq*bsz@(r)=;q=S!+)*2i(gJkof>YhL9dO}aET)}SNYq%DLA z?=iY76PW2X=*f*Gab~O|Cll3q0eS zu=ZBT*U8P!uhqb3ANQS@Y3oZPcSpZtnwAEQj0C__PYp+VCC) zds?v@X4|~&7(K(88g$;#HWv@_OQVo$D&rX2WdW+Z_Zh#P8C^B z^5fPgHRoFb&2am`qKNZmI2MVDib8DE>O$>7!3rvN+NY{EM(2I@RK!0hG#DMy`J8~!T$VMI!;+tCWM@PQxW zGHzJcF^PK^@07^eoA%HJ=T$67?4*FtwvWSo>k;Oid`$?srQ8^+ChbubtevZ_ps5O5{SgCOXlv0kGHHwefNcu(}DYUZV}^;q&?yAD_=ryPwn#EOG8NEx`== zU}t6LAzvg*1P`r_7PIA`T##dFeuBXEhFtpQ0&l;cj_wxNkWujyiTM6sWlOn;pHINa zpMD^urQ%m1Z~()Rbh?|e3DnoGgF_}|{rNp0o-s~3j9VOn-H6|jEH~b^H#C5|_-fQ3 zN~u`Y5-8*zKLwP#8XOS{RZg;r{%4LUvGjf3rYlZBm5GVz0W0gyJRAYeFmCgahq(Yz0XX7-WK^xf4Qbkg<1WU{ z{*({y-805%85pGE?OKoYTa1DColF^R0dlIUu3ITMYQjN14 zP6ICa>9IGijeIa{Ui4#|B!IujU8=!`1qX13GSk0hfm1TCz_WBn;J4BQho10uqt{J7 zr8z|6N3{oCRx96J)_d{v^b!`V*0Smg66-S$>oyxNk?dGTKhhU({H4qTLLBF^Ub!+^ zRepht&e+aiG0AsIthu=vx!uk(s+Jb;&1sGVL~wagU$Q}9c^d@9l4wB_1-vDa;cQGyEs9e&#Y^R<$p zVOo&Ddc}K9a`|ZP%!PBL)^`Y@WkQU){JxPbtMOp4mY5NYem7hQS=_VJ}SNQmLW-H+)B_VV(5xCOWG)g3iE?kyGBnSg1IC9p9HstUdgdfzF zC9`sJSluw1)4xpSAXq5l&m)AhX)eOmJ+}aMmBMGEuEnpaXr`$*X*WW@g^5Sfe6P9PGiJ5&H3RA1Rz!?y?aM!F;XyF zFpRJ3-x2@xnGqE9Sm?;g4|R)?Nd8>yDitoH?g75qtt(Kw&PV)jwiZkswf z+Byhua$5cU1P&W}6HcC@vRp98RoiD;4lo$80rU?mOEl9A1`}kLl@eEVja#2|^N3ie zySO;`BkYd*>r2?GcXeK>UMj_hlLeKNlgkzPW=Vetmd028R87;OzWV0b%Ws5i>QY$3 zw@af2=w1eu-<2A_hc}CtLdde+vZ%?(dR5kV=LCoJ${+Eab$Yu95xOPuowBkYm@ z40ic;FBa?}?EjzoU+w@=c0s|=`Pqq@p5D46bAm*TUw|_K@j3_fFL?n9tdc%i3W3-d8nc_3Y9JDLwB&qg#(GKcS40NzutT zVi7;5i!=^|s@3u2S?70;RKZ#9bb7g`wC?d7gz?}>i$!Qvd6k6S_(e|Yz<~Yw_3MZT z5@h5mub}Qtfwy9KJ`Yrs)kmoo3Bfn2+WN~cq~Bixk&*HoVIC%t{35(fBKcFlau`j{ zmCq#VNl2XvMczrr@TZ}4`5Tiptir;27Q+R?vu$7g;yCjM1mNJsL>;I>&bA zOtj$iQHa+;%``LBHRoeO7);6cBENhY{k1D{erTu=FQDdqj7sEw)d*Ag`a~i8zJl`0m!GYx7AO=FgtYed_6#VA zVd%>1&6k(EN5h?zwTsgbMrn+z;Dgq}hMj?xj{90s+W-I?O<_!5 zsthYDYi`%l-pZi-Fx=ZS{9!a$Wei=hJn~_f{c)QB6>J!c&)+cU7kDwqdNoXE-+;j$ z`WrH}=4+Ka4Rid-7+t!0G&ne@9%Wb)8ykDyJH^wqVyoABHhHp1vWAwNp5A7>jOHpv zEmwWHY*-&9O{teA&skTh=bf3A_2Y-yc57>^V)TqG6kNZr3*2|!Jvmz$MkZPfmk9Ur z+Dzr?*wm@jxgQLDAZHyrJ3#EM7#XPT=VoWWw6iOE%*921E&o;KVvy4AI_viRN)1KB|XIPJlS7I%=%Hr3PmL*B2P~}WMw1}6P0!>92`Tl%>j(E)V$V~ z`(+%JGuR-ceH8Iod!sqw1q&U~6-Tu%Q=evoXBQ_A))>)@*Z+Q*{=cS7AI(ex7%Y5Y zb0ilm%iOd)Wi#f$>hqiq?$;x?Gdte+f@SU_4P^o0(1O8l{rE>7B9RelD+w~gEZ%MU zneuOaK~^vP0dhnnSlTf$_ZrL%|9P1|mr4Qy$hEUjH`j_kfBsRfgOxVt%Kdx2SdDj= zvt{x9Boycf{3PV$W$m->#(V_DAZUK^<4YqoC&Mf}$vbN5YOG+pB-=WK93LtF5A{n)d1;Rn;%u zl*-DH-p}r|=uZD(JqI_~8hbVWDoZ~p|q?ntVtLp0Jb#^|-#m36)*uM5x z(Sq_ycOiGLii!%OY+?2`L?0!p4-Gg?lm^mp5iqNwBP zEUMt~CW67VP0Wbvyf4mIMoTiM+?Ht7)YYG8E$i#)~oQW#;E0k_h74sVCJUvcV9EO2-n*ZCXhdJ(zG9tM{y7FzZPW4oe%%)v#C{ z$`4B`GHf#kX(B9*-(eBmaK74r`Ef54eReQC+?y;3g-_l7n8ht2*TTilFQkD7SW+$j zSX6LN^76imDapz8C!S-N*tJWaeSKop zKa{Tn3S0IUE|V3}^EpwzHrfK^f2+N)UJ)?f&O%3-$I*_ns3<$T!ojq6!$!l!xh)6Y z$bDfRSy1O=-yt55^~;+5BvQwPSaH2KA|FtTfYs#ae61yY-qkCBB6cs z+*Y(aA4`nYKW<89uAWzJdwW|k8oTrZ-G2hAjVXLdIRAi3KdYu-x_)#5y^4R266PfY zjx9X`Ehd<++n^YbA-1Jz>ZN~8 z{x|t6j!E%<-r`t?y3{K!I&Y&%z(63|LH9K;yq|AaP}{bG$MtH^FCQYRN0ua5ba(Ve zu=#jSYN{=MI>qcli5s{j<3+e6?}hv)utqpQ7T$1kw3;gv4C)g2PC$TfAc{c4EZZm=x7>`x z@2tsy0q>1qQ_*p!qlH5)&oQRh{X6 z1>VUtC6S|+kQ*>fpIP`xQ4$Gz5o53SQ3rgbP4v9z{HVvdks3QtW?ucK3Oqdo@B~3kipDPZC!wQ3UNwf0O%~yPX60F^#AS(cmDSaWb z{h9m_JE}O?vmu^bK}7;U311vMGJHSo*Ddew8*s=Pe*f5adbGQ@>3uQ2@))Lh`=1uc zF=DTJFU851iU5C{X{>%rOJp8GAt2u^EG^|iS*=Ikb5BjSAN)ai95_C>adhWSh%J|pr!AtO?~!iL5(6RQ^{u6DJM5K zpJPy+hlfYu+_A>RWdl`04c9O`x|5#4uu{FYxdI}4R6k&NtcyL*ydwGSvH4WbeIBnT zU|I0EuN?3=zJTkTcV#fN=BBN+Tz`WZn18RE*rVe*(QgfpjObVjmq?zu8af`y>^z0j zsG+Q^Y}4ka@3Af26)&hkPEH;iN=PrF>oVyS4Jyp&;`DTbcf*@+ufFz3&aa=&kO~*= zlQTMAeQ^K&Q;;Ln0xY;Kc8qS>Bj__bB+2GV0*6jlK3}M69VL_2Z$T5D;@8me@@$w! zdYv6>dBtBYzjXYoHE8ea^y$;x#V*vK20R~waaubq6BJ=0N4d-eE6l}enU$~rhyLfp;L|(UC z$p?f)GJt3h1i<(;K;QMKu3XZ+m}+OuC8wqyo-c}_YG5H!6I8FE9P0{xZdnoJPuwTn z9H5CHBpvS}QmhyUA0Cig;oi8y$ILEWg=(X!x~*7zr&mYkaHz~eBi`=&O~k>Z%icmX z9Ks#t)im$EEk}0x45pY_sFVg~&|*a)?QJy4`uc}T{o8JK+jC}WJjPM~RVohbOyRn@0E9gzSL`W$+UMeeW4F9ud0GVaJ9>3fo%AFvyF)=fw_-dAh=<%t+%enG)0YPIxqK2J1lng z0noEnNkj6IE#|R~b$87Dwzroh@6hJt40WN30eeJ~=xmfz7CttusWie|dG7q=GKeiRW?3S&ORz3bchqgOh+xRu;7#Exd>@U% z2Slbg1Q{?_ERf&+MTK}6K$N6L<4NF(1HNJZh1O{l1lf!Im;S7e3s5MuTly;g=?xgi z_9id8#2oZBs9L%$Rzbad#}r#c2((X7<@WjNUqdxYYreaDTlbQ{%w0AK91;#}THEUz z4MewfJCkuZ`U|gEEgW~Tup?EUY8P97iRz*$m#;L#!?qOy=iQ`8u2N|xdgm`4L?}q2 zxkp?9V1A|lSNBHi311jZ5Wgd=V5VI7u+0z;dm@BRK%ld$?tyFcxO*c&)B>8?eGCJV z$-Tn?8?f%wfDj@(cTW7Ng?+k*f+RD}mjndfjhi7*Pyy8lJ%NgI&+8>H3mcyhu3 z^0BV;%(gdXFRV3DBBnyqAkb(MPE1O#YGo=5R0oGn68kCPkvSYx%6Xzs>B-2`D8ln%Li)wNTvZ|hSAL-Q${v7Q#ew^q$_g-hEHlVKR9v&Vw=iSRV2#dChgP!mD z2v5(tl{eyqB6Y~tL1!Yo#w4!V+ViF%I)uJ{0$}P%^`0j=GNE(=Cu=26XM4k|B|Rb~ zCD&l2`$PvC4wa#R!XXyA-7q~pzvSfPghp)z+Uk?c6!Y z$zg#2rROoGugQ-<>57BwhhQTX`cH~9J10p=FZ>d{lZ!vxYk1MbZ(cE*R$06wxpOqI z_V6{IWH1emN5t@3n2hV$3|j}z8AvL<-`?W!IIn5qz7@9`E0vXxV(V*>2-D3;$LW20uX{s}y@x_YemR{RSU71X>^Y3TC$zM5>6hX^wnzFgSrvqw4k z`6^acdUJ*#bu4H9TtDaCR+Dv`yAXNeSkJ<2;}JZE9G`Fqi4G$}h82@)guA3Ysj%2w zS|7VgX#t8wFg)%}@~4~}qSf!&)4Un%0!_IWiUC9`xo)Cg(@c2l3;K5?0kIue%Ld?H z+_U+7b7V@7@$)OUqzjNNqZowG59e+@{^NbQRjo$ikUQ-x=?vd3ei>aTNh)p{>ewhO|*+SojT0Y9M8<$|o)esF;2Bij0h>Kx1m}>{Pu?Vp~nqgEpEEnWfd zA7)QfCmyv8QvriuTeVWTZIM+<*d%Q|9KNq>_R{Bm*I>K&fnue1DSo+ks3adcc(7 zjEszON=i1{PHUEAf&jc3PJfLY8@IO5M@asZ4Q%TqJc*2(AC8Tl>V;~%o^gO4x5s;I zU$MEU-0*&7$8k)YVt$0RYa(Ipgp#7t%MDD%cu#E2#&(a{a@k~m2$ULqnc%9*61AsZ z4ehKsn8t9 z>_Lk<=T73`;zhXa$bOK0y-Jl5zK}a16MTzN_IRtASm{v9$|`?H=sYhNBBTDJds_iSPF3Q zTY}DP?tKPVkv5Xz9U;@^l<$KgrlX%opXfmgN4>AgVOcGnw<2^4AaJJ zVYSmuW!b%QFE@v|FZ=IB%7Yye?c15P%Pqg?MdQ4x1hiD4JB-+0;zLjn>VuzyC7}v$ zqFE@qsfCB+GU5*zem7n|-shRNh7^^!zC?~B!o{g^)&$^)tDOZy=O0HbE{)t1Mr#ko z-sFF_CB~*j-v$@;QCJ4Qa|etJukW7VhjKoFXm20{-%=lznZppowb2Olig)D~gbbZ^ zm$qKFj_JSyY>QSZ6pVsxOAHtx75X!+v<_?oFtY#96M6NL=3_JeDlFx?FHtI=XL)7x zRx92^0?Cbs_$EOWO3jpsZ_~+ljy!_l9)N&4Rdd4(QUd63Q?i-9kN#S3W*5cU?Um%! zE!}J3)2a15{Dl(}AO=1XiaRXj?#~7hzoNsQwCx)r-Q5}e1%;yjcr=U25VpeCikAMD zWc7!zMFXNq+ke3oz9#oM6WFZ}R!;pnMH<}f>zut0164WWhb|)C!`rO;O7$=C(Fr>? z_mS>i&dhk4V`1(z)F>k0{zA01^*aLLDP5XRi4`J~MBUvX+1u9=n0*~Jq!F|4dxf62 zeiEFy;j9$Q?GdO6KnYM8BR@yw>0}tWJEN=WHrqPy;73sv4DZ|}J9 zg;a?rS?R~01b|>~w#)A#?3d>yz4w^bWbBEg6zFudJ>sR(TdOaLlda`DAU+{M+tN6^ z?K1*+FDE}6wb7)csza%oH;tSUt{xM(+k6G<`TP%><9ne(DS*|aXJ)PfGFd~)*eD%C z{gH#7@?4&t_JOjMRlElz%VGL_?|SZxHdt1PSUh>fGLGXpUGG_aaefjRG2cZkc6+C` znv-gl`P?P&R3s57Qw%?sc7JZ}F2mswBle#A4$Z3NL{)fi#k*o2Nt(nvMI9e(B0;tu zcXO+x0<%n&sR+mPF$K)$BBOhjQ~>gk*xOs_TW8QIxcF((`WuxE;gVCXYN#Wv<&+c* zx-JX#4AC9;r^`dy6;#o7PR^Y5Z~4e$_!(7j6xXvWEAO2JR#s{f@|9&C$Ay_4mF)sK z`Mk+HJ0n9~M7FHV>3D1IVo-xIJ)zEut+%mUY`VlGl!9G5O~<-Q`t9XDQk)bu>uxGg z7?$&VJsrEXrU$;@oIK#*=#Jtcg%rGLn?G1I;mBj8%$3(3BA%zC7e&T62__w%-1YS0 zjl1KrL2)$)T*RR6DZoGPa_!X>6coZm`$T|_I5A)?iMKaco2bzLH_DvOV7@=FX@O3v zkGc@N$Vt;(Hj_OzR#zfFU!Bg$B>+`eJrjc-Ticr)u-2FOTi?X;Dkgvq@vO#Wb7&RW zP*7P}S*V|ymG$h~tA|aI{K&tHqMfa?hTmH5>PBG${K(X{=9>$`< z)tdCl+WTYUU7H8F@CL7Py`CMhX-E|I*b<*~oeRDt;AlF6MCEEAe~>R=1LhCS>u;>r z^)l23Tz~&X9i0jMSB&I?ldugR)3ySopMWP^Z*tXAlzgVajWOa7g z_D)ML+|`5n17X?zSRM;*>j}Qx4lI&|k-Jw_wCK<(8PCo3w;}lzh|Q5+|W7YGU6*1Fegx*Z}MZ=lY7HGmCv_bx+$K?dUKk~GlBN~CI5-pN>eIl z9zAfy`jLCz!yY0jY>-W)I|_64AaRkff>W(K4>$ISO(6R>$_*hq_j5Yb)x{3ZrB>l$}1_DpIXwe zu@9fnuMK-|9=~wEaPu*6nW4HQK+{&9@WZT%*ZoKG2La?P!L$Zm2WFP(A~!Zx8w8M% zvw{f+E#GCy4O?6==u>$Vr5W=OQH4%6IF+zMG-V_PTB$6#8oZz;KOn<519{KG8P+F> z_p!ep(+cjRfUedOBnoF9Z00-Q5f6-J9;hJ9KQJuz`x=7NuJ!kR)%!DtQxi|!6v#q? zW=lK=Qsr)yYnbQyLr@5*GOCt?R#wadasuO^ny$VDT19_p2Z9)ZiA0)=*FR`|n54|N z8BWFwSb$I|l$zcePJ2_r1TOeoItgd16tK+zLCQ^kHy7Rk*a38Urjz3p;kdUSrzWd< zws+_GQFK;7M|Rbg3FvM9666h{Dx{}|>maoJ;XF|(j%54>c{d3{hWIfECkBXIJ*run zgo+2K?^ds}P?Kwwlw#U)ujf{I`RuXb$}I(bQHDLGE;*MgseOq`eUlYkO6K%oDkTl8 zhlKAc1Fw%YeG=@wj0zA?h*2y&)`u+-^XHF}9B^hs>=xri^^$-t?p3LP?YEAqcl}YMj3Jps%OXO57{P3O| z9v5qs8$cceps4yy)DQk3V9lHqvBH7?kLHhcU$eF-WViiEDeer#wJIEnohJ2r705W} z-v?fjqC3BRV+P|^>^2FBHo#{tzkD>`O+z!IXPsC+b3ib0mjyeXpD%{(-xOI&2J6J7 zrQhHCPked%Hale@jh9zRr*!|sFWGg389X5CX@N`cf~JypwU5t~b#&TZ2w9So`)=&> z^WE0{D8i3SpXS`V0WW{W+JRFCvMPXss7MX{?2>K)`N?W0RHH8rk5N0>8L$Bq9`A%r zh~nYB3+iK9D#M&Gay*IR)G3Tya6q%F=ksiCdspSv_eLYo(()YWwp^#>7f3oO4-E3;0BqD{`}qw6~J+HP_djA`AWJLX@C zOBKC1>KQ9C450HqwVQMr){rt1wTRd_)<(7R3!tUIbBM(7Fq(P1SD(m(~W~VCY!|!bPsbJgP<@Da5 znJlNEq-2r>1y(T%OEaX^f_84+xz^A-nTe@&^}|b(T#$(k>eMaZ<+U_489T>MUbLxK zQG%vr7w@zxC=K00yU#P*ecId>UXW8Doj$6JZ-*q_VrI|nCAEO}0SQ10L0ev0^>(ZW&B^9!##UBx`7BjKBEe30iltr-A$Y<&$8gC=o>GtGt$=Y;9>l z=Y~C=taB{0PIQaxrnir6j(p;@{x0b2z%9Vj)SNVV70>F~6RnV*Q-EAY_b~ZMd?Tf+ zD6UID%=XBkZ!l%oZ;xHo!$vH&YTP^iVty`Qhgk6wh3fG2nh=%ReK(6&txFstA|f}^ z%YxQ@>3|AvF~kOHih@d};vi6kCkq-hezze<_DO{^{;aqFerR^6+k`3Yf#-ncBurc> zv)sGC*J(Pv)XpL(dMHKx1ZeTaa?F9-v96;Rs6A57A^)zUoUA-$d*wG?+}p4BI-jWm z{l&^jdS!QL;)L2Bk@&v0oT2qN9mpF@c_c~-Mdfwpd#%wsKOxOGhRSn$;oE!timKIT z%G;Fiv17Nw*kP{*>0^hbgOfodyy02Y2#XF*U46ZNiAm28XuU>;ho>^iN0pvz?yn4X zG_|j3sHmj=`t{n#*qDXn3ZGtx3C*~*lQ=Uo^Y*)?0bKI^I1`57rEhA>AINVH9^DZy z`}QdTe1dMhy0B~RJs##5q zV*MllBv4~5(RnI`bU$^vRS=mFOSA6;J=h*=4?WOAi---&S}kr^9eEb1;oZQ$R~1Ay zjx9`vzx0*hI5JLS5**9; zJ6&!*`X{=~ryfoArROW{=4Q&QB(Qqi(s-X35tTBrY{&+W;a-nrRU8?HJ5@dv{o-gQ zC92W|&s49_caYW`hMKp;LPsgUTC{L*qNe{c9WTM7Z@X1j|Kx0OV2MK+z%j$-Q_xjU z_Bt7#E-t2xUmTKDdk*ij9zJn+EjYEU)1@etJ+$^fgLeo zKZ#?|cq&**^wuZ6|GXD?S*|!pz0)~3iuIC+S>D_nfun(qCaTL!<}u&%iyMLaMMAxl z0I)(A{QUXz*27mm6rB1VO%9Md0H}fEE6T5K^Ll-CUi~4S7IS`H`vb$NWl9fZFp#&x z(ms5^7e1VM+a6hV5adqFH*EK^i0-}obj6V>WL=1T^;zLlmUnfw4Q8AnE3QSx zQgnc$YBwh=-xJ<}Oi?u~LUH|{?~FYoT0+cvq4aBA>L@Lq&R<7AoC0!Y>FZeq?Sn&F z?V_!WEMkXj!*92KlI%+;J^stFh4UCh+>1ejg~g9{mBmrCaEFIv%0_Bsxxa@HBU=H# z{`g&8Z@7@NYG%DY5O@dHxsdjIl;TfQZa)ejl1dL@qxd-AB!SE`Gv!NL7$NPM2zhG+ zIQM%A+M6lC^R^tqvW)_mUaaVn*IzYctP5`}e=Qp63wJyj;%mg8h- zk2o!N?WxDE^?eY-)BT7eDG>5Rvh;2*7Ny}=jkZ4H_v*mFq8sw(aUg|5Zb<+m=)M^+ z!?Y!dX}5fyO*N7Ed;!Da@Uh{F0kZn$5a5ZJ|$O(8%+VCgUb|*o40r9^0#hyH7~V3%_j9 z!72c>EELlT8WG@{uxz4uLOO*r^90-@g3|K$`6bO=_bm;$W`!%o&qL~}XZO?Fzm$oA zUV=gU-S+EfAL*ypsME*^Z2GI)HhVw#@$&393JQW@&gvChi4_fLv4I4D^JI0+w&beL z$n(Dr0lDN=31)zSmM!1(#!B)F^s21|J?X}QRg=5zja3p`p>YIyv+f|_zCvu8ijuHe z9b&JaFuxD$dpZMTbm%r)4)p?_(u&7+jsMr20~9-2K^J| zemd)mS{_SpHqh(QmJ0)o{K{VqzT@Lvs!=`37wb0OC?NOd0k;{ie-%S|S{fQmTg}?K zV5mSZS8%fywW17@@*!^Ja?dAiXQglAAU3hUr`-%n|UO zCa*~gCf$j{YQnZLbwDqJRT_F4RGy_wh8Qi~!tPm<g`6PMxeUR{_z9le;m)%5fm2Mf0MEnyNZ8KeM=KtZNa%m?5XI z@S*ZT4Sr(9mXv$V(Qlc#r+gLAOG4pY|Agc1_KpsnwK{shiS@7NcbNU(qZfJMY75@dDK03gGPbI(mbeZb{{-AAc%ImIG-+uOnfa4Q`)oAg;yF?zL zp)DHNXNS{o_ki9WkVE9Kb>-CqPyoiK&&!W7%c+FaPaqSJjR)`r=mt@8s#{v-d0|rN zwe&8NIE4s*F8F&=dp-RaTp2K7XlS^HP7P%d6x7ksweu@3DTxdVO98e=Pk>{O7dXAM zv2ZSHg3BXs5z+DQ&vU?xi;W^rAXBG?zMC`wCC32$`4-;b(9jA7r8G?IGLak?M>cp<(lin(!lZ8b67d0VM7Eu`>)RI((n=#30$8wToD%puXdlV~ac6QD zJ@(z;;MIdPNwvXhH|=s%x-=QV1?&X0SZQq6k~x*@9`}biEv@~0>PHKXy91&~({GCo z%GTC7G}$@1947(%Cybhhcq2h#c(1NfoMY`noQ^TYXf~0$i0Y95xZqWwspjF*Q?{oc z^#Lbl!LW6{K5i1_ef{V)2Bh5KBoi!0x}fW+l)gm6Gae2}yP6-VfRUy0vM@o??wPG`_lRp6qapYI7@3ZZ%c(7>;#Cx#OLKOF&a#FN@;~81JBy|~#K`Q+FI@lF@@CIL) z0Ct7=-}}!0+5LXfizR8hs&%^>V#1C2CRikBAFRqfHsF|l2&+iI1*YoDGeadXPyk?{ z@dwOSlT<6;UObCb8*J~oIcIAGTLb=~-=~a}U#5Da(}Ud?{M)nyOm)D*T4p^dpa+~9 z0^sourpgclWAgF`)`DJtLh8I)ZWxe2`|ljAk5^cLplk>JlZu8jt6+LjeYnTAA8_Vk zP>JWNo3*|U4_Aw2nZ5F=r2L*TL&%7E`7{LYC zWUz&)uC0Ln-lv`=6uK`p{s9&YmdaO5?D_2t?if%C3+nc@A*;mtu^<3t6dFdz|7u(G z0KJ?&E8%RQr-9Ut96L*Kb91}JW3E~vssqg5*44}R<30CBk9QL<^5*B~o$D5X-Jbl~ z<#9b67)%lHu0O5L78=CDVATQR%eq%zXJ@A|J-oy?c(FS^m#dpklCut@T+^%@2E5OM z8%qdr;D-S12FQFTc6-K=KSBJTef#V9m}hI`@H#{pu=}N=ltlG_Sx@=t)29LF_3_OV z&iI$Gzt{7!_WkA226|mdG<(o5b))6Cn9uwd_R0fUl5kMJ-< zXN}XU@g5^MBoI|#f3XU`$N_%CEWkPL$%G7m-|=j6xD1|y-Q0IzXN1ANmvHxro~&^V z4%2H%U37BwaG%712M6!~EGZngJwbi4*qQ&Su8$29;sop-a6M#KBd|Mnq}e`l2sID&u|4zdvdhpz=t;B8;X zY8e^E@V*ZWd}-#EE=m3^_xI8NYeRrO5OI9o{>N20!vmaae5U`|DxBI(Q{~A5o5=#E z{p&MmZXgZ)Z}y;6zXi>@f8TC#Bqt}g63+qrzK%ryv(@gqq3jKM!I7UoCj;#twAosg z?RB$@igrJimA~+Y*f9|&I%csp-$N?KHH>>=U-C1Pv__rqnDUNg?8Qp^E2e{X}CDs zRE#Die;v;OW6H_N=?AUa$WNb=+S}zaJM8lRXNh3V@k@x?YJNpTe0)BjeW0oY$SEkO z0e3`(!q*HOJRmouO?S|LgCOA$5{?|!cUM@7cS%5{-weIu68*EMXEmMwND5Hq8e<;nE$?%Waa1Q zhX7VNDDiRi2%(_BE+|msGU*-wr1#5R$1A=YH^4Lop&H>wK$!!!a41I4nL#c)Fbl`^ zvf-7FT;0G0AQKT8DI2D&qVo03O-}9uc&)MhEHSsR;PE_mq!sbd1bcUQg)tOD0Mw7w zxmW0WpY4%me0xQVE&K+kE1A%fp6u!A=s*FZrK*-zcH+h9lEB63u2VB1uO_&qe&g0% zS|I<^c^w)+`5!Uki+5M;Zi*@}9pq`1lv<5Hfwlr^z&*=Qj8**wdNmjj11pdK0zBLC z98Bid(bu8i2U7#SX;2Nr905sLfnOX)LoUhI7OClCf7|hOS15i#%sPF)X@UkZr)+O; zpC*Ti^G|S-R62778(G-*r|hIa*Uh*mAs@8mSecjtc5iDx`bU4pp*kY#dpQp!m7ud_ z4aI}AH51X);n6pcy}Ub)A2Qbh=`j;bQ9v&&6$p`Z!lzr!kg^#WA3r&70t(;?Dl-&p z2`K3L$}6avTmuv!sGX!;c zym%IS*9$FhMaT+trkHk~-xyeI zy4Xm5&cQb2PhIAY!4%Pd>k55k4dTG`>RAGdC+Hp2`tu(!6to)F915xyW3#R~%2uOOf}nk0rn60c$IbNTNn>N$@m|Nv z)pH?&5#ix;j&22xGmTiX%F@z)p!fI9I59jjQaY(Q67;CS#>u`48L+by=YP7>Z|f5< zT|qnN61|SIQRy(-n?M~(c_Aws7zH*bm6mdM#qo2cAoal346uy_4b>TMkW4MWwwRpk z?7j$Q70ifXs5C|!7IL@O_kpUmc8+uq1!U~FPK*hr<~0Y_>g%2gFe|XZM@ki}R*w3^ z*N~x90K^IglmYYB59Er`xKyEHcqA{u^M{7Kb#W0d=pvv=NFoeWjLJ^Xu5|=U)3nhC z3);c~JjL0W35c9+^`f>D;Dap%c@EmCWs=~Q0XaqV>?^O0$m|i9acA$RJCY2t zApJnLogHsNP}WKTkpX*dR&=J1qw2SVZP3)yhyEP3TN3R0wVIKUkx{kYu-T&vtg!s> WcJ>8su!9x`la*GKDv)^f=KlbwPuofW diff --git a/_images/scatter_line.png b/_images/scatter_line.png index d476dace33eabfcef2f3dbb272f45de38b029105..f2e3425e1605dea72057d2cbb53f3ed9f999b4ab 100644 GIT binary patch literal 19871 zcmeIaWmwf+_bt2;q`MmlMY=;;>6TVfx=Xr4Iz(C;r9ndJ?h=${Bi$w4%~{*$e(L<= zyytq)hx6fhx!tnazg}z3F~=NZg}+pi#y}-Sg+L$}vN95?5D44}?1hX7J{g!?hyZWT zoF!j5tJ#}5yBWSUg(w<2JJ{Ge+gKVsay5PHWNB~5#mdjh&HTv1+1bHKfQ`-eA75a# ze{0T0^_bQL>;%O@=Cu<9f@KJM!4--YSVAC*=&};e)!ox~=RCaCG(IC87{u}FjaGe1 zNJ^@yf@}C%_2>cC^ASgh_UBcvh(bo%;gHlnjHEb{QMllf@R>-xBykMb#&h&w7x;`> z_h`IYES4~rMek`swazrRZQQx^k37q<(Y5*6w6ulu;}op@xsdcRX zc3taBvIYM2W9|RsDP7@j+BcsP?lm1NDWvgYjEs!1rzrIO__2F*>f+*3x8HKjZZ-Z? zLR#8*yif)9<4Y|q=tcy1&Lgkkd@kkvu4firs;C46z$4K-d4fnlK%mz$Y4r8Y`e4e_ zr%&6ui43BiIjz50Xz_W~?8(z|b0qJ5G9t}RjP7&y5Dcfn7~vDYn-!|5MmM&I$Vd*q zyBj-$>shCvPubZJ`DE5^ul?rG*1Oa4sVYmnyORP@*ylsS=ek*pVBATVpE3*=D5iyU zb#*zl{M>Rjy1hC@Mnmh&x;vq-&AMH}^7HRE=?K9fTXYtc5g^eQDcei}^YWkrO1{9zU&O2upQ@jw82KSyA{ z$7)jfYxXYp&Nxl(-7X_WP07Vgwc@*X@0vA}as&2KyD4#SmJTf4EE0&_S~JOIwZ@X1FB`IUlsE{g}DA0VC!m#)=^P2 ze;&kvU#si(>`Am@a=BEXYUb^MN!ZwY(aPe$jy?J^ zQ%4Z;;f+PLt%0m|DIxeT_(Wqp73UID7G5uBjDiCGgSj{Ci{MQ8 zG{3wG_>snE-20v)EIhn@xjXW3L-ao7x(*L#eM6xa+@D}Wx5mzZo+nIu+8&4Tcv{iuYRvaL&J$J zBL{cY{?BjxW;GMR4>2I{Qlx>~JxzUX;ptS;9num{ONhYhoz=)=@n$EPgrc z#=q6JgV*olkhNjF&To2smEaf z=-n((y`LE^+=6i z<0Tmt$gov4dk}*0Tu*87B}MoR0enW&a+)wwh3BnV)pP(Hj$s6btQOWJfoB=z7wz}+ zUy3S`4fj4zSgGjP#}-LR&=F$R$FIUp#`{#Ku*5z{3SJWH*cJLt1758T4l}fKH??y~ zENJABTJ-GN8j;abGgGY7jPWanp~{GxC~O9BJi1zNDnTI#ml86?%}9cx<^s%$n$+XF zm`LCqHWZwGTzF>{wi0jBJu^U+%{zZ{Z9O{WEL3O0iYO5T=Rm_rqree^H!dRZf{sT- zoW4J$1B2fse-d`&i)ZQyroKO&Yt1)ZL*b(pHD{|IHA?#}5Iq@JBuy);6M$=RS&_~K z4<~*V3|VPowMv>$55a9^tR(TC+nloz9GW8V2;bjRl;2Z2gP3mBieA*!s zrO7kQ#tZMlw`)t8My!3QwXF-6r@DRYLu1ee#xRY_Q5-vsswkpBtV}`^T~ye3jQE}e z&GH8hoc?YmVdsLea4_RmzB83eSXnU|85?u>-nh?tY-I3zUsUiFivfUPrH^ugMClG` zz5HSCusKXUnEnh8jfk~t_>=hIv~{`R_IS}$t6wW$@pJHH?KrG@EiEnMAE`WGYInV- z5X7dWWWBLD-JXDDu!Ec9p_R*xtmFnpkV1+ddtfy;HIZY6!pA>Re2eA;`6$wCd$!*n zPoGzY2vAG0?7TRL|HLPr!XRM0G%&!*8F_lMvl1hU2vNuo(Ac)R=%Snfd-8egku5DH zwan&siFS9C-1=s@E4*$wf(e_DFy!|7e5GlHYB8^q(Rnr^h#agSi(WzTC$G!lM@o! z>}t=8c3OqbTfwm2sd}eX$AKTi+T5bNFWX|PJYp!6b&c~P@C3{s2Yzx3tD2>n`ea%z z7TLXRfZjHp1wb+^Puxg!*;E#}q`SL2Z(RXFxcwArfEC{#6d3qm*6;rIVxrtPSWDmI zVWruR?K9!!<>f0~-x3OT;upgD$}%#W&U0p!pBfrSIXF0mf1moWCjV5`P80d+%0;8N zWXI=0P2GMml*Ivp_5S1OFdTuCCdd1YB z+IdejkON?k_9w~aElEunH;M4xR|-qi-)BCjp3PQRxUrF{(^d0El44@nGd!i5p&?Qw zG}}-eIZLf-!^VghTSkh0^LjVFLl#CxR1y-B!Y^OCiqs0|O5o3@^546k@!}LkuY%kT z8JQU6hPp6>zNzcwb?HhIqERL551oabM71^42#l|fJl2E&KLlkpANG(vWng%&shKqM zmREMWUAU%*BC}a>zTT*zus4KX4ANY;q~N}rFvf2+>Ue#ETT zfDba~sg$FHL<9f=jyihqRl%ON&3VxM?oVCM*0UD}*X>%+oD$y%A8@Nh1fI5gEhc3@DtHQF?) zJhJK(qnC9~Z{ynEmd7UhVq+x@`(6E}~$dbmW(Mh`7X&#Kt+$(g_fq4a+*~DK1)8aQCaz z($Jh5V`WG{ClE5(#lxbij}*4jT%I=jO5~FN*+FTut&LSr`c}M2S&Cqu{p6>UE1cMG z>|hs}PYz}qF9b~TANT9=@X0NF5#Ktcr7>OlASnBJ1%VP^?}!Lg66^7lQNG_VJ#WKg zUV}v3`gl@gMpfm{kHnj+wO!NZI*e~8*w|XJ(f0Mi(`P6<1HCfWxV&hn+QsNw^G<#U ztQJzyFXLRYf*{|T4}NaaYu$UY>`{!AJb}Xi;DF5IE@bGuLYLF&x*i{-Y~I^X3djAO z*ti?{TlzTv+AMLu$_@Xg;%m(*Vf1I;1TfF>PO-pNCT|hOtoOYcs z&MWM*J~tNbZj?1LH$ei~^+Upywx<`3vwwpH`?3wPliFF{200^<*Q(f#sf*kKk(eSs z>1QQ?4#E|7GOd+C4(Wa;zitE)a$#xhBTgE0H?}@kG%bdfu5Mk;jfUr&dv1>$VTb>7 zc1$0C5|p(ZJT5!&fg6AEK20f(5?s*(IrJxfH@F)Ou0yb$gApgXWN)ynYU7>rM6PKo z_YS0>OB}x|+zkc0Bfj)CfKj?qW>@XOE_3CClrwKI0Jc&O|2^Hm0P0Yg#01}Y;n*pD zhWBCW16fbta6vuWhXJ+2yLc2?a!c=zgUpvi|d;| zVfEGh(CB8@-Y>p^RHC@LV3S>czKX&yWY|~qJTr@HZkMECZb{5Ip1_TzFRAbhfU&xf6CWr%6wU#ouvk9Nj-R z(~g^+*iICr@_R^XA#~FfZoYqQ+dA*{U*zO#T|pd=G^K*$ZDZ4Zug#^UC5Zo*FU+;< zNd6}$&UB9-f6C28;Njr`wY*-7vaW7=!i2MN<*%1|deI+05^tV*mM4~&$=Qs-;Kx8( z4J|hv@+WF)i?4zQNBO&TZig-+WAN3#Y}iR(4BJ?{r0H%u@V`OD5`XdHMeF>1cy$_% zC91TZI36Qo%%|!J%nYT-(=@lm?*>Y{_NN5$;aOS+f6Lb*MqS7d0N;Xovl`2?tYzlX zItf`loAs04PAJIQHZ0v%4rRcJl}u0%W_O01*RFJgr*J~cHr5rg#?R1&AH8(nn;V}E z6rE?!S+Lc!|N8mUNQAhl#;|4eumyL;48@d=dc<6CUa`UV{M;b`6BP4kFTYh6sm<&y zV^IoCZJD#Muz(yK(EdhDT|Hr3gZgbw(qruuOIg?z#_cqjqVi?$^f^)w>II$z2vJ1J z7}D*3q6b4LPM)+fIEc0Ll|VHrvNkiyts*a2#& zi;Dp&>}+dmT7Y9UL*du!US%~NQmYD<@2uUOj42xrXFq@S%><>aaZf<#pbZ`d5h(p` z9O>xj7DuG1PNjIlW)DohI>F$$u{5T*m_McxBp?7zMwT=XIVYgN7>6NB>w)mIXCyPV z_Px=3^I>z1ZYzLTk&u-|A!L5#Z#z>%{p3jx*~Fu_o$=kC>qD(W0na!Hjk!V$6;er- zq~Ptn!|?m8S7r|n4*>~NT^m8WjYEm+Xjev-1rWjKn)$%KF!tHzM`^oKx$NE!rD6bW zysCAyZmm6}!;KuZ^S-bTDͽ{~1#7ic;9Q-VcTM4RjTewx*wRYkZXqdpqk_uPce z-SLxSB5{uWAda__GHW0ScYHUSwAvTmtA*3H3SzuVCwt509dh z6s0En3||Zv(Dl+j%0BkkGg2L!wxD4+SU`?7_a)f$LY4Qt(Uw=^I&vkVws(tlVBwdE zQDG1d_NM};cXc3vumvw!l9T$r+(y)qVGuitM6LJ4%ifWO=a!5b7Z1Lf=*tgYZ>s3l4efdiO}4YugU=kgMF#AdNVT#6LyY!a zG+0%uQ~2 zGZlrMhN0b~VN)NUHr<>znv`XD0(MVbUHuU?bpVonSlBM3NKMhnO>t<;K?un!_fB+h zzY`LuIx{w*;1;C154j~52&iLgIKHc~b+fbzht&BFX+nbjT*b6(XUG3j; z_&pkws@_Hpy#HLc^K|}plW9r&#q6WnrK>?_E~C$gVVe264XJhbh9_Ans5E{fhd620 z_7JA?9bZ> zcee}W!Pf7PFfN|WhEj9ou&jo5p{oySUuGU~I~EoF3Q7CMme^<|LC3j=k&TXiVh8r! zB_&P6D}bA9z^z~Bd*sY=Mwr;}(8scyW8}NA>oWTLj0;Mg)(ibQUI#Jvf=q8!?z%9|% zOcuvev}>*9(iSHU&&$7vgttK`7-KSC4#m`?7eYK$7X)!ITG6OLOI3|ikf7pUwG5`eQN0Oh_l5(u#PGFP7tyaiW#oC1E$)xwfoa& z*h7+AIk>8<@u~kp6{*fIv4Oh@F3zTgaC0W(rm#xoAwcMQ0bR&}n*mRB1x(3VGdPv% zG}WN~!ohh{ImAL=HEFjAj#7NMjRg+({%e;x7?yt@-O`s`3qg}dI>4oP@cEH=85%a661-bB4- zLZ!UTqB!N&=2LnT5QjRoi#amz76lEXXLH=7w)&`O-5mkpsj+zadx1MXN1xZO=L@;D z@rc)Q#Y0vqm)Jm!Mvv~JD-@MYQ3bS z#F6jJbp`IsXMdgBed9I0SKhN;JHJ;))R8ZFYRb#4{gtT|yYUDu*t-3>XB7E}U8#2n z$yO&G&bS@23aigEKb;-(rg_Si^Wcou>3xaK7@^xcK+)GLR8v2Glg$)`YZeoVfV9*! zLhCTUiPOQOBaapl!8BJ>!@~bE;z@~O0%s}6My>nw;I-r615g6k`JCBQ3^@mW$jkkO zxpQ8j2DGmE5GS|J^VeJbw^z*#9T}}*-dLft!XKP0`gFvrjbH$N%OMd2o$NwT-;I_g zLanN0WGR<M9QPW&35W@txW>Z{?uk z0>EkGY_IHG^G#t7{SrFBoP{!#%)RhcHbhZ^j>~J80rZiw)xSIWJ&nUbtS;9yGqONT z7XXTK`>6)6%-d--w?lc=2k2CXpl{Jj?H0T>aIF1!1dz7$Jss)9ktGENkZjvhZ^vIa zHVcOo#Yz)sLmM#}{IuHjkJqGCRDJRHZRZ$tBV(esomY1jpT~Yq^kB^l*~+?vHa7d_ zE~5=qhRgV(J3myNF`)wU;G$jSBd=rb%-rQyyaK@tCIc0h7a-fjWJ;`!#9zFb;p?dW z_%wcIvLmW#Zg1_li3;%@!FQy>02c z)vL7b*Gvm0)k`zYNQb-g?>eg6{2?Y$n-!WOrcYl4zLQ{3V@(f}UiBj0%teJUQ${~@ z0N+ka?fT(h@OCe#YhI)|OLnntgRz6-g|T^hY^Wc2&4k5!d$SpeC6 z_!uDKS0;ob8yTQf{AiME;Y`>E48_Gq!h!EjAnEQa^2uK3tpO`Pj^}p_@P8C2y z#Y||(kaDXyK~7h4%r8tAPz$vcbTbCfq@&uw_$e3()C_iySo!_9dtzie4?cYz-b(N& z^LDFaqENYaR82<$AymY`QjG(v*V4kKBL-<;*7HcRo4~@hT3+4j5jQ__&RE>6*;GLa z9yW2|te4y4J-H1gP~mj|MwU6?4zy~QK7~>~fOsGE)AQfo95?F)+a1267csC>V=#Bq zNwa+_q`pUZBudFFURf%caDFa9MeHBTAU+rJn@bA)_EIJACZUcggUv_Z=OO4^>$lp9 zIxIq91rjkj;w$D^mxu)E@4x0?L6zbeIVg~b%BriXmc=adz=ZvSMR3han@aNtE=37x z?|Y4wQen8H0s+jZ#MGdQm-~RQE_0SxKCsH3*>z>su0qa{iteZ|?5uEHk+LUL&XobR z7I9)+kP3tBN3V&;km=;!9{eE-Pclx&Cs>s z$U55T%)FQ7>cqFh&KoSdm??8kXA@IBw8}2mt;fAS+wI)Q@_VmQqUlj-L6h})Z0kcD zc}&8pyRP8z3y7`t+Q57D#$fNeJEQcnBBDG6P&~fNlXd_Pa{lf>e#ukSTcLpDOeGfQ za{|f*w9J`e0}b@W4*H69Tc35m&t0n)TWIwYg;6(+`z>T!TQ`fir%6&d&jGjq7^6oc zSrHM!&BL>FEqv`z{4?Y>lrf0<`ac2cM~- zX|%tZx{0l99?4n{nyae`B8k|f*JJ*8v3P(LyNpUygO)kV zY1h!eHCMapZH#(WN9?xR#gO>|Dil#tstP=`-62o~c;O%2ePaR_^&z1NcT-vPmK*R) zq2L`qpjpUjwA+fnJn*IRKlz)@V!cj`_K%z*@M=Bg$k3nTyo&(mPI+bHgE64ukd5EH z)+?dI7RXYHdK;Gy@(B4DlgLV@oMm6Z7=M?M; zI6Lr%VE*hXXZ?-iVB9B|n!O3pJaO}Ek(&unNhn0`i&pi!)_^4H4@C~L%0d`qsK$X$& z3UheNnLX`?K9lm1m_d~VPFy_Ts)Wx^e*1vdibU~9{Vy9{buBGgpuX^I=A7KV5~wNS z?y`VZB`jTNG~T!NTZtPw)(=N6=r|LDiT#;EeaxcT&~3?ZhgFDK7Y!3t0+hm_nC|#k zWdhz_fVqRPbm>ZueF|d_Sq3~Nj0mgZOo&*38;$oiCW-GK&w<)b zRltF!PhNt?7KfexBT%MtH%*k)BoX2hXf@c{>VPMtsJRuQ4FAAchAMND_t0)N>=S#C z-2LU!hK9F|+7{@tW%1c(_Wp)x3>+Of%IcO;B_t)OIXG0di?J^WIG}>R;o&)+u#gy! z#s!r4!9hTXT6y_8ai+}83r+r|y(Mnm9jK%5@e@IFOhi7O|S1)otZ+!E)XnZ|HR%5iQQN)>G!aa&tk(XBXKbhx)jcsb zlQi-yLrI-daBDJhLG4wbG5yalO*`336;QBu14aN9x@?>yU>nBe{xa9X6qf0!bsjjH&vU7pc8Yq^*?f`%(6!OHS zvbmP3Bg8X(t3wZxkJO8uY!TZq@m%h253f>rtSiiZkk&`gt5(0i&e0+lhRcwmCC@1i zqWF%8710IYQ=QGWM@RJ-&nY0(Mr)dFRdo7@k|_vE2e;#SVC2@pVX`PP6x5t9+x@+m zoZ*^JVrwfxm2zKDoJ-eMS9L5o({R{*I3Rtz_ma?((`Y(ZK_M-HLARu|_RT^-r=9p2 zl3Yw1^{DnG;Ds-k?b$>IW|(x*xPsnv4Y%|ADUkL=Qw9JIL5dFJxtRaa9)q zQq2SBOZFlV2afAk0qV`Z9|S_(?inQ~`8S4w@n=?LFnKOAh8)1u_VW`VT>= zF&1aY9drT^H;vBz#Q1A)_6gYQVmggrjI~fT;qb+a@~eL?rAt(?aie(77O}1wy+Uy z(+ty)Opc=3Hcp@_72tsk={sQuS{X-7pmzvJB6h$P{nAo^8$Meza9!mGnAiv)BHxQc z`klM4#327-_kxo7f~7AZ-sUaubYWte8a=N?2mYW; zkCM)S)sIhGrzJlCIias|&d4JM5k%QTj*l)|bbtX%NKO`~GLlf~$EhVbOYBvO(6sZI za7@sm=uNs`M}Z=yMmg|j5Mxt@Am_j#iX-p13c{p0+VxgkmNo)=dd?I{_?gKIYeDn2*gau-b-e zvu&J3Hhy|{w>)Fle3^SeY!^266X;Xk10WOZL4zX&4=(4tq*nplqtE*P&K~K#!#)B5 zs-m_KA4xu@Z42KVN5$5Mwq|!W8Xz?^Xh-xX;&?N=+R$5ebShG`j0Z!B=Y)Rg^rN8Z z6;_y~02nHV4hvm=!zzc;PhU|0260Mr*HYIFnAB{1YC1W=X9NhNij^6kj_Tn>z>3Ph zO*70gQ^IydrgK^GGo_(H2?`E*W28y?#4Ha53Mfr{N=BlP?Q{GjSO%@A4y&YA%BdzX z*cb6Hcca2Cd$on#I5>ga)D=(@s$1c9yzr{goSzY}t6BNc8SIS$ zE=xuV2D&m*qehDQFHUz1AQ14(FcT@dGdqk7#nWMoptS{l-r%IBps&!Y5Gt&srRe(^ z%xqiS#jsrd+EUxz+-jDbcrw13EfQF>xntAWR(Mn0N$9PaK0>xFi|4P{l?>jlXD<0l z37i>9^q5JM?d_wqu%aONHyBqLN;#1cQ2@4OE}IDogIGgz1P4ZTKgzqE`d zGf*X_Dl1`CV1k+bkw0F7N$!XRwkSX9A)sQ8mr*)Sx8uz#YAeP|=?(Ndpai(;~mA&&rMg(LNjQ3>8!IXVl)QEJ2Ti? z7}|&y@R6bDpW2DzQ+IexvaH@qi;10+Eni&ca|na}w&ZfEnyIBILs8xYD|$}NO_MAt z{nN{QP|GTau))U<4YWU$u!* ztLtg&0Dk2Fr`G)Fp=4fREqAzTa?+&czd@4yz=Tz5yUx=bwfLLuu<<>hHE^t3S5MJJ zibg;{ctpdDU+Rhkp{Jqka5xXNnYX!2@rO`=#sjPpExVuKhS<{b zHXm5zw}P$5N0L+d(FbEsltV zTULLU)>L()bjc_c0b~DdEXYGJqC0t#m7jxb3b7U6u6DuT*Ha74Und;r;f|>B6NUif zA_)LYQ>{yZ0}Hj?@KEDi2F6wUI~qwQweY{+C~}@dy|+s2E_3OC&!U#0g5*#WKY#9t zPL3TQeRq(i)Hts}Da@e#i$H_^rHadg`@4PU-}o1SO8^3JjgX4gbv?idD_!?Lt3D-E z33Yzv)ndf zL>aYxij^l9SJ?d8dJXO#>5^gNJPGoGWn0i^!lxSBLYyRWFebqouPX|gO&HFnXq^QL zup#>}n%*AHU1`Nt8$ky9p9u#Z1f3mTTCN_n>!s3<%kGs5thaHp;R%P*g3;*B&Mx+$ zlR7UCjPS{#?Q=sK?Z5Xs~3Bj1?4Y0 za&V!8muGyk%{YK)|9%nsk<&NV;m4>&cZ_IaJqDDBl2N)uCVn5#n#e-EQhahio!R;+ zh>g!6KR2Vn-D#4`%17M@8KVaX1VHD4pp0im`=xuKE`M%MwPwq&$5iFQukX0qxn-!rzC;=JeJ6gR3#0TwPy}PqD^kwTQsDfoCWQn9`tG9w zHoofL+v|gNwN6i4DDs3E4{O@mAW;e=5g^|=u4oX!TU@8(CsXWlcedQh=m8NK;6(Z~ zc13_-aN*#bjgMz*d!1Q^s_)YUX2MCK1PY)~r0B5P!&a$3av3xF*C@t+e@{;2dFUG2 zNuT_UW4OQkU_gkTel6$ARxTPLPzckyGULfCN?IxC$_ z3@Coa(W;XS+y)^1ZVr7wM3TpLOxK`~2z_ccfgkC`T?h~Kr>o}*OCd@+;efyb@&VK0 zST~p3>*I7sgAR~gTKPDbFfOkn5B1ug@31hoZ>4&2^UOE^+00w5A52#Q=l%)7FyzAm zghKn?Rq*}dM%h^CV)F7#;6C-5s&UTM5NcGm{1kp<3g|MLBkPVJ_IHG_@EvfF(o&Ww zHT5S>KbpXqT!;WQfQE(!Olx1(a%B}o%7gk25#t3Y*w=rgg#v|~()MzASi{6bPz9oV zyaEr+HW}E0t@#93vrIR9b=3qW>VRzlDln0YMR@Onb|m-9wPeTB2`za&44R39bBvc= zlM`m#h9TG_){^61K+0Co2b>1%jVJ6f%WK)C!ckQ@G44 z{O)~$1}+!%t_3avUq}(T5p?eR6y)RnZ1Ov|uB}ZB;;&Q?50o<^oeO+oIFSWD0|wf@ z1qV)lQ)pc>%8Vm@d*~@C`B3C~hYQH-->mkW#LE|7V${;kxAO9TnFKAcEnw z{UP3*htf0rX0ZOo??Xyb(8O;(ad`UFv?0VuM5QnKtt4M#0nLphTE2W-z&r65H!$=& z0O)NTW^8K>H-2W+ZRMvq+@36hWx2jC#bj6)ZZ4_>^ z0kgBZx=ufM+=1-rS!G5T-Pqig;cRXCxZDx7o7T_`5KgqgG?%0DY#f8(GOC$;kzbd~ z9{z&V**`0aUkzw6>PBq>qD`26G^%d8W#_bWK)8!c+Yc*qIS6SFTtiK zeHIWymA|e;w4VGD+dxb+@)fB-KeJ|-=WlBD8+!$j$g#n2A&1jNz;KD>j35iw0gDC@ zLegy75emhY8)f5p4C`UN_cm~=TnzUHO7lMWv&Hdf>k-*#6JgtEnIeTH#F)nL>QcQY z1{1#eL7)lj+DM^Y+Oxv!PGitXDG-aa(_W<9>wyyh2UjtzU9pp7eE=G=BXx^S9CrY63@xA>S`LbhQdAnDPJ`NcwkoEZdN3?ZaBd8gW! z;dEV2wKFHCB-yVjJDNFWeaadls?p;L1ws5iikP3B4Xa;O-qySK)Yh7xjUDG-Rg#FH zU1zT!@0^n(9;JT((*uebVaCe~CkJp%$uj)y3uo;037vC7eW3|~z;2*QZjef_C-3su z1*RTt_bKj=Z}DaIw$!X+n@IfmBe`_|P^&yj^-Q0*fhz|5`G-7SrRja8H-+f=%W2U9 zlQcQ;{@v;LppdOe>+d|O7>i>o7Z!o?4Q;r^B0{dm5tGIFZq?km5uULy*el9^w| z(ckEPNXSJtFt{J&94=a@Q|9sL7Zd0aTWcK?Sjh7{me)<$L)oJf`pbf z0(0pkFRrf4lPYJ07t#OBpugNksz2YB1KDMV#ld!Lom`g-uxhNvyDvry!tyDB!90IZ z*Qd!LNER@2EPOE9<-8>1@k4|S1}CfCQuooh>9svyb3ZHE>fgW3+lT=3v)Vg8t8z}=*j)yD6%Ugyw&fBABwRZeGOZ^glUVqg6( z2Xo!V>$54JpmKZ4F$%z6P^mfDcgMHbkS`ZSD`gdl%S!TuF8O@;^J}FDTHJtgrPNfI zFtASMU+p(^V>8tQnbU~{J zR=(=bTLOfgKl>h?nzDoI3o9}vV`*}G4CY&%unr&rMMFhmg}@-WUA4y>=o6*Vcp6YH zGJOO*A$X_pt%}UFBE=uxv5A6D%1?*=E|!phZjyY#`xrx8Tl+&&Qix>&!1EQeGt+_=XR#wUPsaQ-_9@Uhw7d#>#k++N+8;aGAbWmiFoa zGMqc5II=M@H9r-PC_SyMnUa`aKLAh&OXLEQl9B@P2Rg^0x}9$WFn#!7rZ8D&2u3_` zGQ=6$N6TpEJHXS^WWHM!K4ELQc#xNu_mRu|J@z`}4L9jwujn04X=y1i_ay?!rNnCI zcvENED>|$b3PD#0gtdM(PD#{B?;1!(b797ZOLmcI0X`sakBp3jYg_ry0GxDf0r0_4 z;Qn+8j;U#&_sE7$Ou#`pIy;5$W-Yis7Z-2;@ij=6YPs3)rp;uH`~Aay_z%V8QA)IF zadGjR+L>l;v%jaszk3(6M5~LG3f}#)In(xtLux27-`g&7Q#UYJFx_u%uB+o$`8`4L zU;E^|KPk5Ua)OjMA2R@XGmag4_m5x6MlZ~YfwYpNAAat1r>U-v7%=;Gq9wqI1{D76 zj?2I}7{eFJqI=@m%={-UlGzn)ZaY7|M7Oyj$Xik+9TV*c|=l1POc+gF|ERFUw_Hd$45BR`$!hV zw#6PY`vlnCm(Ww~RB{GJ6(j_NHxtDgK-1e3MZ)zVBLgF6B#cF;Ci}}5bS$9*NC*}c zs|ydXN;c$%WNbEZ4%~L2v2{sP`2?*EB(F4|&*Nd5*Wce=gS5L6&4`V2Dg%T)lP#Cj z?=$#=KR$>53Y20Z$LNVyN*JNcmR43)>2I}OSbouDVq|3e@ZrOw@2eP@OH96Ls$?}K zb-L2dAqWpY*Z&I1ek7cls^e{Cl%RUqVLoxHr>A58JZJ<)p80IIHV%CeKi4Q@Lx$>Q z{YE$NeU8l#V{N3aXe*3KRTMIY0)lwOa&WZ!es}0<8KvwX)D8Fy4vX#-Fu3T$ZzO@D z3RHGCpck7oSrh#QRLy{~jRJ`-#aen?7_p&ioZTs|&j8p3o|X$>W@w@TuYoSsB+}87 zbo`hARt~kg=lpv^-AfK2rhNd0t?@)~T86fEI32U$HO2x!!?Lc(&j2JTMnav*eQpYX z3~;0keO@s3z=4KcEEE*r$XHwlu${#()2$11LV27x|0YU5+X^RIZM`w!ON?$^U^sMlWxGnx32 zjU+Y(oL2Z;(4z)V#Epq}oX{1IQw@jAL%1{48x@3Fl^BO^#8^=KgcnNJ8NHMF1wzg^ zt?t+7xi%n?ZR0>AqHD$q(gD;^TMOc+G3b_clo&T|X@T;@ros$(|EEpYW0QUMtH8_# z)94pfKI$Nj&?#$7rw_%6wE_{}ml{+iF<-uS1AiA#G5ytv1mFLz$3sJ-0(1pz|FnZr zd6a6Rfk`uIJIms3DRTXTQB zSgZflJ$huBt;0;%bULY12h5<3^Bx<9K#dRci-BoaVLA4MA@T_gAiU#Pb!MuqiR_wB zH6?(#>vJS)2dGmVmb*}Fetmn`dOf#)0Q^rY{q$K0-%!E4_I*Ao76Xi<)791-K;@5s zh=>ZM@;-QevrN?520nD`#Nc}~Tj!{%`3|_`Pw6P$QVDxtpNVW%x;OB#@z02BtSoQ3!K@UG2=_dYV1x551YLvV5x!z9yq#@@wE0 z=8d|$y*~VHa8C++Ou|=!nk5>`+8L&QFLVBbWf@pkdpydBQhu1Fi}*D3+BcXE5CT`* z#LAGqB?ga(qv#l0=~_B6A3Wk z&Oc28x6U5eqkw(6LFXeDDYwiva43b{yw9zi6}`W4f*GDb(GpLu+yfHw>=sXsbWBg8 zmOg_iEZC|mkBXIl`4Tkti#PlZe0q41N@iCF(5QsOxN;og)oi^JhufYmL*yfH9}a|I zs~>3m-?91uLZ2QS4bQ-TY6Wl9mdJepTsg9I|IKVxr3PS30?b`hFomn8Yy8YW;rmZ> zcPuFgS#+xZ(`=Uc0m2t9M=%+nz-G&y!8i~Mn80{E3IO<6Sai1hhWg3QjsK11HzPpM zq*zNySOHoqt}plNmb*j0E-+}rFaG5^P6i-f1{YXa=sp2UGRdOEDgij@|L-eH=!PoM z!BdvVNf-h2-Z$X>g%L*f}r}UjO@E;IhUC zg)Hzl*UYh>4_;}|#06@>-vX(=q>Bp=Y@q~uLiyaMf7@5J*wDa0CmLIm zKgh`Vj*gD=j7c(%e~#D=d^@CMWH6hHLJH?YzBy;Sw@yyYD$KD)hhV3;X<83%%l&Sd zic3lk_Zs)lE`@<-C5&e~^M{!esIfr*5v(l$#`*FwlotaN^Gy3Spjv>JwZe5*8wNRL zWo7@aP;fnDoP__+7a71btNdlXcKUSqhZ&brmdM-+-`qD-w0xxu)X46@8T(cWyeA56 z9l>bVy0Q>`pFO+(#q2!U*|Fi~=03SlG&VAVRQ<3Lb=@JJ_r2a#`fcYm@UQj$-_IT_ zV^AO+a0kliv#lR!sHngs?+ARHUN@J3B#8>8@+EG)zuiCV!c#seLI=|*?teZNKADdSPlT>_D&K1LZoK+$vrB!+2A(e{9(28StBD1ip8_q1L;vIC z#ogM4q(*I#lHy|260P!{2`z(Yl^iKU;31Kbm4z*ya4_e#(61*v;l5YD@rE-6{5=5M zeAlCxh&BDKWiUBD9@HI4L`z49Ko}{xw|$YT*XX)5sbeo`VnWB-ut_tR%7aF)l->pe zJO_;nx0nWgw>&U#T3=H1%E0&X@wdv#Ptf0vKX{;zgoMa-YHWag4DF@9{`BUw-7Az4PPgNLlLdR?W$^##TJig7G zW(c}17nhX10H!%`6l{EaIyDTRv^l$8VAYlfa0Z=>7oCjHu8Tg)JMef&)L^f;2sL!p zi<*rMi>>M40j1B03dmmldK6hao+lQtM`j0Xw1CRI0RA;J$OR~wRtr;?eE{|Jl!c`` z{h3n`I}!xoc+tDV7z`v3PiSjSiQ)KXRI)+BIxFsV~XVF8i<{>N(`PGX)2!TaA+!xE*wf<`Z9D zHvi^#w!aWVz@)hdB8ilzXT$7-3RpH^{}XKKl)|#I9-t9pa??;Bu&Z4G7W5#goc1cq zvDLEoGz3IM@czBjE+7< z^b^Xduf|A|WqOgI1fgYM0QT_0N!Zhbx!j?xcRZY&oUna^i1csO;rBER)zW`wNe3xC zsf2D%#{Mke0p68jrewT*@ixsWNeYy+_6~p7+WZOxg<6Nv*F_MtdxKE$Djb$xpjdBu zT}|g_Hi41mzMf*v4mdg?5JQYKVhfc)Gt91WmlqZpU_rO6_0F@tWYq~374=|TO?e3n zJu%?Qo}D;E0|)x`>lav~Wb^PhES^DPM6RBK5E}w!GnqC^0eKY^%DZa;Dr}gg9$eMI z-Ss{#Gqb`M#^U$?TAXHh_JGA_`r{r?)j86>efzc!DnZ2pq=vw(S+|ktwOSUju=uUo z>EkmevzR9&x4<}WKJ*Q1vfLmBEM`K(!$Sb(*>m7go7GUQlBV=P7!o>0*Y~|NH8D4D zy#11&j|hVOM}9||8oN10*wFnau;Xv zfjCoR`x}1~{EMeA-V7BPEU#ZD4e<~K>og3lz~<9uFz2;&9Up%F{Q1MjkDF_$MMPek zJ_%`Qku!FU(PRTBBfraA-@~r%@#BZEt8;d)n$`RT?K0hAQ<;V!7a9Y zRnXU`gcZ6@iawFx+CV^i&o}Q5Uuizn14b|#0zySAZ7_^j0fTq7hZA>^KB;LB%+%h| zJozPO0S+*sV1Xw?p9{=S%uWw%Y;1p^yrdQsB;zt06a&~aN{Y4y45e@1IAI<<^kb1% zUyUBlyRTpXSZjE3utZr)nfc5K&?l0)5}j|qV-dINNXYll4H;o<1cs@#A& zf}t0vAz0$&e|veX%MT+t(w!!ppT2xi*ek}4?Qr<5MI)-NruL4A(9#aUw5jJxT)nmV5TD-wQ1&A2v&?r2KpSjlsc^FoI0Y?zkN^eZ>2WoM4lRj)1 phJvj+!AuxQ*D8v0`r{tnjVs|{9I`f8APoYMl~j@_d+{dle*irNTk`+_ literal 16321 zcmeIZXH*p3_chpniXb!wKtX~ch>|5|kRUQ&N!!ZbIN7``ifzBQb{l;pB*ATf$&sY;sbM)n6yB zPr1MTyjXv}rDXQ)(@V}DS7TsgFH0WSrE1QlYL^$}D2IHMV$B-WE*HO;JDxFWr5}<0 zCda5Ey%dd8Qjxj;PG>OWs%<#cTUrZS<@b!dF2BE6J!2bW2|L^8uik^puXS~Wj z#mdU6%Pyp#&%PvW#zeBQHOPkx-`_4>`N2!q8#eEKLWxhwZ(~_`cXfYVL&ISFFn>7A z5AW*#)0g7NF=7~u-k?9MUZ=vi443S&=`pACkm*gUHOqV5cH}63LTXs#Gw?C$#gQQO zgCbRV`4Di{REbwoi0c|pttI*rc;t~?NaBP=1*ND?mj}3dY_WAKmeB2fuu8gtA$@v@ zOV)(ouwQVjQ8%FA&XspT^bX@-M!V3Rn%(Xz*~YF zgGGj7N2fjox>XxF%R?h0tKq&U8D_o71!X;gPx0{KgOA#&GVHxqb+J>MKH16-2G{w( zYK(t#@}5w0ggemV0hMMk>dD2U8wz$5sCx+U#?`{w-9a^_+{{d=nwpw*(anr-(Vty$ zTzlDKr*iGoZi!~y@mZDwh}`mWb-qc50EALXp)CD%r+FNhKHq+M1j=RFd9S1AGpUNA zE5a^`FG*vA_vS!lMKFzrY;zFtz-&`Mh4YH)l+W?HttdMem)gOMZ)0KgFGACoFS$j0 zM)ch*w-c*AErDM*U}@*r2OM`|M>hv$7c0bPyM?YDywmS_baY%gLUFY}K=G zavHMB%LgO!esy+qblJUO?f=)(yFYf^z3yr~T5L>EYw!)vduOQ|wbgc;$D;3!$o}XH z72g>!SYjKEUqeGfx%v6ez}#-X7B=H+=l%1Ie=Xp+duje>v5hCvV%Yw0=*g0ilOui4 z&s2Qv>4I6W|Crz6->;|m?}cr`V52gbSJZ%98OY9a+ni=%VHx~%SMs_Gh<#M-cm1bt zE%`JW1_lNaB&oq*cPMVrpbMJ44u8)*F}x1*%e*l_g~bfzRd^q}%Kc0h@uZit9?tI{ zF3@F=i@LAybKytS9#~J31KCPiwzdU50?Smklhs=}Bb36gi@}4Zu|CFu`I!*yu1{30 zj+v*}ZfUEiM1+Kd&{Gqx{D@-A13$E)q9QVLImNf3dqnVft&G4K217kWh#S^8W@#4c zjjimoh0_*^-?`e!0E3C&bPxldQ~8PG!@lBN{{Q~vouRc$Fuy3W_0c?y+q}%m*VHT7 zCAIWj)7p}Gf3BG|`RDZEe7z$rw2ui}Ty;*ZlYjW|A))#Om-cNJrty-IHAIs?7&XWD zfA4g(Rzc@tB%g>v9a>I{fJ$cWUB0Fhc=gOJsr_re9ym#UTATDk)cYS;0J7h^VQO2gcDiI`HKB ztn6i`f1JhtRS+qhTGmomx0w4DD0s9GH3XJmlGpYRooa_PCMG5mJAM#F=@1$lZc{F? z^78V7wQlx{OH0Vi%*?6fO977+;<@E&UDtoQFDGR`Wv^GSb=w>cA!FWMO0dUd#TrD8 zbl$xJgE`AQBg0CPh-4m2dn&cIwlY0T{b z+sf{freEv2(u7a@A$JZ2n|=2M*ZbRB0Xvob9A^ zZXQ^#k5`09(UoxHf%RmDPOtv;%fx$s%$$XLQrJg^J8&fD|_;+xj_iU`0+Hk$1b8mEs<-i{g zKYr?MH8L+x4V>ucQ^?xNf5W8A9omKSa>t1_?PE#(A3MGi)!(h~0?F*TACBXZ2&anQNu}U2d%(cZ`rQns!aQE0<;G%|jkl;FFDIvxN|z%PQ=|qGq8T4C zOpsJ9u)$-`%66tfKeF7smqzYqJdbs`%c`c_&rG=}Zujk%az9UwcJ^k@PiH)SH{tJ1 zdv03pqWj0|J*y1d7s-+wJ08Z1`T7V?<6pfA_E8MjPHZD-y(qTWr_;OK1>?nWOw@i^ zt)%FQD*KVLUeSqPCF$vOWMpJ=k(WqlCP~o-MOwbtft2#sTPC*S<#M`Jb{ckeg-cy= z8RsXx=L=MB+VZJ%qohk8L0ax$4!B=&8J2!SEwxCmMwMBs@B{W}Y-|h#Qh;->$U%#v zz#Ze0=LR6pTV2C|%?fs(f(;qWIqWzMubXs1Ngd=3%OjZ~;$&PL0}w5!wY ze7T(3&0}Z9++c58vK@e6xzp`wo;i06IV1A6JDVd5VF4VzH z;#etW6CjT7=lb%PGd>K*juajoy*`gnEv5k>Y5Wn_<^-~^VBW@e6c?bRb$;u?t$3kR ziK8<93EJUy5Kz!xb8ZA#Y`e8Fv$A%tAz;+$68{*arC*8PB>i{%T+p+J#YhCgrE)FW z4In@S|Lj!A2U|^(z)vp+>&<;&U|e`4foZCydV+H84I%YA)l|CgHPdoIwFOOzm!0p( zpRuqndoWULR9+Ig+vop)?9T)TIn_s9cGC?=x{4P6{P(OD8jK~bCb2;Gc?%8V&wSD_ zx{l)VgCB>oU9rl_&i=9J$V>`fHFEh_m=bO7I^dU~oQ5aMUu%Q2U}s%?157A^c{Z!x zq%E=Q<3RYGxl!E9EwujsdLg+1yIy$5H+@69q0n+PsntyXMexNySz+k1cJi;IW2TSq zUJoav_Io&rd+W9k>jNnh5ZY0Jb2BX_kME90eY$%fOP{Wgzzabf!L!489;2@?@A=y^ zeJ&&V+2LYm{MQs(V<+)6A<9pTe7e$2)?s418(*@7@SY1wn2{s=3?cWkzFwoRQL^Eqy z{hnBeN%$Dk|#ffr1zr^gqMc0p4 z2(@fS^Fg9=Eah@(&KGWPnAwm=JiObC=Y4*5N*LTsDdcJs$`PCS{syBJ$Q#&Sq3j>* zF2V2)%jyJ`4Tk6jo9BMd4Xw649lmJ7^5BDFsrM|G*LNtq0ssWEimIupX=qXX$#!RC z=GJ`s?I|MIB@WNSk+o~M+6iQcx7UCCCKO?0lxf5c747C3p31*y`_M0aQ$Mq->)HBP znM_gR8LF^uTVCI(nAOz;sbSTVmh5u4`D)tJ|RFZlk#Onz?yLcF#A-i5RLu4=uMl&Vqf zteFNvbtVRB!eB`mk>s3batk6bRa}2@`fE2mHfom3jhb*ZG&Fcbc+I+QO}S3kg8ZVF zJ<|x%OQ1xWVoLDg#L-#1$IGdw@|!CWor|jcRGKcfNlS{2${C8cOk8(9wH%H~$@uKe z`sSu@&#KTKmU>a3oX!@53}^lVmO+NuDiXNfKOz~h-S$2i33e#CSVNzh6Q4#XZ|d6B zNS_}!p64;9c&Vx(o~``mNz_h@jgEfE$EQUT-oCcvY_U-gUaosl#Ib$yZDp(CsTqUf zM%7Y=%vb|a_lJ3OMAUJ&tmaCUo2yT%H1ja?y?XP3Yt10*q1<~+32qxddl_hV`04nz zeO+4ZW`nNNQdj@ph~doc;b_T=3ZGMtk2E4WS8lScarY&8tV)Epzc@P3q{vsXvI-{; zuhFy9pw53(uw&v)GJ+bXzSNtk+ARIv z%@#R=%e!IZ4SOpCGK|Tu)2H2+slAUDV=+^;RsG$MiMkAa5Zz*ptK?-!csYK}=#c54 zP5Ropt%9{z;vCB=rzZoK5xrtbm>sA z#!(OBf(kzAjdsGbIfVPB?5dJ|&)h|@=nU-Xrf(6zyap~VE|`&`6of(o;^Gx@bjuAT zZWINq@BZ++uMe*~9uES@ZFP2X1Z6imHvAT{D~QB`JH95N^N%Ixis70gXzX)$kVDat zZ$U&VW+s0oKx-{EOG=R2hf^y*oZw4;8{CN?r_Uc=Y((g%527Ld$@6K%>A}ZubH%0J z22nZ}V74Ihz#Venu-ZHSIS)+_Yk!rWHz-cWTkF5!9D}00JT$}pzg~c(Wb{Z==WQGGajFD9ON&)#A3v77n1sps zt3>|mbCF z9PKwl`?FPT@C(}1WP+%!4h_<^P7GNwsGI>FVU-Y}g42pR<8#o04_h#QeaInn)yU<7 zAnNUe<@f*;BZ_EF*iRjru6Ls>a~Z_^o_mvsw$FaU+;WtO)vgcu)(`6Vp>(p<==67W z(?p$xJ(bNLjYj=p%o!4YpP&hX>Co#Bc(1$pTf((ifo`+ve)pbu9@2%VWsQ`o#eA{zec1n1e)AWdw^!@j(3?`OI zsZx;ABfmb+2pjQB?1U=UtgI~QJrPDKK3So&8LsF&g_m3~sW~y<_@Wos0~ITz?lrmGTs!K4 z#_+S9>?1S20!cG!Sk!lF9FCx=5kvY+iEx1Ei;et~JunZ6sRh;D-Q7F7x(3Ztyb)E? z9#0t<7zCHTytv*^`qi}yc?-(@2UCtN0|k0z-Ua|1*u1i3*5opqd=n#7A`k%Gk-pFO zcwz>Vo1OeK|9P47X8l3Ox@*;;hoqz=T|CaH#LlPuyrPjFZ@=#zU@%s!26ft!K}7u^8iWx#$;m62 zGSPktquKUstd?R(@h%KON;WE+2v}8ZWmboD1jx&&Bs9M(A>wf)`hCrn1eeO>AfSwh zWETo5_;9K|0ES5k1IsN3?z8Hn)blh8el~a?e`pXkVlI%}?(=7}TW3G5TM^JF4zW-S z31vtmD7m*rbAi8QgKzdx9rtv}i}tiDSqMy`Q%`>|tthcMU+A{^X;*-0PSk%>*raU`;0vD?k96SbrbYh zP@dWyu=KzlX=xa^D??c(;Yj}@jR5!3d077j(|i18ywgzjhEMb&C%>C1d8|HH+Ki=N zyY~cLe=t1&AtLZIv?YV#U?u4f&8>cpiD4oobUCCFVq#|IswJo#jP`+Y>UedHY;=>= z5$8|mmB8~f6-J^*g|DVQVPcq=NO%KZ&KQV#Z~LZn&dX`+&2^-qDiyV!QD#R*qT#Ov zcH?;*YxIx>BD+_3so>0=vHiQ01w|9XPCB&~C%OMg)*-pJuKi=Z6Ml(A`YtQ(&^Kx{ zS($na>;*jS9q>!sKW3*G-8z6ipW?Qb4{bL&wMVSe}0If^{HAdu(&J308NCDZxB&D{;aE|m0eoO2`cN3`K>QgR1;{c z#`?0I0P<)xeyZUnj1IJMlXx(P7s{)xb*lJC;dyI2c$lcD0-D@hP`+81O;^g{#xuiPA2aI?;Gop*=rrS24^hDjESB zYGKb~C|ij(BjF8w3+BbLRs9f~wtgPTK`ci6C_>s#^ZfUvmZ&*@QD?L=L=!?kU9-qw z>X-G?ST+rJ_Zk4gTMV3UecPB&?rRvb z)3hkYjCutYkmLz=K{&-!j2H}v986|3o-DGDmzstGl7Pp0nC0}>%|_*!2JajFMD!1Z zdWbWe3O12Tz1u6*FYt5LLLKEI-uk>Q`xUn@D@t&CSrmlKa+B5&DSfzK^Peag;{}-C za2k=_(ext%Vm0Oz%kYJ7Ej(B8m`d+;)!j}cL#S0hx|07!93S;AWbJa<@i)SOhpv;9 z1m>Jx(L%G_lcsBzv2O|@is87_XgY8a`by=KZ-SSdQ$usUho!QIbuAur^r+8curCvR z{Exm!;-hj3hK7EiX5t$7TL_(wU}S=Q(&{f|`fmEUfEw&kDxJ`q23S7CrT>FYLf+c+ zir<`CoRh9^?txhfs~w})Z=A%yyKel1=Akm#TLHcP+e}%RncUvLL52lH9L~FIWFFUL z5%M3(S~Hqi#c-C>B;2ZB=C$za3JXHl28)BYx8E%FX!Xwpkjx5SKs7VyGMFuwwT6OR zKg7qbb~ahdvx>+H3QGs1gage|A9YX4;*kF~l01zD9!!Ft%r&-Uvn5s3V}CNclOV%q zaUdodL-%v5IsE;x%XQYc;ZRtCN}3Q=^cRsYJUpsuT18PZME$wWw0=*|U%Qw%*cO(LlYT@2$wJV~rm11%v0832m2EOF^*_-Cz(6Hn0xW{n*^o*aHWCNu({ZjcJS$`d^ zkp1Gzjq`W$QqObsYCPK0kw6UIkNOWS5{|)mmL9#ke?4hSCR8H2W|X3 zYvc@xz?sRLDVWQcw? zWxkhW((urBW8tZ<^Yt&cF9?#aPx`tjtk2D^d)bY#4LPO*mO#5AdUz8;cnS|OB_-;jAlfZ?vcw6s6$tH){R-;w$vZ&AB?itVV3bBLK)?Tn?! z!}NHNSx9Z{xxrqC;O@av_;DF$0?p1Y+SqmHg+ywzvu5(`w~r!Cr4a5FUa55$2ec*) zO{wU~K?pL2%;jd@Vo?V(vCqw=ZA3OT;doo0E#b7J@4nUkYu7TrefNRr$VgBG-Uty7 zUKzcasJF&TcY`pHM57@EKkR~2=-u_DaE*t`267dX@|>ETW_S9G1%)=RJQ)G(*YiCW z;&J`$63lH0d6!zA9ADaInV0ceo%W}v=PQA+RS%V~eV$nV`QA`Wb9y(K6}i~9uC^GB zAEztIGHx}Nu%u$^68*%>yBd42n)G?7l;Rn|EB%E539O+g%BV_8ck*&?J zI;uYq3z-)xuUr~(47K7HQu8r1(?c!-0y6sZXN$hC4SX{S!8>qOUfAsqVh#Yj40> z)et8wP3F}35lnM1xlhHlwqV+9ogkI#~ZHF;rr| zyLJyy3va#{WFQdtdkQ$U{+6q<4|H7=l5m5W7sRE1_oYNPA=Db+r}bObO^9VpbqzIE z+NEyUsF`J3!U@T9A<~9~bFAAQIs%D8d3b9WWXbZU(}+w8B7A92kA4V+BV$%E7Nh%d;?ntAElsZ2;D$!R@iHtn1?UvyV{sEOQnc!=-Il-E;- zTD^{rXR+*D`eShvKu+U7IoOr-J)rTKjGbQFq}Vpi%#{h>_bnjv-OdG2u4B>BQhdfB z5^fvO1wacZEo={t^G|lnOn*$<1JD4(#iyft08c|=LBsLJ0LYwq{TVXtCxSo+{a~2E zawlHtj9-WDxS+u5=<8hcuz#~t_hN9~a@#-`Cx#S#-VWQ&9%XuPhYB*=)g1+G!v?wH-Et%W`?VmZ|TS%o}T3-SGlh1C?pGyeMe}^4>Vl~xU_{w8`u^- zYMSDk>wB_u&;2K-x`uc48#|)a4rIoggy>P3mznN^ohd`4)$5zj_o+p->D2(Y($OXR zbUb?WMCc>&sTsVPc^B~bghKiUyKBUh-HJbVqJy?SRb zw`OO3e4w2gtjeeEdBx;F6tdLUyNz8tioUbk!iWuE`LtjftDUW}GV{FZYHhLeqh0~* z&=a}{*@4OJe$SZjNmgWmRa`;=RYY8btHpQ03C6}=>(>=)<@$84CRGXjUmL0go<y8ZX?tsnV(`Qwnl{GdZ4&H zLyT3;)+^+qq^jCfaC7ykRZXi%YyzBOrA|lmG;Y+wM+P#fv+c>K+q92@V@egb@$}(i&JiGB=PGxqyy=L*!=O;f~NEY#5 z^bkgx_6Ul;u@%`GFyQeVP|CIxR}4xU33ExVF58^PqrIB6K)7p$)9+zdqveVyEfZ|8 zlrCC(W_nx~Rv6R$wKDn8vMAmg)Rry-`48_`vGI0`{RWzhI$%ih8X6u`tcYlozhKu8 zbkJ61Pz#&M)=%)YPN-RY*#uqL7+_gs2KeBHBzYMT#^vrCayGh1Z={#GT|c z((n{VrgvM>5t16JssIF_7?ML7$420cbbzR_w8nlTIFJk<`6ahs(VTnB5#Q*_#|)BS zrtNotk$*ur7q(x4=lUcN{*`xJS9mP?t}}ERfJv3ZLw9$zmwy#-Y}y6#enml7TI*9w z*xNITKR#=5E!yhoA#n!EH3S4dfBuXhAqG`g+c|MX##TURoULC4KxH-sd6MXou2!+r zlRQLkE!RPK561#r%0EqUHN^CCeI7nVv=$9O7j|3P>C01b$1>)Cj8xX7v08&NggYPQL`1i9B(!GRyS4$;s8|gzApnH_Fhn8pJ z6k&-#;1cXl641%RM+{`&@O$~~lhD;b?O?$InlD>*0dW!e!nQct7s&*T?&R6?ls0!* z<|*mIG#{tpT`Ki3x^L2{<@Vfr9JiP-Xc7l+%s4M%NJ~){IuMdc;Jh?zL=NsdG-jNf zGQ(c{Ci9k~IUHWh4sP-L_@ZV6seca@RboESxxfnHTKgz6cjVn0CfkqWjX~IgH<6_t*1)Bwl~`E7W7F_2wR+rqPj4 z*&d-NVv++S9XU)yDf%<~TXtkaqHp~ta9rF&XrdA|q>0di>GRIU_(1>`* zMo!vQ#dX7o+J99PK5`N=*fB)MO>^rDpQ#g5az8+fV9?DmNde8dYYoJMW2QzZ_J1TY;Yz3lvxbAp<)5e6jLT=yc z>Z(gO&qz*Xr6$nKJ=MuP6ciM2bz=AdqtALKr0vw;z_6TQ0k?)hx|{Q2`&e|ZkQa9{IW@lsDx z9?RAT1;pb0Ppf&ZRSa1PN&5W-prlX^y+@$+{)`Rr%@q3Njs-*oPJPF)) z7*Q$A8EanWFKj3EGCPbayeKSDyWh_HG-8vpKPH5#ljUn7`1Hl9cZG?+|4^2bllwMK zR+LgzIXwe3;FiS-hKEC}8tOE{R)Mc$dPmQ&Bg=+N(hpf_oNDy2C!Kh&>g{w#A~H*R z8=s+j1NztYk6EY1-2Q@Sq2@P)KKF?Ok~f~uKAG2MH1*`f3-F!Xm`!Sahg5&or*$Zl zAaFVSTecc~vg2cYS^m*!;k$)2S?>Ch4z#R1b0wwFYaaoSyM>*p^qrX|RHquVB8NkqWyWNK02uM= zDz^c|eD1hRj~)3Z`_1E16Xg+1wP!wDtIKQ#0OA96A8@t>z$W#_xcB4qzYeKg@R0zQTb$6ih+aftnu@tX!}2)>Ll;Y8gygR0?%-|>+6RqiUc zb>#lE<@jIX7um1B#jm+5QD*wDwp5O>dDg4D^OiST_RNv%tAnd;%xqyRg8#^tJu~bw zt(vhnJDqHO3d#rfFTUr;Gb8rC$GV!8858*)IUxgD<&2oqxDx83J6*C*P|3JmFzS$d?XAGCZ^&b>Bp-<{12cwT&jJ5s zP`70}7k}c}-Ru32g!^u?8|0fOyFZDGixb?ao-cp-BQhhI%kn3Ek_RUD3ExHd%T}cU zO=^L6H?teXgdDNKEK=>i#b+9Q8|ibANO{198Yc8o2*2j=hqo7FzCW(xKRq40Mq7GE z?hkkBdM{FCUU?c|Zkq~=7MopN$fq}&J430I%nT@wiDiw)4ep^eYlHTRCYb&raXN>V z`;q=+*(sm25!9!I^tduMxU%HxXb0}fojc?oGayns8WUpC6W(BsrNB)xrYHRC!_+*T zFpMmj#*j|ANqv@#%dPisqypi=FNDJPwCf{nM3Fb(!N8(9SeD)XGehu$)MLO$IoK>) z8fv}aF}Q0Je5^3>O1(YI_Q}bk1-Oj$B$s#2AFs!N>YQ;*AyI#u6aNVOAfa-;esz7+ z46+uqLrRQDC0ek+_mCX?MP-sWJveZ_)2LOm&`yE$5zY9rl@gp-(6ywwns%VRExzTLVqWl)KNb0a0(v zI3aeZ&s*$gx&n`tIBmmyR4|1mV4tgn_ibvkYTU40Q`ze34@{%^y-^amp z1CuUb1bLf`AHoEIcVtvt*xs1%Yush$ub22)E{dD~UtegG;@_fA4jo-{q5ny1RdWm9EuEk}1>L%GdKydcwzRWI?wkR#AS8rPPE}J=Gr{oS$cu@Ub^VW0_G_H2 z?B9OB^aFqn$}L(wOfwHY(`%>?p*LjCo<=$k=ghzGnS!$Xip%Zrih{zzp$e|X&PFxa z^qKgl3zWDMYm)4&tQrqUIcq6iX=!Sj{c)wQPJ$f#IsKiLHOZ-}OO2i?e?FNtucdg; z;-kim|CPW*1h}%6yrY?}NC?eIztL-~a6C{4(&%CkTL< zX{*@*01=oZP^}|C{AoDZe)^Gu3o$VA3NwuVmjFbMEpQU>nNe|?`WQaorr!((2YC>^ zqK|~G&BytjWaVi(zcbLYc^deCMtx!kSUh$Tih90$bPd`Gc^NvFM^PuVSjV2f?0 zJxj%6J(3*05ug@hbU&x0q`bQi%%v6t6P2!Q6y_GddiowkW#s-bxZ%RTO_4A8sl>ak zyB@247%yaMs*2DjL* zbjaUc!Ht~a7jv|qv_V9Zqa^Wug$yG<6FBn5GXwF?=rZ{k&U+A3IWAl|_iHivPVIL$ z(sV9`tmM`s0hKg74k=ESlQKH;d-vIyoV5v~1Izfm|N7KjC9Rn=hsAH>#Uqn#x;|ry zM0>b1ZRoYAoBr_5)KVC#2pHbp4Dl$Wfg%3K(3o)zT};GuCG}YQ!82S_nMY-qwz0!fRz#uNsqmcLFlnxLG$I_W_!YX@vB zFn+%@e;T4okVi@1eKA^a{sY%wqpvS9jj;AjL$4BEyGe_MEF73DQxLqy9=KFT^qf9A zIy&wGmz5fDQuPBTPa#-crwfc?{S)?$1q@GPZjD`l!6M%PYc41)+G&0DK%asJkkjI6 z8bR3FE3o%|3haE9*ji$h85Y%82W&c1#x zCPD%D^B;bxd{Fpk0a%HigSTHF0V-bkK_-xgHG$C_D%&Wa!z$0lf_(sFvhGb5!OoHR z=G;&ceuUi2&CPvOt?^z%OKaqpl2q`2+FvHF0lPCnt)~2)tM8omGmV>rR)CE#1S@^z z$`u};lSAIdebDi-0(F!Cmjn`G?ttau1BT~deFC(Mkh#2o>iXbv|bazL$&p-Mr zM+E&nvTiCBKm+ZE6g@9{va{SfLco}q3cQgI85y&m&ZK-d4wV81!7y+8C+UAT_W;Xv zj5fh@(kioV%I*X{rF&04^np}3n5~o|rAH3h8H``278%r|q`!cHkD#C8!ag|@=`WtO z-L|&?E-PRMhdkfOuYbMINOtOYm~8=En14SR?mn^8T{UUCVDf%3V0^a~T@GO`gu0Z_ z_a*TFA-WPT>Wzwsg~28uuQMgb~5kA!3d=rc%|lK0VExp2cSh@71TxvW8HFuxn_JYnY_Zn;Y0x^kQWP$I4oS9 zSgeot*HKIH)}N!IGVFo%J)YAvMD+Z`3H0P(7{!j>Px~C(vOX_uSu=}Y0$@wsz#v(e zCcNSNbd#Bx`6+0*0WSBL{mq%8)uP7fwfj0f|C}!@PKL!G(2UjY(bSDcDSk`D>CxB?O3Ta z#MHbm;Fgh;4CoQwc@`ZLg8@)*I7cOeUJjJnsM$AHcISd=G3!+`!@uX673^{=Y=BQ5 z5(27U&Fcs^*iP_zZ+gzCnVBJ`eb2r3*2V@h$#o1Lkp6UQ*r5ixy9KcGju#sT{PF9% zFU6Vhb#L8rtoj0c_>dtIwbLWS<1i~;mhi$dJJB%&?Al?vE{0sgMjz}}xG#&G$7(@U zmqq*v;1d3VgrHqyoOCI2Vduzs{v#g}h+(V41zaV8!`!AFpECehZ2OBoS_N%Y5Pd|z zS{4q`TLASzT$DhsNYiEKD*~^7r$RP=rycc{tF!oUS`!2-@#j(~Ba09bNP&kh>-Y9CgT69(?C zmGv@#-U!f*#!)MPc&A*j$RG!`c7T>Q4bYimUl;$5o(vw$>jTV!oP*Oi zjWe`EJHv(gd7zK&_QV(ZCxLc2Hy9NM!F+~!)B%BOqSAI?B|D`M5Q}o=NiH!21!WD; zD5mS&p;094Ut_EV%_zDg!oU51vCUCE)qborYej%xXNTh)tRtl_GRAEmC_wrIyNm4R z&DHc!Hq{hSZ|>K>XD?K-)F`Lvj-p&vxxxIyV^+R`Ha#BSGcSnk1+fKk6^|*Dz6}bx z^rwFSvPVLFirL8?$jli0POxHDs^`PFYO;o}!-MzAQcj=s3h#V?Jeo778*cInSsU+% z*2c>Az$$hue)i^f6ybyi*l66~E2QbJ0Z6W>B)rw4(krm|SuN7>9Xk(?MrSO$76@`| z4TmO+i;F*&cXEr1l~cU7-}@YO8eU(r)vkM8lI*@j0iG!ae7E%udKPpM@_38m=D!sW zw)MuYWQRz>i8)06onU1<#A7o-=+QL){)d-F_n-g-{M@2P3pdIV zaKD=HW65MC{KdrqkEibHS_$ICjgb*HX6AtyR^8o=+D(k_*|KlB=Ybul2ra=A^FXHs z|MFmk$pE|cb&bC@{(RV~pJCE)c+?%|&&f^Z;2 zM(>Tj2#=d$`ML#?`zs!hnYzC`%2+wyoU9pW8HW7`kbdRYx;E2jsAcF~5hk?3Pkf6* z926r1^WkFC&UvH5qGyLMSb;wQYS5HpOv>~*#ae>s+tJxMu+*Ip?r{blE05LS136VW zx%a@b7kbWv1i1~wOATe^RC}-a+t~4u21Jqfy0zePq7$I%u3rpzEIBRaH+tf$O-KdT U3qdA datascience.formats — datascience 0.17.6 documentation - + - + @@ -277,7 +277,7 @@

Source code for datascience.formats

       
@@ -307,7 +307,7 @@

Navigation

\ No newline at end of file diff --git a/_modules/datascience/maps.html b/_modules/datascience/maps.html index b6a823d9b..5d66734cd 100644 --- a/_modules/datascience/maps.html +++ b/_modules/datascience/maps.html @@ -6,10 +6,10 @@ datascience.maps — datascience 0.17.6 documentation - + - + @@ -1094,7 +1094,7 @@

Source code for datascience.maps

       
@@ -1124,7 +1124,7 @@

Navigation

\ No newline at end of file diff --git a/_modules/datascience/predicates.html b/_modules/datascience/predicates.html index 3d7e78d67..e8eeda96d 100644 --- a/_modules/datascience/predicates.html +++ b/_modules/datascience/predicates.html @@ -6,10 +6,10 @@ datascience.predicates — datascience 0.17.6 documentation - + - + @@ -369,7 +369,7 @@

Source code for datascience.predicates

       
@@ -399,7 +399,7 @@

Navigation

\ No newline at end of file diff --git a/_modules/datascience/tables.html b/_modules/datascience/tables.html index 47286f2d8..82991828a 100644 --- a/_modules/datascience/tables.html +++ b/_modules/datascience/tables.html @@ -6,10 +6,10 @@ datascience.tables — datascience 0.17.6 documentation - + - + @@ -6355,7 +6355,7 @@

Source code for datascience.tables

       
@@ -6385,7 +6385,7 @@

Navigation

\ No newline at end of file diff --git a/_modules/datascience/util.html b/_modules/datascience/util.html index 1283d01fa..c556b1c21 100644 --- a/_modules/datascience/util.html +++ b/_modules/datascience/util.html @@ -6,10 +6,10 @@ datascience.util — datascience 0.17.6 documentation - + - + @@ -333,7 +333,7 @@

Source code for datascience.util

       
@@ -363,7 +363,7 @@

Navigation

\ No newline at end of file diff --git a/_modules/index.html b/_modules/index.html index a3fdb5717..3c09aa40b 100644 --- a/_modules/index.html +++ b/_modules/index.html @@ -6,10 +6,10 @@ Overview: module code — datascience 0.17.6 documentation - + - + @@ -49,7 +49,7 @@

All modules for which code is available

@@ -78,7 +78,7 @@

Navigation

\ No newline at end of file diff --git a/_static/basic.css b/_static/basic.css index 30fee9d0f..f316efcb4 100644 --- a/_static/basic.css +++ b/_static/basic.css @@ -4,7 +4,7 @@ * * Sphinx stylesheet -- basic theme. * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ diff --git a/_static/classic.css b/_static/classic.css index 9ad992b8a..55301478f 100644 --- a/_static/classic.css +++ b/_static/classic.css @@ -4,7 +4,7 @@ * * Sphinx stylesheet -- classic theme. * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ diff --git a/_static/doctools.js b/_static/doctools.js index d06a71d75..4d67807d1 100644 --- a/_static/doctools.js +++ b/_static/doctools.js @@ -4,7 +4,7 @@ * * Base JavaScript utilities for all Sphinx HTML documentation. * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ diff --git a/_static/language_data.js b/_static/language_data.js index 250f5665f..367b8ed81 100644 --- a/_static/language_data.js +++ b/_static/language_data.js @@ -5,7 +5,7 @@ * This script contains the language-specific data used by searchtools.js, * namely the list of stopwords, stemmer, scorer and splitter. * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ @@ -13,7 +13,7 @@ var stopwords = ["a", "and", "are", "as", "at", "be", "but", "by", "for", "if", "in", "into", "is", "it", "near", "no", "not", "of", "on", "or", "such", "that", "the", "their", "then", "there", "these", "they", "this", "to", "was", "will", "with"]; -/* Non-minified version is copied as a separate JS file, is available */ +/* Non-minified version is copied as a separate JS file, if available */ /** * Porter Stemmer diff --git a/_static/searchtools.js b/_static/searchtools.js index 7918c3fab..92da3f8b2 100644 --- a/_static/searchtools.js +++ b/_static/searchtools.js @@ -4,7 +4,7 @@ * * Sphinx JavaScript utilities for the full-text search. * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ @@ -99,7 +99,7 @@ const _displayItem = (item, searchTerms, highlightTerms) => { .then((data) => { if (data) listItem.appendChild( - Search.makeSearchSummary(data, searchTerms) + Search.makeSearchSummary(data, searchTerms, anchor) ); // highlight search terms in the summary if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js @@ -116,8 +116,8 @@ const _finishSearch = (resultCount) => { ); else Search.status.innerText = _( - `Search finished, found ${resultCount} page(s) matching the search query.` - ); + "Search finished, found ${resultCount} page(s) matching the search query." + ).replace('${resultCount}', resultCount); }; const _displayNextItem = ( results, @@ -137,6 +137,22 @@ const _displayNextItem = ( // search finished, update title and status message else _finishSearch(resultCount); }; +// Helper function used by query() to order search results. +// Each input is an array of [docname, title, anchor, descr, score, filename]. +// Order the results by score (in opposite order of appearance, since the +// `_displayNextItem` function uses pop() to retrieve items) and then alphabetically. +const _orderResultsByScoreThenName = (a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; +}; /** * Default splitQuery function. Can be overridden in ``sphinx.search`` with a @@ -160,13 +176,26 @@ const Search = { _queued_query: null, _pulse_status: -1, - htmlToText: (htmlString) => { + htmlToText: (htmlString, anchor) => { const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); - htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + for (const removalQuery of [".headerlinks", "script", "style"]) { + htmlElement.querySelectorAll(removalQuery).forEach((el) => { el.remove() }); + } + if (anchor) { + const anchorContent = htmlElement.querySelector(`[role="main"] ${anchor}`); + if (anchorContent) return anchorContent.textContent; + + console.warn( + `Anchored content block not found. Sphinx search tries to obtain it via DOM query '[role=main] ${anchor}'. Check your theme or template.` + ); + } + + // if anchor not specified or not found, fall back to main content const docContent = htmlElement.querySelector('[role="main"]'); - if (docContent !== undefined) return docContent.textContent; + if (docContent) return docContent.textContent; + console.warn( - "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + "Content block not found. Sphinx search tries to obtain it via DOM query '[role=main]'. Check your theme or template." ); return ""; }, @@ -239,16 +268,7 @@ const Search = { else Search.deferQuery(query); }, - /** - * execute search (requires search index to be loaded) - */ - query: (query) => { - const filenames = Search._index.filenames; - const docNames = Search._index.docnames; - const titles = Search._index.titles; - const allTitles = Search._index.alltitles; - const indexEntries = Search._index.indexentries; - + _parseQuery: (query) => { // stem the search terms and add them to the correct list const stemmer = new Stemmer(); const searchTerms = new Set(); @@ -284,16 +304,32 @@ const Search = { // console.info("required: ", [...searchTerms]); // console.info("excluded: ", [...excludedTerms]); - // array of [docname, title, anchor, descr, score, filename] - let results = []; + return [query, searchTerms, excludedTerms, highlightTerms, objectTerms]; + }, + + /** + * execute search (requires search index to be loaded) + */ + _performSearch: (query, searchTerms, excludedTerms, highlightTerms, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // Collect multiple result groups to be sorted separately and then ordered. + // Each is an array of [docname, title, anchor, descr, score, filename]. + const normalResults = []; + const nonMainIndexResults = []; + _removeChildren(document.getElementById("search-progress")); - const queryLower = query.toLowerCase(); + const queryLower = query.toLowerCase().trim(); for (const [title, foundTitles] of Object.entries(allTitles)) { - if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + if (title.toLowerCase().trim().includes(queryLower) && (queryLower.length >= title.length/2)) { for (const [file, id] of foundTitles) { let score = Math.round(100 * queryLower.length / title.length) - results.push([ + normalResults.push([ docNames[file], titles[file] !== title ? `${titles[file]} > ${title}` : title, id !== null ? "#" + id : "", @@ -308,46 +344,47 @@ const Search = { // search for explicit entries in index directives for (const [entry, foundEntries] of Object.entries(indexEntries)) { if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { - for (const [file, id] of foundEntries) { - let score = Math.round(100 * queryLower.length / entry.length) - results.push([ + for (const [file, id, isMain] of foundEntries) { + const score = Math.round(100 * queryLower.length / entry.length); + const result = [ docNames[file], titles[file], id ? "#" + id : "", null, score, filenames[file], - ]); + ]; + if (isMain) { + normalResults.push(result); + } else { + nonMainIndexResults.push(result); + } } } } // lookup as object objectTerms.forEach((term) => - results.push(...Search.performObjectSearch(term, objectTerms)) + normalResults.push(...Search.performObjectSearch(term, objectTerms)) ); // lookup as search terms in fulltext - results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + normalResults.push(...Search.performTermsSearch(searchTerms, excludedTerms)); // let the scorer override scores with a custom scoring function - if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); - - // now sort the results by score (in opposite order of appearance, since the - // display function below uses pop() to retrieve items) and then - // alphabetically - results.sort((a, b) => { - const leftScore = a[4]; - const rightScore = b[4]; - if (leftScore === rightScore) { - // same score: sort alphabetically - const leftTitle = a[1].toLowerCase(); - const rightTitle = b[1].toLowerCase(); - if (leftTitle === rightTitle) return 0; - return leftTitle > rightTitle ? -1 : 1; // inverted is intentional - } - return leftScore > rightScore ? 1 : -1; - }); + if (Scorer.score) { + normalResults.forEach((item) => (item[4] = Scorer.score(item))); + nonMainIndexResults.forEach((item) => (item[4] = Scorer.score(item))); + } + + // Sort each group of results by score and then alphabetically by name. + normalResults.sort(_orderResultsByScoreThenName); + nonMainIndexResults.sort(_orderResultsByScoreThenName); + + // Combine the result groups in (reverse) order. + // Non-main index entries are typically arbitrary cross-references, + // so display them after other results. + let results = [...nonMainIndexResults, ...normalResults]; // remove duplicate search results // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept @@ -361,7 +398,12 @@ const Search = { return acc; }, []); - results = results.reverse(); + return results.reverse(); + }, + + query: (query) => { + const [searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms] = Search._parseQuery(query); + const results = Search._performSearch(searchQuery, searchTerms, excludedTerms, highlightTerms, objectTerms); // for debugging //Search.lastresults = results.slice(); // a copy @@ -466,14 +508,18 @@ const Search = { // add support for partial matches if (word.length > 2) { const escapedWord = _escapeRegExp(word); - Object.keys(terms).forEach((term) => { - if (term.match(escapedWord) && !terms[word]) - arr.push({ files: terms[term], score: Scorer.partialTerm }); - }); - Object.keys(titleTerms).forEach((term) => { - if (term.match(escapedWord) && !titleTerms[word]) - arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); - }); + if (!terms.hasOwnProperty(word)) { + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + } + if (!titleTerms.hasOwnProperty(word)) { + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord)) + arr.push({ files: titleTerms[term], score: Scorer.partialTitle }); + }); + } } // no match but word was a required one @@ -496,9 +542,8 @@ const Search = { // create the mapping files.forEach((file) => { - if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) - fileMap.get(file).push(word); - else fileMap.set(file, [word]); + if (!fileMap.has(file)) fileMap.set(file, [word]); + else if (fileMap.get(file).indexOf(word) === -1) fileMap.get(file).push(word); }); }); @@ -549,8 +594,8 @@ const Search = { * search summary for a given text. keywords is a list * of stemmed words. */ - makeSearchSummary: (htmlText, keywords) => { - const text = Search.htmlToText(htmlText); + makeSearchSummary: (htmlText, keywords, anchor) => { + const text = Search.htmlToText(htmlText, anchor); if (text === "") return null; const textLower = text.toLowerCase(); diff --git a/_static/sidebar.js b/_static/sidebar.js index c5e2692c4..f28c20689 100644 --- a/_static/sidebar.js +++ b/_static/sidebar.js @@ -16,7 +16,7 @@ * Once the browser is closed the cookie is deleted and the position * reset to the default (expanded). * - * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :copyright: Copyright 2007-2024 by the Sphinx team, see AUTHORS. * :license: BSD, see LICENSE for details. * */ diff --git a/formats.html b/formats.html index 145b7b425..983aeaf34 100644 --- a/formats.html +++ b/formats.html @@ -7,10 +7,10 @@ Formats (datascience.formats) — datascience 0.17.6 documentation - + - + @@ -247,7 +247,7 @@

This Page

rel="nofollow">Show Source - + @@ -282,7 +282,7 @@

Navigation

\ No newline at end of file diff --git a/genindex.html b/genindex.html index ff8df99e8..b038d78ee 100644 --- a/genindex.html +++ b/genindex.html @@ -6,10 +6,10 @@ Index — datascience 0.17.6 documentation - + - + @@ -591,7 +591,7 @@

W

@@ -620,7 +620,7 @@

Navigation

\ No newline at end of file diff --git a/index.html b/index.html index 8a362a2c0..b90d9e4ec 100644 --- a/index.html +++ b/index.html @@ -7,12 +7,14 @@ Welcome to datascience’s documentation! — datascience 0.17.6 documentation - + - + + + @@ -47,7 +49,7 @@

Welcome to datascience’s documentation!

0.17.6

Date:
-

Mar 14, 2024

+

Jun 04, 2024

The datascience package was written for use in Berkeley’s DS 8 course and @@ -120,7 +122,7 @@

This Page

rel="nofollow">Show Source
- + @@ -152,7 +154,7 @@

Navigation

\ No newline at end of file diff --git a/maps.html b/maps.html index fd3815a0c..54735ec56 100644 --- a/maps.html +++ b/maps.html @@ -7,10 +7,10 @@ Maps (datascience.maps) — datascience 0.17.6 documentation - + - + @@ -432,7 +432,7 @@

This Page

rel="nofollow">Show Source - + @@ -467,7 +467,7 @@

Navigation

\ No newline at end of file diff --git a/predicates.html b/predicates.html index c72cbf167..1f6fbd02b 100644 --- a/predicates.html +++ b/predicates.html @@ -7,10 +7,10 @@ Predicates (datascience.predicates) — datascience 0.17.6 documentation - + - + @@ -320,7 +320,7 @@

This Page

rel="nofollow">Show Source - + @@ -355,7 +355,7 @@

Navigation

\ No newline at end of file diff --git a/py-modindex.html b/py-modindex.html index 44fc75e52..fbbc98c17 100644 --- a/py-modindex.html +++ b/py-modindex.html @@ -6,10 +6,10 @@ Python Module Index — datascience 0.17.6 documentation - + - + @@ -84,7 +84,7 @@

Python Module Index

@@ -113,7 +113,7 @@

Navigation

\ No newline at end of file diff --git a/reference-nb/datascience-reference.html b/reference-nb/datascience-reference.html index 40ebf45d2..2288284f0 100644 --- a/reference-nb/datascience-reference.html +++ b/reference-nb/datascience-reference.html @@ -7,11 +7,11 @@ Data 8 datascience Reference — datascience 0.17.6 documentation - + - + @@ -4192,7 +4192,7 @@

This Page

rel="nofollow">Show Source - + @@ -4227,7 +4227,7 @@

Navigation

\ No newline at end of file diff --git a/search.html b/search.html index 6b0226f76..437176a0c 100644 --- a/search.html +++ b/search.html @@ -6,11 +6,11 @@ Search — datascience 0.17.6 documentation - + - + @@ -18,8 +18,9 @@ - - + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js index f35665a50..91027ea78 100644 --- a/searchindex.js +++ b/searchindex.js @@ -1 +1 @@ -Search.setIndex({"docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "terms": {"label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "formatt": [0, 2, 53, 67, 68, 71], "format": [0, 4, 5, 53, 68, 72, 73], "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "tile": [0, 10, 44, 65, 69, 70], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "row_or_t": 1, "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "self": [1, 29, 41, 50, 51, 53, 65], "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "record": [1, 20], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "foo": [1, 13, 33, 34, 45, 60, 76, 78], "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "baz": [1, 33, 34, 45, 60], "bat": [1, 33, 34, 45], "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "append": [2, 13], "replac": [2, 43, 44, 48, 49, 67, 68, 73], "__setitem__": 2, "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "alias": 2, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "new_col": 2, "equival": [2, 10, 28, 29, 59, 66, 68, 75], "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "add": [2, 25, 26, 73, 75, 77, 78], "being": [2, 4, 53, 68, 73, 75], "No": 2, "ad": [2, 50, 68, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 77, 78], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "new_col1": 2, "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "40": [2, 21, 24, 32, 38, 56, 75, 77], "new_col2": 2, "hello": [2, 76], "123": [2, 43, 75], "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "bad_col": [2, 67], "mismatch": [2, 67, 68], "fn": 3, "column_or_column": [3, 14, 52, 53, 75], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "element": [3, 44, 75, 78], "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "either": [3, 25, 26, 52, 66, 73, 78], "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "match": [3, 25, 26, 29, 38, 66, 73], "expect": [3, 78], "column_label": [3, 22, 23, 29, 33, 34, 43], "exist": [3, 14, 38, 44, 67, 68, 75], "typeerror": [3, 38, 43], "insuffici": 3, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "consist": [3, 58], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "lambda": 3, "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "posit": [3, 50, 73], "were": [3, 75], "whole": [3, 25], "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "18": [3, 53, 60, 75, 77], "max_row": [4, 5, 54], "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73, 77], "maximum": [4, 5, 54, 60, 75], "present": [4, 5, 75], "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "repres": [4, 26, 71, 73, 77, 78], "form": [4, 5, 39, 75, 78], "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "websit": 4, "few": [4, 5, 25, 26, 78], "These": [4, 9, 25, 26, 75], "seem": 4, "difficult": 4, "u": [4, 77], "observ": 4, "understand": 4, "sinc": [4, 75], "thei": [4, 25, 26, 49, 73], "when": [4, 10, 13, 25, 26, 66, 68, 73], "you": [4, 40, 53, 73, 75, 76, 77], "want": [4, 40, 73, 75, 77], "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "webpag": 4, "simpl": [4, 38, 77, 78], "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "abc": [4, 5, 64], "xyz": [4, 5, 64], "uvw": [4, 5, 64], "ag": [4, 5, 32, 38, 64, 77], "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "14": [4, 5, 64, 72, 75, 77], "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "table_as_html": 4, "border": 4, "class": [4, 5, 53, 64, 71, 73, 74, 77], "datafram": [4, 19, 64, 77], "n": [4, 5, 8, 68, 70, 75], "thead": 4, "tr": 4, "th": 4, "tbodi": 4, "td": 4, "table_as_html_2": 4, "p": [4, 37, 48, 78], "omit": [4, 5, 39, 42, 56, 75, 77], "sep": 5, "text": [5, 50, 51, 73, 77], "seper": 5, "appear": [5, 21, 24, 29, 75, 77], "between": [5, 25, 57, 73, 74, 77, 78], "just": [5, 21, 64, 75, 77], "table_astext": 5, "nabc": 5, "nxyz": 5, "nuvw": 5, "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "with_row": [5, 49], "small": [5, 49], "50": [5, 28, 41, 49, 59, 75, 77], "medium": [5, 49], "100": [5, 9, 39, 49, 75, 77], "big": [5, 49], "sizes_astext": 5, "nsmall": 5, "nmedium": 5, "nbig": 5, "column_for_categori": [6, 7], "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "design": [6, 7, 41, 50], "except": [6, 7, 75], "numer": [6, 7, 9, 41, 50, 51, 60, 78], "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "horizont": [7, 23, 50, 75], "redirect": [7, 25, 28, 41, 50, 59], "ibarh": [7, 28, 59], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "enabl": [7, 25, 41, 50, 51], "interactive_plot": [7, 25, 41, 50, 51, 59], "bucket": 7, "show": [7, 25, 41, 50, 51, 77], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "figur": [7, 9, 25, 41, 50, 51], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "graph": [7, 28, 41, 59, 75], "furnitur": 7, "chair": 7, "desk": 7, "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "comput": [8, 36, 60, 75, 77], "By": [8, 13, 39, 48, 60, 75], "chosen": [8, 25, 26, 39], "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "histogram": [8, 25, 26, 39, 40, 75, 77], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "special": [8, 39], "ha": [8, 29, 68, 70, 75], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "lower": [8, 25, 26, 39], "bound": [8, 25, 26, 61, 75], "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "scalar": [8, 39], "defin": [8, 39, 49, 53], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "edg": [8, 25, 39], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "rightmost": [8, 39], "allow": [8, 39, 77], "non": [8, 9, 38, 39, 60, 77], "uniform": [8, 39], "float": [8, 22, 23, 25, 39, 71, 73], "upper": [8, 39, 75], "outsid": [8, 39], "ignor": [8, 39], "densiti": [8, 25], "sampl": [8, 39, 49, 57, 77, 78], "probabl": [8, 48, 75, 78], "normal": [8, 39, 71, 77, 78], "integr": [8, 39], "over": [8, 38, 39], "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "sum": [8, 21, 24, 48, 60, 77, 78], "unless": [8, 53], "uniti": 8, "mass": 8, "vert": 9, "showmean": 9, "test1": 9, "92": [9, 75], "88": [9, 75], "72": [9, 75, 77], "71": [9, 75, 77], "99": [9, 49, 75], "95": [9, 28, 32, 38, 41, 59, 75], "83": [9, 28, 41, 59, 75], "94": [9, 75], "93": [9, 71, 77], "test2": 9, "89": [9, 32, 38, 75], "84": [9, 75], "74": [9, 75, 77, 78], "66": [9, 75, 77], "81": [9, 75, 77], "side": [9, 25, 26, 40], "table2": [9, 29], "numeric_col": 9, "alpha_col": 9, "cannot": [9, 51], "drawn": [9, 73, 77], "index_or_label": 10, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "look": [11, 75], "up": [11, 73, 75], "its": [11, 25, 26, 38, 53, 70, 76], "integ": [11, 15, 36, 61, 73, 75], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "tupl": [12, 30, 39, 47, 57, 60, 77], "dtype": [12, 17, 62, 65, 75, 77, 78], "u1": [12, 62, 77], "shallow": 13, "perform": [13, 75], "deep": [13, 73], "mean": [13, 38, 53, 60, 76, 77, 78], "construct": [13, 75, 77], "recurs": 13, "insert": 13, "found": [13, 73, 75], "table_copi": 13, "original_t": 13, "so": [13, 53, 64, 75, 77], "updat": 13, "chang": [13, 43, 44, 45, 53, 75], "refer": [13, 73, 77], "": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "orignal_t": 13, "due": 13, "contrast": 13, "how": [13, 25, 46, 75, 77], "occur": [13, 25, 75], "both": [13, 25, 29, 38, 75], "table_shallow_copi": 13, "becaus": [13, 75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "than": [14, 56, 68, 74, 75], "header": 14, "valid": [14, 42, 48, 67, 68, 76, 77], "remov": [14, 50, 51, 53, 73, 75], "burger": 14, "cheeseburg": 14, "hamburg": 14, "veggi": 14, "calori": 14, "743": 14, "651": 14, "582": 14, "without": [15, 48, 75, 77], "row_indices_or_slic": [15, 61], "slice": [15, 61], "grade": [15, 61], "gpa": [15, 61], "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "support": [15, 25], "like": [15, 22, 23, 47, 75, 76, 77], "zeroth": 16, "item": [16, 31], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "arr": [17, 62, 78], "structur": [17, 62, 75, 77], "field": 17, "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "np": [17, 38, 49, 60, 61, 73, 77, 78], "u10": 17, "i4": 17, "map": [18, 72], "deprec": [18, 25, 40, 50, 51], "df": 19, "keep_index": 19, "panda": [19, 64, 77], "util": [19, 72], "creation": [19, 76], "keep": 19, "turn": [19, 28, 59, 75], "sample_df": 19, "zip": [19, 73, 75], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "dict": [20, 27, 51, 73], "fix": [20, 73], "kei": [20, 27, 43, 58, 73, 77], "dictionari": [20, 27, 73, 77], "otherwis": [20, 25, 29], "do": [20, 48, 53, 77], "ident": [20, 71], "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "column_or_label": [21, 27, 56, 66], "collect": [21, 24, 38, 75, 77], "uniqu": [21, 24, 38, 39, 75], "aggreg": [21, 24, 38], "second": [21, 23, 57, 58, 75, 77], "calcul": [21, 24, 60, 75], "accord": [21, 24, 56, 77], "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "accept": [21, 24, 53], "marbl": [21, 24, 56, 66], "red": [21, 24, 43, 56, 66, 73, 75], "green": [21, 24, 43, 56, 66, 73, 75], "blue": [21, 24, 43, 56, 66, 73], "shape": [21, 24, 56, 66, 70, 78], "round": [21, 24, 56, 66, 73], "rectangular": [21, 24, 56, 66], "amount": [21, 24, 56, 66, 75], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "give": [21, 75], "max": [21, 53, 60], "doesn": [21, 75], "make": [21, 25, 26, 66, 77, 78], "sens": [21, 25, 26], "27": [21, 75, 77], "13": [21, 60, 75, 77], "05": [21, 24, 75], "differ": [22, 23, 69, 70, 75, 77], "need": [22, 23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "behav": [22, 23], "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "hist": [22, 23, 26, 28, 40, 59, 77], "regard": [22, 23], "while": [22, 23, 53], "scatter": [22, 23, 28, 41, 51, 59, 77], "requir": [22, 23, 38, 64, 68], "inch": [22, 23], "barh": [23, 28, 59, 77], "coordin": [23, 73], "anoth": [23, 75], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "combin": [24, 38, 42, 75, 77], "those": [24, 75], "15": [24, 48, 57, 60, 63, 68, 75, 77], "11": [24, 60, 75, 77], "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "unit": [25, 73], "rug": 25, "side_by_sid": [25, 26, 40], "left_end": 25, "right_end": 25, "via": 25, "plotli": [25, 28, 41, 51, 59, 75], "ihist": 25, "overlaid": [25, 26], "top": [25, 26], "behavior": [25, 26, 60], "legend": [25, 26, 73], "forc": [25, 26, 75], "scale": [25, 26, 73, 77], "automat": [25, 26], "treat": [25, 26, 77], "assign": [25, 26, 73, 77], "e": [25, 29, 48, 68, 75, 78], "g": [25, 67, 75, 78], "kg": 25, "gener": [25, 26, 38, 66, 77, 78], "depend": [25, 26], "done": [25, 26, 77], "should": [25, 26, 53, 73, 75, 78], "directli": [25, 26, 53], "sever": [25, 26, 60], "Not": [25, 77], "left": [25, 78], "right": [25, 78], "shade": [25, 78], "extrem": 25, "boolean": [25, 53, 66, 73, 75, 77, 78], "distribut": [25, 39, 48, 49, 75, 77, 78], "shade_split": 25, "split": [25, 77], "determin": 25, "end": [25, 75], "fall": 25, "two": [25, 26, 57, 58, 73, 75, 77], "endpoint": 25, "entir": [25, 54], "appropri": 25, "func": [25, 26, 75, 78], "norm": [25, 39, 50], "cumul": [25, 26], "orient": [25, 26], "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "103": [25, 26], "proport": [25, 49, 75, 78], "25": [25, 60, 75, 77], "weight": [25, 26, 48, 52, 60, 73, 77], "base": [26, 38, 56, 73], "columns_or_label": 27, "rest": [27, 57, 73, 77], "data4": 27, "86": [27, 39, 54, 58, 75], "51": [27, 39, 54, 58, 75, 77], "32": [27, 39, 54, 58, 75, 77], "91": [27, 75], "column4": [27, 39, 54, 58], "global": [28, 59], "variabl": [28, 59], "iplot": [28, 41, 59], "etc": [28, 59, 71, 75], "off": [28, 59, 75], "static_plot": 28, "dai": [28, 41, 59, 77], "90": [28, 41, 59, 75, 77], "82": [28, 41, 59, 75], "project": [28, 41, 59], "line": [28, 41, 50, 59, 73, 75, 77], "other_label": 29, "assum": [29, 37, 75, 78], "previou": [29, 66], "repeat": [29, 56, 73], "relabel": [29, 77], "a_2": 29, "three": [29, 73], "move": [32, 33, 34], "titan": [32, 38], "21": [32, 38, 75, 77], "44": [32, 38, 75, 77], "56": [32, 38, 75, 77], "80": [32, 37, 38, 39, 75, 77], "45": [32, 38, 39, 75, 77], "surviv": [32, 38], "gender": [32, 38], "m": [32, 38, 71, 74], "f": [32, 38, 53, 71, 75, 77, 78], "predict": [32, 38], "what": [33, 34, 53, 73, 77], "known": [33, 34, 53], "inplac": [33, 34, 53], "oper": [33, 34, 53, 77], "state": [36, 42, 73, 77], "pth": [37, 78], "smallest": [37, 73], "least": [37, 78], "larg": 37, "zero": [38, 75], "vice": 38, "versa": 38, "across": 38, "intersect": 38, "60": [38, 39, 71, 75, 77], "3333": 38, "pivot_column": 39, "value_column": 39, "associ": [39, 58], "pivot": [39, 77], "popul": 39, "respect": [39, 58, 61], "from_record": [39, 58], "37": [39, 73, 75, 77], "42": [39, 60, 74, 75, 77], "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "48": [39, 75, 77], "53": [39, 75, 77], "59": [39, 75, 77], "64": [39, 60, 75, 77], "69": [39, 75, 77], "36": [39, 75, 77], "54": [39, 75, 77], "pivot_column_label": 40, "value_column_label": 40, "draw": [40, 50, 72, 73, 78], "recommend": 40, "realli": 40, "column_for_xtick": 41, "connect": [41, 75], "filepath_or_buff": 42, "read": [42, 73, 75, 76, 77], "file": [42, 63, 73, 75, 77], "web": 42, "address": 42, "handl": 42, "stringio": 42, "could": 42, "url": [42, 73, 77], "scheme": 42, "ftp": 42, "s3": 42, "www": [42, 77], "inferentialthink": [42, 77], "com": [42, 46, 73, 75, 77], "sat2014": [42, 77], "csv": [42, 63, 73, 75, 77], "particip": [42, 77], "rate": [42, 75, 77], "critic": [42, 77], "math": [42, 77], "write": [42, 53, 77], "north": [42, 77], "dakota": [42, 77], "612": [42, 77], "620": [42, 75, 77], "584": [42, 77], "1816": [42, 77], "illinoi": [42, 77], "599": [42, 75, 77], "616": [42, 75, 77], "587": [42, 77], "1802": [42, 77], "iowa": [42, 77], "605": [42, 77], "611": [42, 77], "578": [42, 77], "1794": [42, 77], "south": [42, 75, 77], "604": [42, 75, 77], "609": [42, 75, 77], "579": [42, 77], "1792": [42, 77], "minnesota": [42, 77], "598": [42, 77], "610": [42, 77], "1786": [42, 77], "michigan": [42, 77], "593": [42, 77], "581": [42, 77], "1784": [42, 77], "wisconsin": [42, 77], "596": [42, 77], "608": [42, 77], "1782": [42, 77], "missouri": [42, 77], "595": [42, 77], "597": [42, 77], "1771": [42, 77], "wyom": [42, 77], "590": [42, 77], "573": [42, 77], "1762": [42, 77], "kansa": [42, 77], "591": [42, 77], "566": [42, 77], "1753": [42, 77], "41": [42, 75, 77], "new_label": [43, 44, 75], "id": [43, 73, 75], "12345": 43, "5123": 43, "yolo": 43, "cyan": 43, "magenta": 43, "yellow": 43, "invalid": [43, 44, 73], "unmodifi": 44, "alreadi": 44, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "row_or_row_indic": 45, "made": [45, 73, 75], "2nd": [45, 75], "3rd": [45, 75], "pleas": [46, 77], "extend": [46, 75, 77], "docstr": 46, "github": [46, 73, 75], "blob": 46, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "py": 46, "l5673": 46, "l5765": 46, "view": [47, 75], "k": [48, 49, 55, 57, 58], "with_replac": [48, 75, 77], "randomli": [48, 55, 57, 75], "els": 48, "ith": 48, "resampl": [48, 77], "job": [48, 57, 63], "wage": [48, 57, 63], "w": [48, 77], "multinomi": [49, 78], "output": [49, 54, 63, 75], "random": [49, 77, 78], "seed": 49, "1000": [49, 53, 75, 77], "228": 49, "508": 49, "264": 49, "261": 49, "491": 49, "248": 49, "column_for_x": [50, 51], "fit_lin": [50, 51, 75, 77], "scatterplot": [50, 51], "best": [50, 60, 75], "fit": [50, 75], "iscatt": 50, "marker": [50, 73, 77], "coupl": 50, "dot": [50, 51], "annot": [50, 51], "rel": [50, 51], "area": [50, 51, 73, 78], "synonym": [50, 51], "retain": [50, 51], "temporarili": [50, 51], "backward": [50, 51], "compat": [50, 51], "futur": [50, 51], "releas": [50, 51, 72], "against": [50, 51], "One": [50, 76], "column_for_i": 51, "conveni": 51, "wrapper": 51, "iscatter3d": 51, "3d": 51, "pixel": [51, 73], "graph_object": 51, "update_layout": 51, "assertionerror": [51, 68], "z1": 51, "z2": 51, "keyerror": 52, "ani": [52, 61, 68, 73, 78], "flower": 52, "petal": 52, "34": [52, 74, 75, 77], "lotu": 52, "sunflow": 52, "rose": 52, "unchang": 52, "pretti": [53, 71], "print": [53, 71, 77, 78], "within": [53, 74, 77], "time": [53, 71, 75], "balanc": 53, "run": [53, 60, 63], "__repr__": 53, "upon": 53, "consol": 53, "underli": [53, 73], "remain": [53, 57, 75], "untouch": 53, "It": [53, 64, 75, 77, 78], "worth": 53, "account_info": 53, "user": 53, "gfoo": 53, "bbar": 53, "tbaz": 53, "hbat": 53, "200": [53, 73, 75], "555": 53, "125": [53, 75, 77], "430": [53, 75], "import": [53, 66, 74, 77], "currencyformatt": [53, 68, 71], "bz": 53, "beliz": 53, "dollar": 53, "def": [53, 60, 75, 77], "iceland_krona_formatt": 53, "kr": 53, "converts_valu": [53, 71], "attribut": [53, 73], "format_column": [53, 71], "In": [53, 66, 75, 77], "would": [53, 75], "convert_valu": [53, 71], "icelandkronaformatt": 53, "__init__": 53, "format_krona": 53, "convert_column": [53, 71], "perman": 53, "01": [53, 75], "55": [53, 75, 77], "65": [53, 75, 77], "drop": 53, "fraction": 53, "astyp": 53, "configur": 53, "account": 53, "them": [53, 60, 73], "charact": [53, 71], "someth": [53, 75], "custom": [53, 60, 73, 75, 77], "yourself": 53, "check": [53, 77], "save": 53, "500": [53, 68, 73], "1175": 53, "6700": 53, "val_width": 53, "len": [53, 77], "v": 53, "ljust": 53, "subset": [54, 78], "ipython": [54, 77], "core": [54, 64, 77], "descend": [56, 75, 77], "distinct": 56, "whose": [56, 58, 75], "rather": 56, "ascend": [56, 75], "num_row": [57, 77], "col": 58, "basi": 58, "represent": [58, 73], "suppli": [58, 66], "consid": [58, 75], "wherea": [58, 73], "final": 58, "unset": 59, "op": 60, "built": 60, "min": 60, "median": 60, "statist": 60, "prepend": 60, "fucntion": 60, "minimum": [60, 75], "17": [60, 72, 75, 77], "even": [60, 68], "mai": [60, 71, 77], "lead": 60, "unexpect": 60, "case": 60, "error": 60, "why": 60, "elimin": 60, "befor": 60, "overridden": 60, "weighted_averag": 60, "averag": [60, 75], "std": 60, "13333": 60, "1333": 60, "16": [60, 75, 77], "27761": 60, "67423": 60, "85235": 60, "taken": 61, "indexerror": 61, "out": [61, 75, 77], "arang": 61, "i8": 62, "filenam": [63, 75], "wai": [63, 76, 77, 78], "we": [63, 64, 75, 77], "my_tabl": 63, "recreat": [63, 77], "read_tabl": [63, 77], "current": [63, 73], "directori": 63, "some": [64, 75, 77], "here": [64, 72], "table_df": 64, "frame": 64, "col1": [65, 75], "col2": [65, 75], "value_or_pred": 66, "kept": 66, "pairwis": [66, 75], "comparison": 66, "below": [66, 74, 78], "usag": 66, "callabl": 66, "val": 66, "higher": 66, "predic": [66, 72], "equal_to": [66, 74], "abov": [66, 74], "compar": [66, 77], "alphabet": [67, 75], "permut": 67, "labels_and_valu": 68, "altern": [68, 77], "pair": [68, 73], "incorrect": 68, "iter": [68, 78], "miss": [68, 76], "player": 68, "player_id": 68, "110234": 68, "110235": 68, "woba": 68, "354": [68, 75], "236": 68, "salari": 68, "season": 68, "2016": 68, "500000": 68, "15500000": 68, "bonu": 68, "_format": 68, "000": [68, 71], "600": 68, "_": [70, 77], "tabl": [71, 72, 73, 74, 78], "entri": [71, 75], "symbol": 71, "currenc": 71, "ensur": 71, "ie": 71, "format_valu": 71, "dateformatt": 71, "h": 71, "date": [71, 72, 75], "unix": 71, "timestamp": 71, "2015": [71, 75], "08": [71, 75], "03": 71, "distributionformatt": 71, "decim": [71, 75], "percentag": [71, 75], "min_width": 71, "max_width": 71, "truncat": 71, "long": 71, "static": [71, 74, 75], "convers": 71, "overrid": 71, "pad": 71, "arbitrari": 71, "numberformatt": 71, "decimal_point": 71, "int_to_float": 71, "delimit": 71, "93000": 71, "percentformatt": 71, "mar": 72, "2024": 72, "packag": [72, 77], "written": 72, "berkelei": 72, "cours": 72, "investig": 72, "graphic": 72, "start": [72, 73, 75, 78], "tutori": 72, "access": [72, 76], "manipul": 72, "visual": [72, 73, 76], "export": [72, 76], "advanc": 72, "miscellan": 72, "folium": 73, "circl": [73, 77], "lat": 73, "lon": 73, "popup": 73, "314": 73, "1592653589793": 73, "circle_mark": 73, "stai": 73, "regardless": 73, "zoom": 73, "radiu": 73, "meter": 73, "To": [73, 77], "toggl": 73, "radius_in_met": 73, "flag": 73, "draw_on": 73, "pop": 73, "click": [73, 76], "fill": 73, "squar": [73, 75], "fill_opac": 73, "opac": 73, "leafletj": 73, "circlemark": 73, "For": [73, 74, 75, 77], "38": [73, 74, 75, 77], "122": 73, "121": 73, "3000": 73, "4000": 73, "5000": 73, "map_tabl": 73, "folium_map": 73, "featur": 73, "960": 73, "keyword": 73, "forward": 73, "key_on": 73, "palett": 73, "ylorbr": 73, "brewer": 73, "bugn": 73, "bupu": 73, "gnbu": 73, "orrd": 73, "pubu": 73, "pubugn": 73, "purd": 73, "rdpu": 73, "ylgn": 73, "ylgnbu": 73, "ylorrd": 73, "threshold_scal": 73, "d3": 73, "threshold": 73, "quantil": 73, "85": [73, 75], "nearest": [73, 75], "magnitud": 73, "ex": 73, "270": 73, "5600": 73, "6000": 73, "line_color": 73, "black": 73, "geojson": 73, "geopath": 73, "line_weight": 73, "line_opac": 73, "legend_nam": 73, "titl": 73, "render": 73, "NOT": 73, "ref": 73, "python": [73, 75], "issu": 73, "1207": 73, "featurecollect": 73, "region": [73, 77, 78], "overlain": 73, "read_geojson": 73, "path_or_json_or_string_or_url": 73, "simple_mark": 73, "purpl": 73, "orang": 73, "darkr": 73, "lightr": 73, "beig": 73, "darkblu": 73, "darkgreen": 73, "cadetblu": 73, "darkpurpl": 73, "white": 73, "pink": [73, 75], "lightblu": 73, "lightgreen": 73, "grai": 73, "lightgrai": 73, "standard": [73, 75, 78], "icon": 73, "hex": 73, "code": [73, 75, 77], "plugin": 73, "beautifyicon": 73, "marker_icon": 73, "info": [73, 78], "sign": 73, "getbootstrap": 73, "compon": 73, "clustered_mark": 73, "cluster": 73, "icon_angl": 73, "angl": 73, "popup_width": 73, "300": 73, "further": 73, "io": 73, "modul": [73, 77], "feature_id": 73, "lat_lon": 73, "describ": [73, 75], "latitud": 73, "longitud": 73, "other_attr": 73, "applic": 73, "todo": 73, "document": [73, 76], "index_map": 73, "cluster_label": 73, "colorbar_scal": 73, "cutoff": 73, "colorscal": 73, "gradient": 73, "include_color_scale_outli": 73, "outlier": 73, "radii": 73, "color_scal": 73, "radius_scal": 73, "cluster_bi": 73, "area_scal": 73, "explicitli": 73, "cl": 73, "specif": [73, 75], "well": 73, "markerclust": 73, "geo_json": 73, "substitut": 73, "flat": 73, "polygon": 73, "linear": 73, "ring": 73, "exterior": 73, "interior": 73, "hole": 73, "multipolygon": 73, "get_coordin": 73, "replace_column": 73, "remove_nan": 73, "locat": 73, "identifi": 73, "citi": [73, 75], "counti": 73, "insid": 73, "dataset": 73, "nan": [73, 75], "afterward": 73, "robust": 73, "capit": 73, "acquir": 73, "juli": 73, "2020": 73, "doc": 73, "gaslamp": 73, "media": 73, "download": 73, "geocode_dataset": 73, "geocode_st": 73, "modifi": [73, 75, 76, 77], "lowercas": 73, "pick": [74, 75], "l": [74, 75], "xl": 74, "waist": 74, "above_or_equal_to": 74, "below_or_equal_to": 74, "strictly_between": 74, "between_or_equal_to": 74, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_strictly_between": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "contained_in": 74, "mxl": 74, "not_contained_in": 74, "greater": [74, 75], "less": [74, 75], "superstr": 74, "part": 74, "substr": [74, 75], "neither": 74, "nor": 74, "not_equal_to": [74, 75], "notebook": [75, 77], "serv": 75, "friendli": 75, "librari": 75, "usual": 75, "29": [75, 77], "new_tabl": 75, "31": [75, 77], "trip": 75, "raw": 75, "githubusercont": 75, "textbook": [75, 77], "gh": 75, "page": [75, 76], "durat": 75, "station": 75, "termin": 75, "bike": 75, "subscrib": 75, "876419": 75, "413": 75, "civic": 75, "center": 75, "bart": 75, "7th": 75, "market": 75, "townsend": 75, "269": 75, "94518": 75, "459672": 75, "408": 75, "2014": 75, "harri": 75, "bridg": 75, "plaza": 75, "ferri": 75, "build": 75, "embarcadero": 75, "sansom": 75, "429": 75, "94111": 75, "903647": 75, "723": 75, "26": [75, 77], "san": 75, "francisco": 75, "caltrain": 75, "330": 75, "10th": 75, "67": [75, 77], "631": 75, "94025": 75, "452829": 75, "409": 75, "steuart": 75, "4th": 75, "76": [75, 77], "428": 75, "94925": 75, "491023": 75, "224": 75, "santa": 75, "clara": 75, "almaden": 75, "jose": 75, "diridon": 75, "144": 75, "94117": 75, "723352": 75, "519": 75, "04": 75, "howard": 75, "63": [75, 77], "70": [75, 77], "629": 75, "94061": 75, "524499": 75, "431": 75, "43": [75, 77], "630": 75, "94706": 75, "518524": 75, "389": 75, "28": [75, 77], "77": [75, 77], "park": 75, "458": 75, "94610": 75, "710070": 75, "11460": 75, "powel": 75, "street": 75, "39": [75, 77], "24": [75, 77], "375": 75, "94107": 75, "793149": 75, "bryant": 75, "289": [75, 77], "94105": 75, "99990": 75, "n1": 75, "v1": 75, "n2": 75, "v2": 75, "mani": 75, "33": [75, 77], "cooki": 75, "sugar": 75, "chocol": 75, "chip": 75, "velvet": 75, "oatmeal": 75, "raisin": 75, "peanut": 75, "butter": 75, "quantiti": 75, "delici": 75, "ye": [75, 77], "35": [75, 77], "column_name_or_index": 75, "lt": 75, "u14": 75, "100000": 75, "suppos": 75, "similarli": 75, "rememb": 75, "99995": 75, "46": [75, 77], "47": [75, 77], "old_label": 75, "49": [75, 77], "52": [75, 77], "57": [75, 77], "filter": 75, "avail": [75, 77], "58": [75, 77], "62": [75, 77], "eual_to": 75, "row_index": 75, "68": [75, 77], "actor": 75, "total": 75, "gross": 75, "movi": 75, "harrison": 75, "ford": 75, "4871": 75, "118": 75, "star": 75, "war": 75, "awaken": 75, "936": 75, "samuel": 75, "jackson": 75, "4772": 75, "aveng": 75, "623": 75, "morgan": 75, "freeman": 75, "4468": 75, "61": [75, 77], "73": [75, 77], "dark": 75, "knight": 75, "534": 75, "tom": 75, "hank": 75, "4340": 75, "98": 75, "toi": 75, "stori": 75, "415": 75, "robert": 75, "downei": 75, "jr": 75, "3947": 75, "eddi": 75, "murphi": 75, "3810": 75, "shrek": 75, "441": 75, "cruis": 75, "3587": 75, "world": [75, 76], "234": 75, "johnni": 75, "depp": 75, "3368": 75, "dead": 75, "man": 75, "chest": 75, "423": 75, "michael": 75, "cain": 75, "3351": 75, "scarlett": 75, "johansson": 75, "3341": 75, "x_column": 75, "y_column": 75, "vertic": 75, "find": 75, "movies_by_year": 75, "year": 75, "11128": 75, "702": 75, "10360": 75, "american": 75, "sniper": 75, "2013": 75, "10923": 75, "688": 75, "catch": 75, "fire": 75, "broken": 75, "down": 75, "unspecifi": 75, "78": [75, 77], "79": [75, 77], "ones": [75, 77], "version": 75, "193": 75, "194": 75, "23": [75, 77], "quotient": 75, "average_gross": 75, "total_gross": 75, "num_movi": 75, "82195122": 75, "17101449": 75, "25081967": 75, "65454545": 75, "47735849": 75, "27368421": 75, "64444444": 75, "85777778": 75, "78448276": 75, "3027027": 75, "68421053": 75, "9244898": 75, "15666667": 75, "8372093": 75, "451": 75, "84285714": 75, "62580645": 75, "131": 75, "2125": 75, "478": 75, "67435897": 75, "00379747": 75, "16764706": 75, "70952381": 75, "67826087": 75, "86470588": 75, "40540541": 75, "38888889": 75, "165": 75, "63529412": 75, "316": 75, "86153846": 75, "12619048": 75, "89428571": 75, "425": 75, "157": 75, "75882353": 75, "28913043": 75, "0225": 75, "15625": 75, "154": 75, "96470588": 75, "83103448": 75, "72564103": 75, "25384615": 75, "308": 75, "82777778": 75, "26666667": 75, "65348837": 75, "732": 75, "119": 75, "06190476": 75, "5925": 75, "106": 75, "86086957": 75, "96": 75, "folsom": 75, "2302": 75, "2610": 75, "3904": 75, "5th": 75, "2190": 75, "adob": 75, "arena": 75, "sap": 75, "176": 75, "beal": 75, "2377": 75, "broadwai": 75, "st": 75, "batteri": 75, "2157": 75, "california": 75, "av": 75, "127": 75, "castro": 75, "el": 75, "camino": 75, "real": 75, "339": 75, "512": 75, "887": 75, "654": 75, "565": 75, "755": 75, "819": 75, "509": 75, "2522": 75, "1999": 75, "679": 75, "602": 75, "827": 75, "753": 75, "4403": 75, "1221": 75, "7426": 75, "6114": 75, "4795": 75, "temporari": 75, "transbai": 75, "4212": 75, "3925": 75, "3900": 75, "3872": 75, "3370": 75, "3218": 75, "87": 75, "22": [75, 77], "clai": 75, "commerci": 75, "montgomeri": 75, "davi": 75, "1616": 75, "cell": 75, "more_con": 75, "flavor": 75, "strawberri": 75, "bubblegum": 75, "light": 75, "brown": 75, "tbl1": 75, "tbl2": 75, "cone": 75, "vanilla": 75, "kind": 75, "mint": 75, "97": 75, "rerun": 75, "notic": 75, "certain": 75, "theoret": 75, "sampled_with_replac": 75, "8hiishifun": 75, "hi": [75, 76], "example_str": 75, "fun": 75, "104": 75, "another_str": 75, "secret": 75, "messag": 75, "105": 75, "fun_arrai": 75, "high": 75, "great": [75, 78], "est": 75, "highest": 75, "greatest": 75, "merg": 75, "some_str": 75, "somelistofstr": 75, "old_str": 75, "new_str": 75, "occurr": 75, "107": 75, "berkeley_str": 75, "saw": 75, "friend": 75, "squirrel": 75, "peopl": 75, "flyer": 75, "sproul": 75, "108": [75, 77], "frisbe": 75, "110": 75, "chain": 75, "picnic": 75, "glade": 75, "111": 75, "example_arrai": 75, "112": 75, "113": [75, 77], "114": 75, "115": [75, 77], "absolut": 75, "new_arr": 75, "after": 75, "124": 75, "14159": 75, "142": 75, "130": 75, "val1": 75, "val2": 75, "132": [75, 77], "new_arrai": 75, "134": 75, "133": 75, "deviat": [75, 78], "150": 75, "648699324175862": 75, "input": [75, 77, 78], "x_1": 75, "x_0": 75, "x_2": 75, "x_3": 75, "135": [75, 77], "136": [75, 77], "root": 75, "137": 75, "138": [75, 77], "stop": 75, "step": [75, 77], "increment": 75, "exclus": 75, "139": 75, "140": [75, 77], "143": [75, 77], "146": 75, "147": 75, "149": 75, "152": 75, "nonzero": 75, "valuea": 75, "153": 75, "another_arrai": 75, "159": 75, "160": 75, "161": 75, "percent": 75, "162": 75, "long_arrai": 75, "163": 75, "164": 75, "negat": 75, "preced": 75, "not_": 75, "leav": 75, "166": 75, "824979": 75, "02": 75, "japantown": 75, "hall": 75, "660": 75, "nil": 75, "439946": 75, "yerba": 75, "buena": 75, "art": 75, "452": 75, "788261": 75, "post": 75, "union": 75, "575": 75, "94108": 75, "560479": 75, "van": 75, "ness": 75, "653797": 75, "546": 75, "94102": 75, "887134": 75, "mechan": 75, "313": 75, "94103": 75, "482225": 75, "spear": 75, "209": 75, "94133": 75, "681697": 75, "19": [75, 77], "368": 75, "95120": 75, "912821": 75, "09": 75, "94085": 75, "strictli": 75, "167": 75, "589964": 75, "15097": 75, "golden": 75, "gate": 75, "polk": 75, "29225": 75, "831509": 75, "1057": 75, "94114": 75, "442750": 75, "6084": 75, "474454": 75, "608714": 75, "19799": 75, "07": 75, "univers": 75, "emerson": 75, "686": 75, "711961": 75, "1026": 75, "189": 75, "833071": 75, "2314": 75, "washington": 75, "kearni": 75, "94806": 75, "570731": 75, "1218": 75, "mlk": 75, "jame": 75, "299": [75, 77], "95033": 75, "853698": 75, "1048": 75, "636": 75, "91436": 75, "787510": 75, "3670": 75, "mountain": 75, "713": 75, "94041": 75, "11576": 75, "168": 75, "11597": 75, "170": 75, "482797": 75, "95112": 75, "483052": 75, "306": 75, "569620": 75, "326": 75, "502332": 75, "613": 75, "94602": 75, "604012": 75, "601": 75, "704918": 75, "394": 75, "513458": 75, "569": 75, "696725": 75, "516": 75, "94109": 75, "829817": 75, "292": 75, "94538": 75, "745895": 75, "06": 75, "380": 75, "94947": 75, "403": 75, "171": 75, "808199": 75, "537": 75, "greather": 75, "interv": 75, "172": 75, "437830": 75, "151": 75, "grant": 75, "avenu": 75, "columbu": 75, "94104": 75, "436255": 75, "195": 75, "585884": 75, "576": 75, "548322": 75, "191": 75, "94705": 75, "594999": 75, "185": 75, "antonio": 75, "shop": 75, "94040": 75, "468534": 75, "443": 75, "873710": 75, "169": 75, "532": 75, "853087": 75, "418": 75, "863019": 75, "504": 75, "883134": 75, "173": 75, "363": 75, "5083": 75, "903735": 75, "453": 75, "94501": 75, "5180": 75, "string_or_arrai": 75, "877160": 75, "527": 75, "768619": 75, "840": 75, "94903": 75, "701211": 75, "252": 75, "405": 75, "487432": 75, "561": 75, "342": 75, "610970": 75, "808": 75, "310": 75, "753668": 75, "196": 75, "533": 75, "94973": 75, "466551": 75, "222": 75, "2578": 75, "178": [75, 77], "180": 75, "681771": 75, "895": 75, "416": 75, "78805": 75, "181": 75, "5056": 75, "sample_s": [75, 78], "model_proport": 75, "182": 75, "190": 75, "log": [75, 78], "17585792": 75, "58835469": 75, "summari": 76, "about": 76, "signatur": 76, "howev": 76, "bracket": [76, 77], "That": 76, "first_arg": 76, "second_arg": 76, "some_other_arg": 76, "fourth_arg": 76, "some_t": 76, "But": 76, "syntaxerror": 76, "syntax": 76, "confus": 76, "itself": [76, 78], "detail": 76, "straightforward": 76, "extens": 76, "mutat": 76, "transform": 76, "brief": 77, "introduct": 77, "complet": 77, "guid": 77, "load": 77, "tab": 77, "member": 77, "scienc": 77, "lab": 77, "mirror": 77, "close": 77, "exact": 77, "hidden": 77, "agg": 77, "inlin": 77, "style": 77, "fivethirtyeight": 77, "particular": 77, "involv": 77, "scratch": 77, "often": 77, "excel": 77, "spreadsheet": 77, "cat": 77, "And": 77, "possibl": 77, "discourag": 77, "preserv": 77, "notat": 77, "shorthand": 77, "common": 77, "vowel": 77, "renam": 77, "condition": 77, "third": 77, "actual": 77, "sort": 77, "reduc": 77, "other_t": 77, "mar_statu": 77, "marri": 77, "partner": 77, "empl_statu": 77, "work": 77, "paid": 77, "ll": 77, "normal_data": 77, "loc": 77, "20011": 77, "81614": 77, "94625": 77, "98461": 77, "23617": 77, "33198": 77, "163808": 77, "7598": 77, "13657": 77, "68041": 77, "09672": 77, "5486": 77, "5919": 77, "09641": 77, "28616": 77, "60395": 77, "61927": 77, "99552": 77, "92661": 77, "06488": 77, "nicer": 77, "categor": 77, "to_df": 77, "prevent": 77, "to_csv": 77, "chapter": 77, "signific": 77, "birth": 77, "smoker": 77, "bootstrap": 77, "test": 77, "tabledemo": 77, "repo": 77, "babi": 77, "174": 77, "mother": 77, "newborn": 77, "ounc": 77, "gestat": 77, "womb": 77, "There": 77, "matern": 77, "pregnanc": 77, "let": 77, "peek": 77, "120": 77, "284": 77, "282": 77, "128": 77, "279": 77, "286": 77, "244": 77, "245": 77, "351": 77, "1164": 77, "smoker_and_wt": 77, "715": 77, "459": 77, "birthweight": 77, "grab": 77, "don": 77, "smoke": 77, "nonsmoking_mean": 77, "smoking_mean": 77, "observed_diff": 77, "2661425720249184": 77, "num_nonsmok": 77, "bootstrap_onc": 77, "nonsmok": 77, "bootstrap_diff": 77, "repetit": 77, "bootstrapped_diff_mean": 77, "77816171": 77, "23773786": 77, "50497738": 77, "95732895": 77, "18618462": 77, "90481588": 77, "09267639": 77, "90782028": 77, "84637019": 77, "3219617": 77, "num_diffs_great": 77, "ab": 77, "p_valu": 77, "main": 77, "default_map": 77, "as_html": 77, "open": 77, "store": 77, "is_non_string_iter": 78, "As": 78, "variad": 78, "varad": 78, "u3": 78, "float64": 78, "minim": 78, "smooth": 78, "optim": 78, "scipi": 78, "multi": 78, "percentil": 78, "curri": 78, "plot_cdf_area": 78, "rbound": 78, "lbound": 78, "sd": 78, "curv": 78, "paramet": 78, "boundari": 78, "neg": 78, "infin": 78, "plot_normal_cdf": 78, "proportions_from_distribut": 78, "column_nam": 78, "divid": 78, "throw": 78, "sample_proport": 78, "outcom": 78, "similar": 78, "table_appli": 78, "your": 78}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "titleterms": {"datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "__init__": 0, "append": [1, 75], "append_column": 2, "appli": [3, 75], "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "bin": 8, "boxplot": 9, "column": [10, 12, 75], "column_index": 11, "copi": 13, "drop": [14, 75], "exclud": 15, "first": 16, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "join": [29, 75], "label": [30, 75], "last": 31, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "read_tabl": [42, 75], "relabel": [43, 44, 75], "remov": 45, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "stack": 58, "static_plot": [59, 75], "stat": 60, "take": [61, 75], "to_arrai": 62, "to_csv": 63, "to_df": 64, "valu": [65, 77], "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70], "format": 71, "welcom": 72, "": 72, "document": 72, "refer": [72, 75], "map": [73, 77], "predic": [74, 75], "data": [75, 77], "8": 75, "function": [75, 78], "method": 75, "tbl": 75, "visual": [75, 77], "advanc": 75, "string": 75, "str": 75, "replac": 75, "arrai": 75, "max": 75, "min": 75, "sum": 75, "ab": 75, "round": 75, "num": 75, "len": 75, "make_arrai": 75, "np": 75, "mean": 75, "std": 75, "diff": 75, "sqrt": 75, "arang": 75, "item": 75, "random": 75, "choic": 75, "count_nonzero": 75, "ar": 75, "equal_to": 75, "abov": 75, "above_or_equal_to": 75, "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "contained_in": 75, "contain": 75, "strictly_between": 75, "miscellan": 75, "sample_proport": 75, "minim": 75, "start": 77, "here": 77, "tutori": 77, "content": 77, "get": 77, "creat": 77, "access": 77, "manipul": 77, "export": 77, "an": 77, "exampl": 77, "draw": 77, "util": 78}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "Reference": [[72, "reference"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table()": [[75, "Table()"]], "Table.read_table()": [[75, "Table.read_table()"]], "tbl.with_column": [[75, "tbl.with_column"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.take()": [[75, "tbl.take()"]], "Table Visualizations": [[75, "Table-Visualizations"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.hist()": [[75, "tbl.hist()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.sample()": [[75, "tbl.sample()"]], "String Methods": [[75, "String-Methods"]], "str.split()": [[75, "str.split()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "sum()": [[75, "sum()"]], "abs()": [[75, "abs()"]], "round(num)": [[75, "round(num)"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "np.mean": [[75, "np.mean"]], "np.std()": [[75, "np.std()"]], "np.diff()": [[75, "np.diff()"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.arange()": [[75, "np.arange()"]], "array.item()": [[75, "array.item()"]], "np.random.choice": [[75, "np.random.choice"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.append()": [[75, "np.append()"]], "percentile()": [[75, "percentile()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "sample_proportions()": [[75, "sample_proportions()"]], "minimize()": [[75, "minimize()"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "Table of Contents": [[77, "table-of-contents"]], "Getting Started": [[77, "getting-started"]], "Creating a Table": [[77, "creating-a-table"]], "Accessing Values": [[77, "accessing-values"]], "Manipulating Data": [[77, "manipulating-data"]], "Visualizing Data": [[77, "visualizing-data"]], "Exporting": [[77, "exporting"]], "An Example": [[77, "an-example"]], "Drawing Maps": [[77, "drawing-maps"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]]}, "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__"]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append"]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column"]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply"]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html"]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text"]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar"]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh"]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin"]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot"]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column"]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index"]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns"]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy"]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop"]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude"]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first"]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array"]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict"]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df"]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records"]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group"]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar"]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh"]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups"]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist"]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts"]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by"]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots"]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join"]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels"]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last"]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column"]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end"]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start"]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns"]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows"]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile"]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot"]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin"]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist"]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot"]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table"]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel"]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled"]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove"]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row"]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows"]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample"]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution"]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter"]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d"]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select"]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format"]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show"]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle"]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort"]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split"]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack"]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots"]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats"]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take"]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array"]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv"]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df"]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values"]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where"]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column"]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns"]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row"]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows"]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter"]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter"]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter"]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter"]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter"]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter"]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column"]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column"]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value"]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value"]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value"]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value"]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values"]], "datascience.formats": [[71, "module-datascience.formats"]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc"]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column"]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value"]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value"]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value"]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value"]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value"]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width"]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width"]], "module": [[71, "module-datascience.formats"], [73, "module-datascience.maps"], [74, "module-datascience.predicates"], [78, "module-datascience.util"]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle"]], "map (class in datascience.maps)": [[73, "datascience.maps.Map"]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker"]], "region (class in datascience.maps)": [[73, "datascience.maps.Region"]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color"]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy"]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy"]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy"]], "datascience.maps": [[73, "module-datascience.maps"]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on"]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on"]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on"]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features"]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format"]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format"]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format"]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson"]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson"]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson"]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates"]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons"]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons"]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map"]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table"]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay"]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons"]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties"]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson"]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type"]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above"]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to"]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are"]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below"]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to"]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between"]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to"]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in"]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing"]], "datascience.predicates": [[74, "module-datascience.predicates"]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to"]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above"]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to"]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below"]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to"]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between"]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to"]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in"]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing"]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to"]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between"]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between"]], "datascience.util": [[78, "module-datascience.util"]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable"]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array"]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize"]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile"]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area"]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf"]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution"]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions"]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply"]]}}) \ No newline at end of file +Search.setIndex({"alltitles": {"Accessing Values": [[77, "accessing-values"]], "Advanced Table Functions": [[75, "Advanced-Table-Functions"]], "An Example": [[77, "an-example"]], "Array Functions and Methods": [[75, "Array-Functions-and-Methods"]], "Creating a Table": [[77, "creating-a-table"]], "Data 8 datascience Reference": [[75, "Data-8-datascience-Reference"]], "Drawing Maps": [[77, "drawing-maps"]], "Exporting": [[77, "exporting"]], "Formats (datascience.formats)": [[71, "module-datascience.formats"]], "Getting Started": [[77, "getting-started"]], "Manipulating Data": [[77, "manipulating-data"]], "Maps (datascience.maps)": [[73, "module-datascience.maps"]], "Miscellaneous Functions": [[75, "Miscellaneous-Functions"]], "Predicates (datascience.predicates)": [[74, "module-datascience.predicates"]], "Reference": [[72, "reference"]], "Start Here: datascience Tutorial": [[77, "start-here-datascience-tutorial"]], "String Methods": [[75, "String-Methods"]], "Table Functions and Methods": [[75, "Table-Functions-and-Methods"]], "Table Visualizations": [[75, "Table-Visualizations"]], "Table of Contents": [[77, "table-of-contents"]], "Table()": [[75, "Table()"]], "Table.interactive_plots()": [[75, "Table.interactive_plots()"]], "Table.read_table()": [[75, "Table.read_table()"]], "Table.static_plots()": [[75, "Table.static_plots()"]], "Table.where Predicates": [[75, "Table.where-Predicates"]], "Tables (datascience.tables)": [[76, "tables-datascience-tables"]], "Utility Functions (datascience.util)": [[78, "module-datascience.util"]], "Visualizing Data": [[77, "visualizing-data"]], "Welcome to datascience\u2019s documentation!": [[72, "welcome-to-datascience-s-documentation"]], "abs()": [[75, "abs()"]], "are.above()": [[75, "are.above()"]], "are.above_or_equal_to()": [[75, "are.above_or_equal_to()"]], "are.below()": [[75, "are.below()"]], "are.below_or_equal_to()": [[75, "are.below_or_equal_to()"]], "are.between()": [[75, "are.between()"]], "are.between_or_equal_to()": [[75, "are.between_or_equal_to()"]], "are.contained_in()": [[75, "are.contained_in()"]], "are.containing()": [[75, "are.containing()"]], "are.equal_to()": [[75, "are.equal_to()"]], "are.strictly_between()": [[75, "are.strictly_between()"]], "array.item()": [[75, "array.item()"]], "datascience.tables.Table.__init__": [[0, "datascience-tables-table-init"]], "datascience.tables.Table.append": [[1, "datascience-tables-table-append"]], "datascience.tables.Table.append_column": [[2, "datascience-tables-table-append-column"]], "datascience.tables.Table.apply": [[3, "datascience-tables-table-apply"]], "datascience.tables.Table.as_html": [[4, "datascience-tables-table-as-html"]], "datascience.tables.Table.as_text": [[5, "datascience-tables-table-as-text"]], "datascience.tables.Table.bar": [[6, "datascience-tables-table-bar"]], "datascience.tables.Table.barh": [[7, "datascience-tables-table-barh"]], "datascience.tables.Table.bin": [[8, "datascience-tables-table-bin"]], "datascience.tables.Table.boxplot": [[9, "datascience-tables-table-boxplot"]], "datascience.tables.Table.column": [[10, "datascience-tables-table-column"]], "datascience.tables.Table.column_index": [[11, "datascience-tables-table-column-index"]], "datascience.tables.Table.columns": [[12, "datascience-tables-table-columns"]], "datascience.tables.Table.copy": [[13, "datascience-tables-table-copy"]], "datascience.tables.Table.drop": [[14, "datascience-tables-table-drop"]], "datascience.tables.Table.exclude": [[15, "datascience-tables-table-exclude"]], "datascience.tables.Table.first": [[16, "datascience-tables-table-first"]], "datascience.tables.Table.from_array": [[17, "datascience-tables-table-from-array"]], "datascience.tables.Table.from_columns_dict": [[18, "datascience-tables-table-from-columns-dict"]], "datascience.tables.Table.from_df": [[19, "datascience-tables-table-from-df"]], "datascience.tables.Table.from_records": [[20, "datascience-tables-table-from-records"]], "datascience.tables.Table.group": [[21, "datascience-tables-table-group"]], "datascience.tables.Table.group_bar": [[22, "datascience-tables-table-group-bar"]], "datascience.tables.Table.group_barh": [[23, "datascience-tables-table-group-barh"]], "datascience.tables.Table.groups": [[24, "datascience-tables-table-groups"]], "datascience.tables.Table.hist": [[25, "datascience-tables-table-hist"]], "datascience.tables.Table.hist_of_counts": [[26, "datascience-tables-table-hist-of-counts"]], "datascience.tables.Table.index_by": [[27, "datascience-tables-table-index-by"]], "datascience.tables.Table.interactive_plots": [[28, "datascience-tables-table-interactive-plots"]], "datascience.tables.Table.join": [[29, "datascience-tables-table-join"]], "datascience.tables.Table.labels": [[30, "datascience-tables-table-labels"]], "datascience.tables.Table.last": [[31, "datascience-tables-table-last"]], "datascience.tables.Table.move_column": [[32, "datascience-tables-table-move-column"]], "datascience.tables.Table.move_to_end": [[33, "datascience-tables-table-move-to-end"]], "datascience.tables.Table.move_to_start": [[34, "datascience-tables-table-move-to-start"]], "datascience.tables.Table.num_columns": [[35, "datascience-tables-table-num-columns"]], "datascience.tables.Table.num_rows": [[36, "datascience-tables-table-num-rows"]], "datascience.tables.Table.percentile": [[37, "datascience-tables-table-percentile"]], "datascience.tables.Table.pivot": [[38, "datascience-tables-table-pivot"]], "datascience.tables.Table.pivot_bin": [[39, "datascience-tables-table-pivot-bin"]], "datascience.tables.Table.pivot_hist": [[40, "datascience-tables-table-pivot-hist"]], "datascience.tables.Table.plot": [[41, "datascience-tables-table-plot"]], "datascience.tables.Table.read_table": [[42, "datascience-tables-table-read-table"]], "datascience.tables.Table.relabel": [[43, "datascience-tables-table-relabel"]], "datascience.tables.Table.relabeled": [[44, "datascience-tables-table-relabeled"]], "datascience.tables.Table.remove": [[45, "datascience-tables-table-remove"]], "datascience.tables.Table.row": [[46, "datascience-tables-table-row"]], "datascience.tables.Table.rows": [[47, "datascience-tables-table-rows"]], "datascience.tables.Table.sample": [[48, "datascience-tables-table-sample"]], "datascience.tables.Table.sample_from_distribution": [[49, "datascience-tables-table-sample-from-distribution"]], "datascience.tables.Table.scatter": [[50, "datascience-tables-table-scatter"]], "datascience.tables.Table.scatter3d": [[51, "datascience-tables-table-scatter3d"]], "datascience.tables.Table.select": [[52, "datascience-tables-table-select"]], "datascience.tables.Table.set_format": [[53, "datascience-tables-table-set-format"]], "datascience.tables.Table.show": [[54, "datascience-tables-table-show"]], "datascience.tables.Table.shuffle": [[55, "datascience-tables-table-shuffle"]], "datascience.tables.Table.sort": [[56, "datascience-tables-table-sort"]], "datascience.tables.Table.split": [[57, "datascience-tables-table-split"]], "datascience.tables.Table.stack": [[58, "datascience-tables-table-stack"]], "datascience.tables.Table.static_plots": [[59, "datascience-tables-table-static-plots"]], "datascience.tables.Table.stats": [[60, "datascience-tables-table-stats"]], "datascience.tables.Table.take": [[61, "datascience-tables-table-take"]], "datascience.tables.Table.to_array": [[62, "datascience-tables-table-to-array"]], "datascience.tables.Table.to_csv": [[63, "datascience-tables-table-to-csv"]], "datascience.tables.Table.to_df": [[64, "datascience-tables-table-to-df"]], "datascience.tables.Table.values": [[65, "datascience-tables-table-values"]], "datascience.tables.Table.where": [[66, "datascience-tables-table-where"]], "datascience.tables.Table.with_column": [[67, "datascience-tables-table-with-column"]], "datascience.tables.Table.with_columns": [[68, "datascience-tables-table-with-columns"]], "datascience.tables.Table.with_row": [[69, "datascience-tables-table-with-row"]], "datascience.tables.Table.with_rows": [[70, "datascience-tables-table-with-rows"]], "len()": [[75, "len()"]], "make_array()": [[75, "make_array()"]], "max()": [[75, "max()"]], "min()": [[75, "min()"]], "minimize()": [[75, "minimize()"]], "np.append()": [[75, "np.append()"]], "np.arange()": [[75, "np.arange()"]], "np.count_nonzero()": [[75, "np.count_nonzero()"]], "np.diff()": [[75, "np.diff()"]], "np.mean": [[75, "np.mean"]], "np.random.choice": [[75, "np.random.choice"]], "np.sqrt()": [[75, "np.sqrt()"]], "np.std()": [[75, "np.std()"]], "percentile()": [[75, "percentile()"]], "round(num)": [[75, "round(num)"]], "sample_proportions()": [[75, "sample_proportions()"]], "str.join()": [[75, "str.join()"]], "str.replace()": [[75, "str.replace()"]], "str.split()": [[75, "str.split()"]], "sum()": [[75, "sum()"]], "tbl.apply()": [[75, "tbl.apply()"]], "tbl.barh()": [[75, "tbl.barh()"]], "tbl.column()": [[75, "tbl.column()"]], "tbl.drop()": [[75, "tbl.drop()"]], "tbl.group()": [[75, "tbl.group()"]], "tbl.hist()": [[75, "tbl.hist()"]], "tbl.join()": [[75, "tbl.join()"]], "tbl.labels": [[75, "tbl.labels"]], "tbl.num_columns": [[75, "tbl.num_columns"]], "tbl.num_rows": [[75, "tbl.num_rows"]], "tbl.pivot()": [[75, "tbl.pivot()"]], "tbl.plot()": [[75, "tbl.plot()"]], "tbl.relabel()": [[75, "tbl.relabel()"]], "tbl.sample()": [[75, "tbl.sample()"]], "tbl.scatter()": [[75, "tbl.scatter()"]], "tbl.select()": [[75, "tbl.select()"]], "tbl.show()": [[75, "tbl.show()"]], "tbl.sort()": [[75, "tbl.sort()"]], "tbl.take()": [[75, "tbl.take()"]], "tbl.where()": [[75, "tbl.where()"]], "tbl.with_column": [[75, "tbl.with_column"]]}, "docnames": ["_autosummary/datascience.tables.Table.__init__", "_autosummary/datascience.tables.Table.append", "_autosummary/datascience.tables.Table.append_column", "_autosummary/datascience.tables.Table.apply", "_autosummary/datascience.tables.Table.as_html", "_autosummary/datascience.tables.Table.as_text", "_autosummary/datascience.tables.Table.bar", "_autosummary/datascience.tables.Table.barh", "_autosummary/datascience.tables.Table.bin", "_autosummary/datascience.tables.Table.boxplot", "_autosummary/datascience.tables.Table.column", "_autosummary/datascience.tables.Table.column_index", "_autosummary/datascience.tables.Table.columns", "_autosummary/datascience.tables.Table.copy", "_autosummary/datascience.tables.Table.drop", "_autosummary/datascience.tables.Table.exclude", "_autosummary/datascience.tables.Table.first", "_autosummary/datascience.tables.Table.from_array", "_autosummary/datascience.tables.Table.from_columns_dict", "_autosummary/datascience.tables.Table.from_df", "_autosummary/datascience.tables.Table.from_records", "_autosummary/datascience.tables.Table.group", "_autosummary/datascience.tables.Table.group_bar", "_autosummary/datascience.tables.Table.group_barh", "_autosummary/datascience.tables.Table.groups", "_autosummary/datascience.tables.Table.hist", "_autosummary/datascience.tables.Table.hist_of_counts", "_autosummary/datascience.tables.Table.index_by", "_autosummary/datascience.tables.Table.interactive_plots", "_autosummary/datascience.tables.Table.join", "_autosummary/datascience.tables.Table.labels", "_autosummary/datascience.tables.Table.last", "_autosummary/datascience.tables.Table.move_column", "_autosummary/datascience.tables.Table.move_to_end", "_autosummary/datascience.tables.Table.move_to_start", "_autosummary/datascience.tables.Table.num_columns", "_autosummary/datascience.tables.Table.num_rows", "_autosummary/datascience.tables.Table.percentile", "_autosummary/datascience.tables.Table.pivot", "_autosummary/datascience.tables.Table.pivot_bin", "_autosummary/datascience.tables.Table.pivot_hist", "_autosummary/datascience.tables.Table.plot", "_autosummary/datascience.tables.Table.read_table", "_autosummary/datascience.tables.Table.relabel", "_autosummary/datascience.tables.Table.relabeled", "_autosummary/datascience.tables.Table.remove", "_autosummary/datascience.tables.Table.row", "_autosummary/datascience.tables.Table.rows", "_autosummary/datascience.tables.Table.sample", "_autosummary/datascience.tables.Table.sample_from_distribution", "_autosummary/datascience.tables.Table.scatter", "_autosummary/datascience.tables.Table.scatter3d", "_autosummary/datascience.tables.Table.select", "_autosummary/datascience.tables.Table.set_format", "_autosummary/datascience.tables.Table.show", "_autosummary/datascience.tables.Table.shuffle", "_autosummary/datascience.tables.Table.sort", "_autosummary/datascience.tables.Table.split", "_autosummary/datascience.tables.Table.stack", "_autosummary/datascience.tables.Table.static_plots", "_autosummary/datascience.tables.Table.stats", "_autosummary/datascience.tables.Table.take", "_autosummary/datascience.tables.Table.to_array", "_autosummary/datascience.tables.Table.to_csv", "_autosummary/datascience.tables.Table.to_df", "_autosummary/datascience.tables.Table.values", "_autosummary/datascience.tables.Table.where", "_autosummary/datascience.tables.Table.with_column", "_autosummary/datascience.tables.Table.with_columns", "_autosummary/datascience.tables.Table.with_row", "_autosummary/datascience.tables.Table.with_rows", "formats", "index", "maps", "predicates", "reference-nb/datascience-reference", "tables", "tutorial", "util"], "envversion": {"nbsphinx": 4, "sphinx": 61, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.viewcode": 1}, "filenames": ["_autosummary/datascience.tables.Table.__init__.rst", "_autosummary/datascience.tables.Table.append.rst", "_autosummary/datascience.tables.Table.append_column.rst", "_autosummary/datascience.tables.Table.apply.rst", "_autosummary/datascience.tables.Table.as_html.rst", "_autosummary/datascience.tables.Table.as_text.rst", "_autosummary/datascience.tables.Table.bar.rst", "_autosummary/datascience.tables.Table.barh.rst", "_autosummary/datascience.tables.Table.bin.rst", "_autosummary/datascience.tables.Table.boxplot.rst", "_autosummary/datascience.tables.Table.column.rst", "_autosummary/datascience.tables.Table.column_index.rst", "_autosummary/datascience.tables.Table.columns.rst", "_autosummary/datascience.tables.Table.copy.rst", "_autosummary/datascience.tables.Table.drop.rst", "_autosummary/datascience.tables.Table.exclude.rst", "_autosummary/datascience.tables.Table.first.rst", "_autosummary/datascience.tables.Table.from_array.rst", "_autosummary/datascience.tables.Table.from_columns_dict.rst", "_autosummary/datascience.tables.Table.from_df.rst", "_autosummary/datascience.tables.Table.from_records.rst", "_autosummary/datascience.tables.Table.group.rst", "_autosummary/datascience.tables.Table.group_bar.rst", "_autosummary/datascience.tables.Table.group_barh.rst", "_autosummary/datascience.tables.Table.groups.rst", "_autosummary/datascience.tables.Table.hist.rst", "_autosummary/datascience.tables.Table.hist_of_counts.rst", "_autosummary/datascience.tables.Table.index_by.rst", "_autosummary/datascience.tables.Table.interactive_plots.rst", "_autosummary/datascience.tables.Table.join.rst", "_autosummary/datascience.tables.Table.labels.rst", "_autosummary/datascience.tables.Table.last.rst", "_autosummary/datascience.tables.Table.move_column.rst", "_autosummary/datascience.tables.Table.move_to_end.rst", "_autosummary/datascience.tables.Table.move_to_start.rst", "_autosummary/datascience.tables.Table.num_columns.rst", "_autosummary/datascience.tables.Table.num_rows.rst", "_autosummary/datascience.tables.Table.percentile.rst", "_autosummary/datascience.tables.Table.pivot.rst", "_autosummary/datascience.tables.Table.pivot_bin.rst", "_autosummary/datascience.tables.Table.pivot_hist.rst", "_autosummary/datascience.tables.Table.plot.rst", "_autosummary/datascience.tables.Table.read_table.rst", "_autosummary/datascience.tables.Table.relabel.rst", "_autosummary/datascience.tables.Table.relabeled.rst", "_autosummary/datascience.tables.Table.remove.rst", "_autosummary/datascience.tables.Table.row.rst", "_autosummary/datascience.tables.Table.rows.rst", "_autosummary/datascience.tables.Table.sample.rst", "_autosummary/datascience.tables.Table.sample_from_distribution.rst", "_autosummary/datascience.tables.Table.scatter.rst", "_autosummary/datascience.tables.Table.scatter3d.rst", "_autosummary/datascience.tables.Table.select.rst", "_autosummary/datascience.tables.Table.set_format.rst", "_autosummary/datascience.tables.Table.show.rst", "_autosummary/datascience.tables.Table.shuffle.rst", "_autosummary/datascience.tables.Table.sort.rst", "_autosummary/datascience.tables.Table.split.rst", "_autosummary/datascience.tables.Table.stack.rst", "_autosummary/datascience.tables.Table.static_plots.rst", "_autosummary/datascience.tables.Table.stats.rst", "_autosummary/datascience.tables.Table.take.rst", "_autosummary/datascience.tables.Table.to_array.rst", "_autosummary/datascience.tables.Table.to_csv.rst", "_autosummary/datascience.tables.Table.to_df.rst", "_autosummary/datascience.tables.Table.values.rst", "_autosummary/datascience.tables.Table.where.rst", "_autosummary/datascience.tables.Table.with_column.rst", "_autosummary/datascience.tables.Table.with_columns.rst", "_autosummary/datascience.tables.Table.with_row.rst", "_autosummary/datascience.tables.Table.with_rows.rst", "formats.rst", "index.rst", "maps.rst", "predicates.rst", "reference-nb/datascience-reference.ipynb", "tables.rst", "tutorial.rst", "util.rst"], "indexentries": {"__init__() (datascience.tables.table method)": [[0, "datascience.tables.Table.__init__", false]], "above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above", false]], "above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.above_or_equal_to", false]], "append() (datascience.tables.table method)": [[1, "datascience.tables.Table.append", false]], "append_column() (datascience.tables.table method)": [[2, "datascience.tables.Table.append_column", false]], "apply() (datascience.tables.table method)": [[3, "datascience.tables.Table.apply", false]], "are (class in datascience.predicates)": [[74, "datascience.predicates.are", false]], "as_html() (datascience.tables.table method)": [[4, "datascience.tables.Table.as_html", false]], "as_text() (datascience.tables.table method)": [[5, "datascience.tables.Table.as_text", false]], "bar() (datascience.tables.table method)": [[6, "datascience.tables.Table.bar", false]], "barh() (datascience.tables.table method)": [[7, "datascience.tables.Table.barh", false]], "below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below", false]], "below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.below_or_equal_to", false]], "between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between", false]], "between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.between_or_equal_to", false]], "bin() (datascience.tables.table method)": [[8, "datascience.tables.Table.bin", false]], "boxplot() (datascience.tables.table method)": [[9, "datascience.tables.Table.boxplot", false]], "circle (class in datascience.maps)": [[73, "datascience.maps.Circle", false]], "color() (datascience.maps.map method)": [[73, "datascience.maps.Map.color", false]], "column() (datascience.tables.table method)": [[10, "datascience.tables.Table.column", false]], "column_index() (datascience.tables.table method)": [[11, "datascience.tables.Table.column_index", false]], "columns (datascience.tables.table property)": [[12, "datascience.tables.Table.columns", false]], "contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.contained_in", false]], "containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.containing", false]], "convert_column() (datascience.formats.distributionformatter method)": [[71, "datascience.formats.DistributionFormatter.convert_column", false]], "convert_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.convert_column", false]], "convert_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.convert_value", false]], "convert_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.convert_value", false]], "convert_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.convert_value", false]], "convert_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.convert_value", false]], "converts_values (datascience.formats.formatter property)": [[71, "datascience.formats.Formatter.converts_values", false]], "copy() (datascience.maps.map method)": [[73, "datascience.maps.Map.copy", false]], "copy() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.copy", false]], "copy() (datascience.maps.region method)": [[73, "datascience.maps.Region.copy", false]], "copy() (datascience.tables.table method)": [[13, "datascience.tables.Table.copy", false]], "currencyformatter (class in datascience.formats)": [[71, "datascience.formats.CurrencyFormatter", false]], "datascience.formats": [[71, "module-datascience.formats", false]], "datascience.maps": [[73, "module-datascience.maps", false]], "datascience.predicates": [[74, "module-datascience.predicates", false]], "datascience.util": [[78, "module-datascience.util", false]], "dateformatter (class in datascience.formats)": [[71, "datascience.formats.DateFormatter", false]], "distributionformatter (class in datascience.formats)": [[71, "datascience.formats.DistributionFormatter", false]], "draw_on() (datascience.maps.circle method)": [[73, "datascience.maps.Circle.draw_on", false]], "draw_on() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.draw_on", false]], "draw_on() (datascience.maps.region method)": [[73, "datascience.maps.Region.draw_on", false]], "drop() (datascience.tables.table method)": [[14, "datascience.tables.Table.drop", false]], "equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.equal_to", false]], "etc (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.etc", false]], "exclude() (datascience.tables.table method)": [[15, "datascience.tables.Table.exclude", false]], "features (datascience.maps.map property)": [[73, "datascience.maps.Map.features", false]], "first() (datascience.tables.table method)": [[16, "datascience.tables.Table.first", false]], "format() (datascience.maps.map method)": [[73, "datascience.maps.Map.format", false]], "format() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.format", false]], "format() (datascience.maps.region method)": [[73, "datascience.maps.Region.format", false]], "format_column() (datascience.formats.formatter method)": [[71, "datascience.formats.Formatter.format_column", false]], "format_value() (datascience.formats.currencyformatter method)": [[71, "datascience.formats.CurrencyFormatter.format_value", false]], "format_value() (datascience.formats.dateformatter method)": [[71, "datascience.formats.DateFormatter.format_value", false]], "format_value() (datascience.formats.formatter static method)": [[71, "datascience.formats.Formatter.format_value", false]], "format_value() (datascience.formats.numberformatter method)": [[71, "datascience.formats.NumberFormatter.format_value", false]], "format_value() (datascience.formats.percentformatter method)": [[71, "datascience.formats.PercentFormatter.format_value", false]], "formatter (class in datascience.formats)": [[71, "datascience.formats.Formatter", false]], "from_array() (datascience.tables.table class method)": [[17, "datascience.tables.Table.from_array", false]], "from_columns_dict() (datascience.tables.table class method)": [[18, "datascience.tables.Table.from_columns_dict", false]], "from_df() (datascience.tables.table class method)": [[19, "datascience.tables.Table.from_df", false]], "from_records() (datascience.tables.table class method)": [[20, "datascience.tables.Table.from_records", false]], "geojson() (datascience.maps.map method)": [[73, "datascience.maps.Map.geojson", false]], "geojson() (datascience.maps.marker method)": [[73, "datascience.maps.Marker.geojson", false]], "geojson() (datascience.maps.region method)": [[73, "datascience.maps.Region.geojson", false]], "get_coordinates() (in module datascience.maps)": [[73, "datascience.maps.get_coordinates", false]], "group() (datascience.tables.table method)": [[21, "datascience.tables.Table.group", false]], "group_bar() (datascience.tables.table method)": [[22, "datascience.tables.Table.group_bar", false]], "group_barh() (datascience.tables.table method)": [[23, "datascience.tables.Table.group_barh", false]], "groups() (datascience.tables.table method)": [[24, "datascience.tables.Table.groups", false]], "hist() (datascience.tables.table method)": [[25, "datascience.tables.Table.hist", false]], "hist_of_counts() (datascience.tables.table method)": [[26, "datascience.tables.Table.hist_of_counts", false]], "index_by() (datascience.tables.table method)": [[27, "datascience.tables.Table.index_by", false]], "interactive_plots() (datascience.tables.table class method)": [[28, "datascience.tables.Table.interactive_plots", false]], "is_non_string_iterable() (in module datascience.util)": [[78, "datascience.util.is_non_string_iterable", false]], "join() (datascience.tables.table method)": [[29, "datascience.tables.Table.join", false]], "labels (datascience.tables.table property)": [[30, "datascience.tables.Table.labels", false]], "last() (datascience.tables.table method)": [[31, "datascience.tables.Table.last", false]], "lat_lons (datascience.maps.marker property)": [[73, "datascience.maps.Marker.lat_lons", false]], "lat_lons (datascience.maps.region property)": [[73, "datascience.maps.Region.lat_lons", false]], "make_array() (in module datascience.util)": [[78, "datascience.util.make_array", false]], "map (class in datascience.maps)": [[73, "datascience.maps.Map", false]], "map() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map", false]], "map_table() (datascience.maps.marker class method)": [[73, "datascience.maps.Marker.map_table", false]], "marker (class in datascience.maps)": [[73, "datascience.maps.Marker", false]], "max_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.max_width", false]], "min_width (datascience.formats.formatter attribute)": [[71, "datascience.formats.Formatter.min_width", false]], "minimize() (in module datascience.util)": [[78, "datascience.util.minimize", false]], "module": [[71, "module-datascience.formats", false], [73, "module-datascience.maps", false], [74, "module-datascience.predicates", false], [78, "module-datascience.util", false]], "move_column() (datascience.tables.table method)": [[32, "datascience.tables.Table.move_column", false]], "move_to_end() (datascience.tables.table method)": [[33, "datascience.tables.Table.move_to_end", false]], "move_to_start() (datascience.tables.table method)": [[34, "datascience.tables.Table.move_to_start", false]], "not_above() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above", false]], "not_above_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_above_or_equal_to", false]], "not_below() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below", false]], "not_below_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_below_or_equal_to", false]], "not_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between", false]], "not_between_or_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_between_or_equal_to", false]], "not_contained_in() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_contained_in", false]], "not_containing() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_containing", false]], "not_equal_to() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_equal_to", false]], "not_strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.not_strictly_between", false]], "num_columns (datascience.tables.table property)": [[35, "datascience.tables.Table.num_columns", false]], "num_rows (datascience.tables.table property)": [[36, "datascience.tables.Table.num_rows", false]], "numberformatter (class in datascience.formats)": [[71, "datascience.formats.NumberFormatter", false]], "overlay() (datascience.maps.map method)": [[73, "datascience.maps.Map.overlay", false]], "percentformatter (class in datascience.formats)": [[71, "datascience.formats.PercentFormatter", false]], "percentile() (datascience.tables.table method)": [[37, "datascience.tables.Table.percentile", false]], "percentile() (in module datascience.util)": [[78, "datascience.util.percentile", false]], "pivot() (datascience.tables.table method)": [[38, "datascience.tables.Table.pivot", false]], "pivot_bin() (datascience.tables.table method)": [[39, "datascience.tables.Table.pivot_bin", false]], "pivot_hist() (datascience.tables.table method)": [[40, "datascience.tables.Table.pivot_hist", false]], "plot() (datascience.tables.table method)": [[41, "datascience.tables.Table.plot", false]], "plot_cdf_area() (in module datascience.util)": [[78, "datascience.util.plot_cdf_area", false]], "plot_normal_cdf() (in module datascience.util)": [[78, "datascience.util.plot_normal_cdf", false]], "polygons (datascience.maps.region property)": [[73, "datascience.maps.Region.polygons", false]], "properties (datascience.maps.region property)": [[73, "datascience.maps.Region.properties", false]], "proportions_from_distribution() (in module datascience.util)": [[78, "datascience.util.proportions_from_distribution", false]], "read_geojson() (datascience.maps.map class method)": [[73, "datascience.maps.Map.read_geojson", false]], "read_table() (datascience.tables.table class method)": [[42, "datascience.tables.Table.read_table", false]], "region (class in datascience.maps)": [[73, "datascience.maps.Region", false]], "relabel() (datascience.tables.table method)": [[43, "datascience.tables.Table.relabel", false]], "relabeled() (datascience.tables.table method)": [[44, "datascience.tables.Table.relabeled", false]], "remove() (datascience.tables.table method)": [[45, "datascience.tables.Table.remove", false]], "row() (datascience.tables.table method)": [[46, "datascience.tables.Table.row", false]], "rows (datascience.tables.table property)": [[47, "datascience.tables.Table.rows", false]], "sample() (datascience.tables.table method)": [[48, "datascience.tables.Table.sample", false]], "sample_from_distribution() (datascience.tables.table method)": [[49, "datascience.tables.Table.sample_from_distribution", false]], "sample_proportions() (in module datascience.util)": [[78, "datascience.util.sample_proportions", false]], "scatter() (datascience.tables.table method)": [[50, "datascience.tables.Table.scatter", false]], "scatter3d() (datascience.tables.table method)": [[51, "datascience.tables.Table.scatter3d", false]], "select() (datascience.tables.table method)": [[52, "datascience.tables.Table.select", false]], "set_format() (datascience.tables.table method)": [[53, "datascience.tables.Table.set_format", false]], "show() (datascience.tables.table method)": [[54, "datascience.tables.Table.show", false]], "shuffle() (datascience.tables.table method)": [[55, "datascience.tables.Table.shuffle", false]], "sort() (datascience.tables.table method)": [[56, "datascience.tables.Table.sort", false]], "split() (datascience.tables.table method)": [[57, "datascience.tables.Table.split", false]], "stack() (datascience.tables.table method)": [[58, "datascience.tables.Table.stack", false]], "static_plots() (datascience.tables.table class method)": [[59, "datascience.tables.Table.static_plots", false]], "stats() (datascience.tables.table method)": [[60, "datascience.tables.Table.stats", false]], "strictly_between() (datascience.predicates.are static method)": [[74, "datascience.predicates.are.strictly_between", false]], "table_apply() (in module datascience.util)": [[78, "datascience.util.table_apply", false]], "take() (datascience.tables.table method)": [[61, "datascience.tables.Table.take", false]], "to_array() (datascience.tables.table method)": [[62, "datascience.tables.Table.to_array", false]], "to_csv() (datascience.tables.table method)": [[63, "datascience.tables.Table.to_csv", false]], "to_df() (datascience.tables.table method)": [[64, "datascience.tables.Table.to_df", false]], "type (datascience.maps.region property)": [[73, "datascience.maps.Region.type", false]], "values (datascience.tables.table property)": [[65, "datascience.tables.Table.values", false]], "where() (datascience.tables.table method)": [[66, "datascience.tables.Table.where", false]], "with_column() (datascience.tables.table method)": [[67, "datascience.tables.Table.with_column", false]], "with_columns() (datascience.tables.table method)": [[68, "datascience.tables.Table.with_columns", false]], "with_row() (datascience.tables.table method)": [[69, "datascience.tables.Table.with_row", false]], "with_rows() (datascience.tables.table method)": [[70, "datascience.tables.Table.with_rows", false]]}, "objects": {"datascience": [[71, 0, 0, "-", "formats"], [73, 0, 0, "-", "maps"], [74, 0, 0, "-", "predicates"], [78, 0, 0, "-", "util"]], "datascience.formats": [[71, 1, 1, "", "CurrencyFormatter"], [71, 1, 1, "", "DateFormatter"], [71, 1, 1, "", "DistributionFormatter"], [71, 1, 1, "", "Formatter"], [71, 1, 1, "", "NumberFormatter"], [71, 1, 1, "", "PercentFormatter"]], "datascience.formats.CurrencyFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DateFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.DistributionFormatter": [[71, 2, 1, "", "convert_column"]], "datascience.formats.Formatter": [[71, 2, 1, "", "convert_column"], [71, 2, 1, "", "convert_value"], [71, 3, 1, "", "converts_values"], [71, 4, 1, "", "etc"], [71, 2, 1, "", "format_column"], [71, 2, 1, "", "format_value"], [71, 4, 1, "", "max_width"], [71, 4, 1, "", "min_width"]], "datascience.formats.NumberFormatter": [[71, 2, 1, "", "convert_value"], [71, 2, 1, "", "format_value"]], "datascience.formats.PercentFormatter": [[71, 2, 1, "", "format_value"]], "datascience.maps": [[73, 1, 1, "", "Circle"], [73, 1, 1, "", "Map"], [73, 1, 1, "", "Marker"], [73, 1, 1, "", "Region"], [73, 5, 1, "", "get_coordinates"]], "datascience.maps.Circle": [[73, 2, 1, "", "draw_on"]], "datascience.maps.Map": [[73, 2, 1, "", "color"], [73, 2, 1, "", "copy"], [73, 3, 1, "", "features"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 2, 1, "", "overlay"], [73, 2, 1, "", "read_geojson"]], "datascience.maps.Marker": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 2, 1, "", "map"], [73, 2, 1, "", "map_table"]], "datascience.maps.Region": [[73, 2, 1, "", "copy"], [73, 2, 1, "", "draw_on"], [73, 2, 1, "", "format"], [73, 2, 1, "", "geojson"], [73, 3, 1, "", "lat_lons"], [73, 3, 1, "", "polygons"], [73, 3, 1, "", "properties"], [73, 3, 1, "", "type"]], "datascience.predicates": [[74, 1, 1, "", "are"]], "datascience.predicates.are": [[74, 2, 1, "", "above"], [74, 2, 1, "", "above_or_equal_to"], [74, 2, 1, "", "below"], [74, 2, 1, "", "below_or_equal_to"], [74, 2, 1, "", "between"], [74, 2, 1, "", "between_or_equal_to"], [74, 2, 1, "", "contained_in"], [74, 2, 1, "", "containing"], [74, 2, 1, "", "equal_to"], [74, 2, 1, "", "not_above"], [74, 2, 1, "", "not_above_or_equal_to"], [74, 2, 1, "", "not_below"], [74, 2, 1, "", "not_below_or_equal_to"], [74, 2, 1, "", "not_between"], [74, 2, 1, "", "not_between_or_equal_to"], [74, 2, 1, "", "not_contained_in"], [74, 2, 1, "", "not_containing"], [74, 2, 1, "", "not_equal_to"], [74, 2, 1, "", "not_strictly_between"], [74, 2, 1, "", "strictly_between"]], "datascience.tables.Table": [[0, 2, 1, "", "__init__"], [1, 2, 1, "", "append"], [2, 2, 1, "", "append_column"], [3, 2, 1, "", "apply"], [4, 2, 1, "", "as_html"], [5, 2, 1, "", "as_text"], [6, 2, 1, "", "bar"], [7, 2, 1, "", "barh"], [8, 2, 1, "", "bin"], [9, 2, 1, "", "boxplot"], [10, 2, 1, "", "column"], [11, 2, 1, "", "column_index"], [12, 3, 1, "", "columns"], [13, 2, 1, "", "copy"], [14, 2, 1, "", "drop"], [15, 2, 1, "", "exclude"], [16, 2, 1, "", "first"], [17, 2, 1, "", "from_array"], [18, 2, 1, "", "from_columns_dict"], [19, 2, 1, "", "from_df"], [20, 2, 1, "", "from_records"], [21, 2, 1, "", "group"], [22, 2, 1, "", "group_bar"], [23, 2, 1, "", "group_barh"], [24, 2, 1, "", "groups"], [25, 2, 1, "", "hist"], [26, 2, 1, "", "hist_of_counts"], [27, 2, 1, "", "index_by"], [28, 2, 1, "", "interactive_plots"], [29, 2, 1, "", "join"], [30, 3, 1, "", "labels"], [31, 2, 1, "", "last"], [32, 2, 1, "", "move_column"], [33, 2, 1, "", "move_to_end"], [34, 2, 1, "", "move_to_start"], [35, 3, 1, "", "num_columns"], [36, 3, 1, "", "num_rows"], [37, 2, 1, "", "percentile"], [38, 2, 1, "", "pivot"], [39, 2, 1, "", "pivot_bin"], [40, 2, 1, "", "pivot_hist"], [41, 2, 1, "", "plot"], [42, 2, 1, "", "read_table"], [43, 2, 1, "", "relabel"], [44, 2, 1, "", "relabeled"], [45, 2, 1, "", "remove"], [46, 2, 1, "", "row"], [47, 3, 1, "", "rows"], [48, 2, 1, "", "sample"], [49, 2, 1, "", "sample_from_distribution"], [50, 2, 1, "", "scatter"], [51, 2, 1, "", "scatter3d"], [52, 2, 1, "", "select"], [53, 2, 1, "", "set_format"], [54, 2, 1, "", "show"], [55, 2, 1, "", "shuffle"], [56, 2, 1, "", "sort"], [57, 2, 1, "", "split"], [58, 2, 1, "", "stack"], [59, 2, 1, "", "static_plots"], [60, 2, 1, "", "stats"], [61, 2, 1, "", "take"], [62, 2, 1, "", "to_array"], [63, 2, 1, "", "to_csv"], [64, 2, 1, "", "to_df"], [65, 3, 1, "", "values"], [66, 2, 1, "", "where"], [67, 2, 1, "", "with_column"], [68, 2, 1, "", "with_columns"], [69, 2, 1, "", "with_row"], [70, 2, 1, "", "with_rows"]], "datascience.util": [[78, 5, 1, "", "is_non_string_iterable"], [78, 5, 1, "", "make_array"], [78, 5, 1, "", "minimize"], [78, 5, 1, "", "percentile"], [78, 5, 1, "", "plot_cdf_area"], [78, 5, 1, "", "plot_normal_cdf"], [78, 5, 1, "", "proportions_from_distribution"], [78, 5, 1, "", "sample_proportions"], [78, 5, 1, "", "table_apply"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "property", "Python property"], "4": ["py", "attribute", "Python attribute"], "5": ["py", "function", "Python function"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:property", "4": "py:attribute", "5": "py:function"}, "terms": {"": [13, 20, 22, 23, 33, 34, 38, 43, 44, 50, 51, 53, 60, 64, 66, 71, 73, 74, 75, 76, 77], "0": [3, 4, 5, 8, 11, 14, 15, 19, 25, 28, 32, 38, 39, 41, 45, 48, 49, 50, 51, 52, 54, 59, 60, 61, 64, 66, 68, 71, 72, 73, 75, 77, 78], "00": [21, 24, 28, 41, 56, 59, 66, 71, 75], "000": [68, 71], "00379747": 75, "00782": 77, "01": [53, 75], "02": 75, "0225": 75, "03": 71, "04": [72, 75], "05": [21, 24, 75], "05991": 77, "06": 75, "06190476": 75, "07": 75, "08": [71, 75], "09": 75, "09511404": 77, "1": [1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 48, 50, 51, 56, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 73, 75, 76, 77, 78], "10": [2, 3, 7, 8, 11, 12, 16, 25, 26, 29, 30, 31, 36, 37, 39, 47, 48, 50, 51, 52, 57, 60, 61, 62, 63, 75, 77], "100": [5, 9, 39, 49, 75, 77], "1000": [49, 53, 75, 77], "100000": 75, "101": [25, 26, 75, 77], "102": [25, 26, 75, 77], "1026": 75, "103": [25, 26], "10360": 75, "104": 75, "1048": 75, "105": 75, "1057": 75, "106": 75, "107": 75, "108": [75, 77], "10923": 75, "10th": 75, "11": [24, 60, 75, 77], "110": 75, "110234": 68, "110235": 68, "111": 75, "11128": 75, "111294": 77, "112": 75, "113": [75, 77], "114": 75, "11460": 75, "115": [75, 77], "11576": 75, "11597": 75, "1164": 77, "1175": 53, "118": 75, "119": 75, "12": [4, 5, 21, 24, 56, 64, 66, 75, 77], "120": 77, "1207": 73, "121": 73, "1218": 75, "122": 73, "1221": 75, "123": [2, 43, 75], "12345": 43, "124": 75, "125": [53, 75, 77], "12619048": 75, "127": 75, "128": 77, "13": [21, 60, 75, 77], "130": 75, "131": 75, "132": [75, 77], "133": 75, "1333": 60, "13333": 60, "134": 75, "135": [75, 77], "136": [75, 77], "137": 75, "138": [75, 77], "139": 75, "14": [4, 5, 64, 75, 77], "140": [75, 77], "14159": 75, "142": 75, "143": [75, 77], "144": 75, "146": 75, "147": 75, "149": 75, "15": [24, 48, 57, 60, 63, 68, 75, 77], "150": 75, "15097": 75, "151": 75, "152": 75, "15283758": 77, "153": 75, "154": 75, "15500000": 68, "15625": 75, "15666667": 75, "157": 75, "159": 75, "1592653589793": 73, "16": [60, 75, 77], "160": 75, "161": 75, "1616": 75, "162": 75, "163": 75, "164": 75, "165": 75, "166": 75, "167": 75, "16764706": 75, "168": 75, "169": 75, "17": [60, 72, 75, 77], "170": 75, "171": 75, "17101449": 75, "172": 75, "173": 75, "174": 77, "1753": [42, 77], "17585792": 75, "176": 75, "1762": [42, 77], "1771": [42, 77], "178": [75, 77], "1782": [42, 77], "1784": [42, 77], "1786": [42, 77], "1792": [42, 77], "1794": [42, 77], "18": [3, 53, 60, 75, 77], "180": 75, "1802": [42, 77], "181": 75, "1816": [42, 77], "182": 75, "185": 75, "189": 75, "19": [75, 77], "190": 75, "191": 75, "193": 75, "194": 75, "195": 75, "196": 75, "19799": 75, "1999": 75, "2": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 26, 28, 29, 30, 31, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 50, 51, 52, 54, 56, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "20": [2, 4, 5, 7, 39, 48, 50, 57, 60, 63, 64, 66, 68, 75, 77], "200": [53, 73, 75], "2013": 75, "2014": 75, "2015": [71, 75], "2016": 68, "2020": 73, "2024": 72, "20745": 77, "209": 75, "21": [32, 38, 75, 77], "2125": 75, "2157": 75, "2190": 75, "22": [75, 77], "222": 75, "224": 75, "228": 49, "23": [75, 77], "2302": 75, "2314": 75, "234": 75, "236": 68, "2377": 75, "24": [75, 77], "244": 77, "245": 77, "248": 49, "25": [25, 60, 75, 77], "25081967": 75, "252": 75, "2522": 75, "25384615": 75, "2578": 75, "26": [75, 77], "261": 49, "2610": 75, "264": 49, "2661425720249184": 77, "26666667": 75, "269": 75, "27": [21, 75, 77], "270": 73, "27368421": 75, "27664579": 77, "27761": 60, "279": 77, "28": [75, 77], "282": 77, "284": 77, "286": 77, "289": [75, 77], "28913043": 75, "29": [75, 77], "292": 75, "29225": 75, "299": [75, 77], "2nd": [45, 75], "3": [1, 2, 3, 9, 11, 12, 13, 15, 16, 19, 20, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 45, 47, 50, 51, 54, 56, 57, 58, 59, 60, 61, 62, 65, 66, 69, 70, 75, 77, 78], "30": [2, 7, 21, 24, 39, 56, 66, 74, 75, 77], "300": 73, "3000": 73, "3027027": 75, "306": 75, "308": 75, "31": [75, 77], "310": 75, "313": 75, "314": 73, "316": 75, "32": [27, 39, 54, 58, 75, 77], "3218": 75, "326": 75, "33": [75, 77], "330": 75, "3333": 38, "3341": 75, "3351": 75, "3368": 75, "3370": 75, "339": 75, "34": [52, 74, 75, 77], "342": 75, "35": [75, 77], "351": 77, "354": [68, 75], "3587": 75, "36": [39, 75, 77], "363": 75, "3670": 75, "368": 75, "37": [39, 73, 75, 77], "375": 75, "38": [73, 74, 75, 77], "380": 75, "3810": 75, "3872": 75, "38888889": 75, "389": 75, "39": [75, 77], "3900": 75, "3904": 75, "39061": 77, "3925": 75, "394": 75, "3947": 75, "3d": 51, "3rd": [45, 75], "4": [1, 2, 9, 10, 15, 21, 24, 28, 29, 33, 34, 36, 39, 40, 41, 42, 44, 45, 50, 51, 56, 59, 60, 61, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78], "40": [2, 21, 24, 32, 38, 56, 75, 77], "4000": 73, "40147": 77, "403": 75, "405": 75, "40540541": 75, "408": 75, "409": 75, "41": [42, 75, 77], "410764": 77, "413": 75, "415": 75, "416": 75, "418": 75, "42": [39, 60, 74, 75, 77], "4212": 75, "423": 75, "425": 75, "428": 75, "429": 75, "43": [75, 77], "430": [53, 75], "431": 75, "43169249": 77, "4340": 75, "436255": 75, "437830": 75, "439946": 75, "44": [32, 38, 75, 77], "4403": 75, "44090985": 77, "441": 75, "442750": 75, "443": 75, "4468": 75, "45": [32, 38, 39, 75, 77], "451": 75, "452": 75, "452829": 75, "453": 75, "458": 75, "459": 77, "459672": 75, "46": [75, 77], "466551": 75, "468534": 75, "46965": 77, "47": [75, 77], "474454": 75, "4772": 75, "47735849": 75, "478": 75, "4795": 75, "48": [39, 75, 77], "482225": 75, "482797": 75, "483052": 75, "4871": 75, "487432": 75, "49": [75, 77], "491": 49, "491023": 75, "4th": 75, "5": [4, 5, 9, 14, 25, 26, 27, 28, 29, 39, 41, 42, 48, 50, 51, 52, 54, 58, 59, 60, 64, 66, 73, 75, 77, 78], "50": [5, 28, 41, 49, 59, 75, 77], "500": [53, 68, 73], "5000": 73, "500000": 68, "502332": 75, "504": 75, "5056": 75, "508": 49, "5083": 75, "509": 75, "51": [27, 39, 54, 58, 75, 77], "512": 75, "5123": 43, "513458": 75, "51506": 77, "516": 75, "5180": 75, "518524": 75, "519": 75, "52": [75, 77], "524499": 75, "527": 75, "527647": 77, "53": [39, 75, 77], "532": 75, "533": 75, "534": 75, "537": 75, "54": [39, 75, 77], "546": 75, "548322": 75, "55": [53, 75, 77], "55468": 77, "555": 53, "56": [32, 38, 75, 77], "5600": 73, "560479": 75, "561": 75, "565": 75, "566": [42, 77], "569": 75, "569620": 75, "57": [75, 77], "570731": 75, "573": [42, 77], "575": 75, "575557": 77, "576": 75, "578": [42, 77], "579": [42, 77], "58": [75, 77], "581": [42, 77], "582": 14, "584": [42, 77], "585884": 75, "587": [42, 77], "587711": 77, "58835469": 75, "589964": 75, "59": [39, 75, 77], "590": [42, 77], "591": [42, 77], "5925": 75, "593": [42, 77], "594999": 75, "595": [42, 77], "596": [42, 77], "59658": 77, "597": [42, 77], "598": [42, 77], "599": [42, 75, 77], "59991468": 77, "5th": 75, "6": [3, 4, 5, 7, 14, 21, 24, 27, 29, 39, 40, 42, 50, 51, 52, 54, 56, 58, 60, 61, 64, 66, 68, 72, 73, 75, 77], "60": [38, 39, 71, 75, 77], "600": 68, "6000": 73, "601": 75, "602": 75, "604": [42, 75, 77], "604012": 75, "605": [42, 77], "608": [42, 77], "6084": 75, "608714": 75, "609": [42, 75, 77], "61": [75, 77], "610": [42, 77], "610970": 75, "611": [42, 77], "6114": 75, "612": [42, 77], "613": 75, "614db00e7d22e52683860d2beaa4037bec26cf87": 46, "616": [42, 75, 77], "62": [75, 77], "620": [42, 75, 77], "623": 75, "62580645": 75, "629": 75, "63": [75, 77], "630": 75, "631": 75, "63529412": 75, "636": 75, "63643677": 77, "64": [39, 60, 75, 77], "64444444": 75, "648699324175862": 75, "65": [53, 75, 77], "651": 14, "65348837": 75, "653797": 75, "654": 75, "65454545": 75, "66": [9, 75, 77], "660": 75, "67": [75, 77], "6700": 53, "67214224": 77, "67423": 60, "67435897": 75, "67826087": 75, "679": 75, "68": [75, 77], "681697": 75, "681771": 75, "68421053": 75, "686": 75, "688": 75, "69": [39, 75, 77], "696725": 75, "7": [15, 21, 24, 39, 56, 61, 66, 75, 77], "70": [75, 77], "701211": 75, "702": 75, "704918": 75, "70952381": 75, "71": [9, 75, 77], "710070": 75, "711961": 75, "713": 75, "715": 77, "72": [9, 75, 77], "723": 75, "723352": 75, "72564103": 75, "73": [75, 77], "732": 75, "74": [9, 75, 77, 78], "7426": 75, "743": 14, "745895": 75, "74999": 77, "75": [21, 24, 28, 39, 41, 56, 59, 60, 66, 73, 75, 77, 78], "753": 75, "753668": 75, "755": 75, "75882353": 75, "76": [75, 77], "768619": 75, "77": [75, 77], "773757": 77, "77468": 77, "78": [75, 77], "78448276": 75, "787510": 75, "78805": 75, "788261": 75, "79": [75, 77], "793149": 75, "7th": 75, "8": [39, 42, 46, 48, 52, 57, 60, 63, 72, 73, 77], "80": [32, 37, 38, 39, 75, 77], "80388805": 77, "808": 75, "808199": 75, "81": [9, 75, 77], "819": 75, "82": [28, 41, 59, 75], "82195122": 75, "824979": 75, "82671": 77, "827": 75, "82777778": 75, "829817": 75, "83": [9, 28, 41, 59, 75], "83103448": 75, "831509": 75, "833071": 75, "8372093": 75, "83982": 77, "84": [9, 75], "840": 75, "84285714": 75, "85": [73, 75], "852124": 77, "85235": 60, "853087": 75, "853698": 75, "85777778": 75, "86": [27, 39, 54, 58, 75], "86086957": 75, "86153846": 75, "863019": 75, "86470588": 75, "87": 75, "873710": 75, "876419": 75, "877160": 75, "88": [9, 75], "883134": 75, "887": 75, "887134": 75, "89": [9, 32, 38, 75], "89428571": 75, "895": 75, "8hiishifun": 75, "9": [2, 3, 4, 5, 11, 12, 16, 21, 24, 25, 26, 27, 29, 30, 31, 36, 37, 39, 42, 47, 50, 51, 56, 60, 62, 64, 66, 73, 75, 77, 78], "90": [28, 41, 59, 75, 77], "903647": 75, "903735": 75, "91": [27, 75], "912821": 75, "91436": 75, "92": [9, 75], "9244898": 75, "93": [9, 71, 77], "93000": 71, "936": 75, "94": [9, 75], "94025": 75, "94040": 75, "94041": 75, "94061": 75, "94085": 75, "94102": 75, "94103": 75, "94104": 75, "94105": 75, "94107": 75, "94108": 75, "94109": 75, "94111": 75, "94114": 75, "94117": 75, "94133": 75, "94501": 75, "94518": 75, "94538": 75, "94602": 75, "94610": 75, "94612185": 77, "94705": 75, "94706": 75, "94806": 75, "94903": 75, "94925": 75, "94947": 75, "94973": 75, "95": [9, 28, 32, 38, 41, 59, 75], "95033": 75, "95112": 75, "95120": 75, "96": 75, "960": 73, "96470588": 75, "97": 75, "98": 75, "99": [9, 49, 75], "99990": 75, "99995": 75, "A": [1, 6, 7, 9, 13, 15, 17, 20, 21, 24, 25, 26, 27, 32, 33, 34, 41, 45, 48, 50, 51, 52, 53, 54, 55, 57, 58, 60, 61, 66, 68, 69, 73, 74, 75, 77, 78], "And": 77, "As": 78, "But": 76, "By": [8, 13, 39, 48, 60, 75], "For": [73, 74, 75, 77], "If": [2, 3, 8, 20, 21, 24, 25, 26, 29, 39, 45, 51, 53, 54, 58, 65, 66, 67, 68, 69, 70, 71, 73, 75, 76, 77, 78], "In": [53, 66, 75, 77], "It": [53, 64, 75, 77, 78], "NOT": 73, "No": 2, "Not": [25, 77], "One": [50, 76], "That": 76, "The": [0, 1, 2, 3, 4, 5, 8, 9, 10, 14, 15, 21, 22, 23, 24, 25, 26, 27, 33, 34, 37, 39, 42, 43, 44, 45, 49, 51, 52, 53, 57, 58, 61, 62, 63, 64, 67, 68, 72, 73, 74, 75, 77, 78], "There": 77, "These": [4, 9, 25, 26, 75], "To": [73, 77], "_": [70, 77], "__init__": 53, "__repr__": 53, "__setitem__": 2, "_format": 68, "a_2": 29, "ab": 77, "abc": [4, 5, 64], "about": 76, "abov": [66, 74], "above_or_equal_to": 74, "absolut": 75, "accept": [21, 24, 53], "access": [72, 76], "accord": [21, 24, 56, 77], "account": 53, "account_info": 53, "acquir": 73, "across": 38, "actor": 75, "actual": 77, "ad": [2, 50, 68, 75, 77], "add": [2, 25, 26, 73, 75, 77, 78], "addit": [6, 7, 9, 22, 23, 25, 26, 41, 50, 51, 66, 67, 68, 69, 70, 73, 77], "address": 42, "adob": 75, "advanc": 72, "after": 75, "afterward": 73, "ag": [4, 5, 32, 38, 64, 77], "against": [50, 51], "agg": 77, "aggreg": [21, 24, 38], "alias": 2, "all": [1, 8, 21, 24, 25, 26, 29, 39, 41, 47, 50, 51, 53, 55, 58, 65, 68, 73, 75, 77, 78], "allow": [8, 39, 77], "almaden": 75, "alpha_col": 9, "alphabet": [67, 75], "alreadi": 44, "also": [15, 25, 26, 33, 34, 44, 50, 51, 53, 60, 66, 71, 75, 77], "altern": [68, 77], "american": 75, "amount": [21, 24, 56, 66, 75], "an": [0, 1, 3, 8, 10, 14, 20, 33, 34, 39, 48, 53, 56, 62, 64, 66, 67, 68, 69, 71, 72, 73, 75, 78], "angl": 73, "ani": [52, 61, 68, 73, 78], "annot": [50, 51], "anoth": [23, 75], "another_arrai": 75, "another_str": 75, "antonio": 75, "api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "appear": [5, 21, 24, 29, 75, 77], "append": [2, 13], "appli": [8, 21, 24, 39, 53, 66, 68, 73, 78], "applic": 73, "appropri": 25, "ar": [3, 4, 5, 7, 8, 13, 22, 23, 24, 25, 26, 27, 38, 39, 41, 43, 44, 48, 49, 50, 51, 52, 53, 54, 55, 56, 60, 65, 66, 73, 74, 76, 77], "arang": 61, "arbitrari": 71, "area": [50, 51, 73, 78], "area_scal": 73, "arena": 75, "arg": [0, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 27, 29, 31, 32, 38, 39, 41, 42, 43, 44, 48, 50, 51, 52, 53, 54, 56, 57, 58, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 76, 77, 78], "argument": [3, 4, 5, 6, 7, 8, 9, 19, 21, 22, 23, 24, 25, 26, 27, 39, 41, 42, 43, 50, 51, 53, 58, 66, 73, 75, 76, 78], "arr": [17, 62, 78], "arrai": [2, 3, 10, 12, 17, 21, 26, 29, 41, 43, 44, 48, 53, 61, 62, 65, 66, 67, 68, 70, 72, 77, 78], "art": 75, "as_html": 77, "ascend": [56, 75], "assertionerror": [51, 68], "assign": [25, 26, 73, 77], "associ": [39, 58], "assum": [29, 37, 75, 78], "astyp": 53, "attribut": [53, 73], "automat": [25, 26], "av": 75, "avail": [75, 77], "aveng": 75, "avenu": 75, "averag": [60, 75], "average_gross": 75, "awaken": 75, "axi": [6, 7, 26, 28, 41, 50, 51, 59, 61, 75], "b": [1, 2, 3, 9, 11, 12, 13, 15, 16, 17, 19, 25, 26, 27, 29, 30, 31, 33, 34, 36, 39, 45, 47, 48, 54, 57, 58, 60, 61, 62, 63, 77], "babi": 77, "backward": [50, 51], "bad_col": [2, 67], "balanc": 53, "bar": [1, 7, 13, 22, 23, 25, 26, 33, 34, 40, 45, 60, 75, 78], "barh": [23, 28, 59, 77], "bart": 75, "base": [26, 38, 56, 73], "basi": 58, "bat": [1, 33, 34, 45], "batteri": 75, "baz": [1, 33, 34, 45, 60], "bbar": 53, "beal": 75, "beautifyicon": 73, "becaus": [13, 75, 77], "befor": 60, "behav": [22, 23], "behavior": [25, 26, 60], "beig": 73, "being": [2, 4, 53, 68, 73, 75], "beliz": 53, "below": [66, 74, 78], "below_or_equal_to": 74, "berkelei": 72, "berkeley_str": 75, "best": [50, 60, 75], "between": [5, 25, 57, 73, 74, 77, 78], "between_or_equal_to": 74, "big": [5, 49], "bike": 75, "bin": [25, 26, 39, 73, 75, 77], "bin_column": [25, 26], "birth": 77, "birthweight": 77, "black": 73, "blob": 46, "blue": [21, 24, 43, 56, 66, 73], "bonu": 68, "bool": [6, 7, 8, 22, 23, 25, 26, 39, 41, 48, 50, 51, 75, 77], "boolean": [25, 53, 66, 73, 75, 77, 78], "bootstrap": 77, "bootstrap_diff": 77, "bootstrap_onc": 77, "bootstrapped_diff_mean": 77, "border": 4, "both": [13, 25, 29, 38, 75], "bound": [8, 25, 26, 61, 75], "boundari": 78, "bracket": [76, 77], "brewer": 73, "bridg": 75, "brief": 77, "broadwai": 75, "broken": 75, "brown": 75, "bryant": 75, "bubblegum": 75, "bucket": 7, "buena": 75, "bugn": 73, "build": 75, "built": 60, "bupu": 73, "burger": 14, "butter": 75, "bz": 53, "c": [1, 2, 3, 9, 10, 11, 12, 16, 19, 27, 29, 30, 31, 33, 34, 36, 39, 44, 45, 47, 48, 54, 57, 58, 60, 62, 63, 65, 67, 69, 70, 77], "cadetblu": 73, "cain": 75, "calcul": [21, 24, 60, 75], "california": 75, "call": [2, 3, 9, 19, 28, 38, 43, 44, 48, 51, 53, 59, 61, 62, 63, 67, 68, 74, 75, 76, 78], "callabl": 66, "calori": 14, "caltrain": 75, "camino": 75, "can": [4, 6, 7, 8, 9, 22, 23, 25, 26, 28, 39, 41, 50, 53, 59, 60, 63, 64, 66, 73, 74, 75, 76, 77], "cannot": [9, 51], "capit": 73, "case": 60, "castro": 75, "cat": 77, "catch": 75, "categor": 77, "categori": [6, 7, 22, 23, 25, 26, 40, 50, 51, 75, 77], "cell": 75, "center": 75, "certain": 75, "chain": 75, "chair": 7, "chang": [13, 43, 44, 45, 53, 75], "chapter": 77, "charact": [53, 71], "chart": [6, 7, 22, 23, 25, 26, 41, 50, 51, 75], "check": [53, 77], "cheeseburg": 14, "chest": 75, "chip": 75, "chocol": 75, "chosen": [8, 25, 26, 39], "circl": [73, 77], "circle_mark": 73, "circlemark": 73, "citi": [73, 75], "civic": 75, "cl": 73, "clai": 75, "clara": 75, "class": [4, 5, 53, 64, 71, 73, 74, 77], "classmethod": [17, 18, 19, 20, 28, 42, 59, 73], "click": [73, 76], "close": 77, "cluster": 73, "cluster_bi": 73, "cluster_label": 73, "clustered_mark": 73, "code": [73, 75, 77], "col": 58, "col1": [65, 75], "col2": [65, 75], "collect": [21, 24, 38, 75, 77], "color": [6, 7, 21, 22, 23, 24, 25, 26, 41, 50, 51, 56, 66, 73, 75], "color_scal": 73, "colorbar_scal": 73, "colorscal": 73, "columbu": 75, "column": [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 49, 50, 51, 52, 53, 56, 58, 60, 61, 65, 66, 67, 68, 69, 70, 71, 73, 77, 78], "column1": [19, 20, 27, 39, 44, 54, 58], "column2": [19, 20, 27, 39, 44, 54, 58], "column3": [19, 27, 39, 54, 58], "column4": [27, 39, 54, 58], "column_for_categori": [6, 7], "column_for_i": 51, "column_for_x": [50, 51], "column_for_xtick": 41, "column_label": [3, 22, 23, 29, 33, 34, 43], "column_nam": 78, "column_name_or_index": 75, "column_or_column": [3, 14, 52, 53, 75], "column_or_label": [21, 27, 56, 66], "columns_or_label": 27, "com": [42, 46, 73, 75, 77], "combin": [24, 38, 42, 75, 77], "commerci": 75, "common": 77, "compar": [66, 77], "comparison": 66, "compat": [50, 51], "complet": 77, "compon": 73, "comput": [8, 36, 60, 75, 77], "condition": 77, "cone": 75, "configur": 53, "confus": 76, "connect": [41, 75], "consid": [58, 75], "consist": [3, 58], "consol": 53, "construct": [13, 75, 77], "contain": [2, 3, 6, 7, 8, 9, 13, 21, 24, 27, 29, 37, 39, 41, 47, 52, 56, 57, 62, 66, 72, 74, 77, 78], "contained_in": 74, "contrast": 13, "conveni": 51, "convers": 71, "convert": [4, 5, 17, 19, 53, 62, 64, 71, 77], "convert_column": [53, 71], "convert_valu": [53, 71], "converts_valu": [53, 71], "cooki": 75, "coordin": [23, 73], "copi": [22, 23, 67, 68, 73, 75, 78], "core": [54, 64, 77], "correspond": [17, 20, 21, 24, 25, 26, 27, 44, 58, 61, 68, 73, 75, 77], "could": 42, "count": [0, 2, 3, 5, 7, 8, 10, 11, 12, 16, 21, 22, 23, 24, 25, 26, 30, 31, 36, 37, 38, 39, 44, 47, 49, 62, 65, 67, 69, 70, 75, 77, 78], "counti": 73, "coupl": 50, "cours": 72, "creat": [0, 6, 7, 18, 20, 22, 23, 25, 29, 38, 41, 50, 51, 63, 72, 75, 76, 78], "creation": [19, 76], "critic": [42, 77], "cruis": 75, "csv": [42, 63, 73, 75, 77], "cumul": [25, 26], "currenc": 71, "currencyformatt": [53, 68, 71], "current": [63, 73], "curri": 78, "curv": 78, "custom": [53, 60, 73, 75, 77], "cutoff": 73, "cyan": 43, "d": [1, 9, 10, 29, 33, 34, 44, 45, 48, 57, 63, 65, 67, 69, 70, 71, 72, 75], "d3": 73, "dai": [28, 41, 59, 77], "dakota": [42, 77], "dark": 75, "darkblu": 73, "darkgreen": 73, "darkpurpl": 73, "darkr": 73, "data": [6, 7, 17, 19, 20, 22, 23, 25, 26, 27, 41, 42, 46, 50, 51, 58, 65, 72, 73], "data1": [19, 20, 27, 39, 54, 58, 77], "data2": [19, 20, 27, 39, 54, 58, 77], "data3": [19, 20, 27, 39, 54, 58], "data4": 27, "datafram": [4, 19, 64, 77], "dataset": 73, "date": [71, 72, 75], "dateformatt": 71, "davi": 75, "dead": 75, "decim": [71, 75], "decimal_point": 71, "deep": [13, 73], "def": [53, 60, 75, 77], "default": [2, 5, 8, 13, 25, 26, 29, 38, 39, 48, 53, 60, 67, 73, 75, 77, 78], "default_map": 77, "defin": [8, 39, 49, 53], "delici": 75, "delimit": 71, "densiti": [8, 25], "depend": [25, 26], "depp": 75, "deprec": [18, 25, 40, 50, 51], "descend": [56, 75, 77], "describ": [73, 75], "design": [6, 7, 41, 50], "desk": 7, "detail": 76, "determin": 25, "deviat": [75, 78], "df": 19, "dict": [20, 27, 51, 73], "dictionari": [20, 27, 73, 77], "differ": [22, 23, 69, 70, 75, 77], "difficult": 4, "directli": [25, 26, 53], "directori": 63, "diridon": 75, "discourag": 77, "displai": [4, 6, 7, 22, 23, 41, 50, 51, 54, 72, 73, 75, 76, 77], "distinct": 56, "distribut": [25, 39, 48, 49, 75, 77, 78], "distributionformatt": 71, "divid": 78, "do": [20, 48, 53, 77], "doc": 73, "docstr": 46, "document": [73, 76], "doe": [2, 13, 21, 24, 44, 48, 53, 67, 68, 74, 76, 78], "doesn": [21, 75], "dollar": 53, "don": 77, "done": [25, 26, 77], "dot": [50, 51], "down": 75, "downei": 75, "download": 73, "draw": [40, 50, 72, 73, 78], "draw_on": 73, "drawn": [9, 73, 77], "drop": 53, "dtype": [12, 17, 62, 65, 75, 77, 78], "due": 13, "durat": 75, "e": [25, 29, 48, 68, 75, 78], "each": [3, 6, 7, 8, 12, 21, 22, 23, 24, 25, 26, 27, 37, 38, 39, 40, 41, 48, 50, 51, 53, 60, 69, 70, 71, 73, 75, 76, 78], "eddi": 75, "edg": [8, 25, 39], "either": [3, 25, 26, 52, 66, 73, 78], "el": 75, "element": [3, 44, 75, 78], "elimin": 60, "els": 48, "embarcadero": 75, "emerson": 75, "empl_statu": 77, "empti": [0, 8, 20, 21, 24, 29, 66, 75, 77], "enabl": [7, 25, 41, 50, 51], "end": [25, 75], "endpoint": 25, "ensur": 71, "entir": [25, 54], "entri": [71, 75], "equal": [8, 25, 26, 39, 43, 44, 48, 66, 74, 75], "equal_to": [66, 74], "equival": [2, 10, 28, 29, 59, 66, 68, 75], "error": 60, "est": 75, "etc": [28, 59, 71, 75], "eual_to": 75, "even": [60, 68], "everi": [2, 6, 7, 9, 41, 50, 51, 66, 67, 68, 75], "ex": 73, "exact": 77, "exampl": [1, 4, 5, 11, 12, 13, 16, 17, 19, 20, 27, 30, 31, 33, 34, 36, 39, 42, 45, 47, 53, 54, 58, 62, 64, 65, 66, 72, 73, 74, 75], "example_arrai": 75, "example_str": 75, "excel": 77, "except": [6, 7, 75], "exclus": 75, "exist": [3, 14, 38, 44, 67, 68, 75], "expect": [3, 78], "explicitli": 73, "export": [72, 76], "extend": [46, 75, 77], "extens": 76, "exterior": 73, "extrem": 25, "f": [32, 38, 53, 71, 75, 77, 78], "fall": 25, "fals": [6, 7, 8, 13, 19, 22, 23, 25, 26, 39, 41, 49, 50, 51, 53, 56, 71, 73, 75, 77, 78], "featur": 73, "feature_id": 73, "featurecollect": 73, "ferri": 75, "few": [4, 5, 25, 26, 78], "field": 17, "figur": [7, 9, 25, 41, 50, 51], "file": [42, 63, 73, 75, 77], "filenam": [63, 75], "filepath_or_buff": 42, "fill": 73, "fill_opac": 73, "filter": 75, "final": 58, "find": 75, "fire": 75, "first": [20, 21, 24, 25, 34, 51, 54, 57, 58, 71, 73, 75, 77, 78], "first_arg": 76, "fit": [50, 75], "fit_lin": [50, 51, 75, 77], "fivethirtyeight": 77, "fix": [20, 73], "flag": 73, "flat": 73, "flavor": 75, "float": [8, 22, 23, 25, 39, 71, 73], "float64": 78, "flower": 52, "flyer": 75, "fn": 3, "folium": 73, "folium_map": 73, "follow": [1, 4, 5, 8, 13, 24, 33, 34, 39, 45, 53, 62, 73, 74, 75, 76, 77], "folsom": 75, "foo": [1, 13, 33, 34, 45, 60, 76, 78], "forc": [25, 26, 75], "ford": 75, "form": [4, 5, 39, 75, 78], "format": [0, 4, 5, 53, 68, 72, 73], "format_column": [53, 71], "format_krona": 53, "format_valu": 71, "formatt": [0, 2, 53, 67, 68, 71], "forward": 73, "found": [13, 73, 75], "fourth_arg": 76, "fraction": 53, "frame": 64, "francisco": 75, "freeman": 75, "friend": 75, "friendli": 75, "frisbe": 75, "from": [8, 18, 19, 20, 21, 22, 23, 27, 39, 42, 48, 52, 53, 55, 58, 60, 62, 66, 69, 70, 73, 74, 75, 77, 78], "from_record": [39, 58], "ftp": 42, "fucntion": 60, "fun": 75, "fun_arrai": 75, "func": [25, 26, 75, 78], "function": [3, 8, 21, 24, 38, 53, 54, 58, 60, 66, 68, 71, 72, 73, 74, 77], "furnitur": 7, "further": 73, "futur": [50, 51], "g": [25, 67, 75, 78], "gaslamp": 73, "gate": 75, "gender": [32, 38], "gener": [25, 26, 38, 66, 77, 78], "geo_json": 73, "geocode_dataset": 73, "geocode_st": 73, "geojson": 73, "geopath": 73, "gestat": 77, "get": [6, 7, 9, 22, 23, 25, 26, 41, 50, 72, 75, 76], "get_coordin": 73, "getbootstrap": 73, "gfoo": 53, "gh": 75, "github": [46, 73, 75], "githubusercont": 75, "give": [21, 75], "given": [2, 3, 8, 14, 22, 23, 39, 52, 67, 68, 74, 78], "glade": 75, "global": [28, 59], "gnbu": 73, "golden": 75, "gpa": [15, 61], "grab": 77, "grade": [15, 61], "gradient": 73, "grai": 73, "grant": 75, "graph": [7, 28, 41, 59, 75], "graph_object": 51, "graphic": 72, "great": [75, 78], "greater": [74, 75], "greatest": 75, "greather": 75, "green": [21, 24, 43, 56, 66, 73, 75], "gross": 75, "group": [8, 22, 23, 25, 26, 38, 40, 50, 51, 53, 77], "guid": 77, "h": 71, "ha": [8, 29, 68, 70, 75], "hall": 75, "hamburg": 14, "handl": 42, "hank": 75, "harri": 75, "harrison": 75, "have": [1, 2, 20, 48, 53, 65, 67, 68, 71, 73, 75, 76, 78], "hbat": 53, "header": 14, "height": [4, 5, 6, 22, 23, 25, 26, 40, 41, 50, 51, 64, 73, 77], "hello": [2, 76], "here": [64, 72], "hex": 73, "hi": [75, 76], "hidden": 77, "high": 75, "higher": 66, "highest": 75, "hist": [22, 23, 26, 28, 40, 59, 77], "histogram": [8, 25, 26, 39, 40, 75, 77], "hole": 73, "horizont": [7, 23, 50, 75], "how": [13, 25, 46, 75, 77], "howard": 75, "howev": 76, "html": [4, 6, 7, 9, 22, 23, 25, 26, 41, 50, 54, 73, 77], "http": [6, 7, 9, 22, 23, 25, 26, 41, 42, 46, 50, 73, 75, 77], "i": [2, 3, 4, 5, 6, 7, 8, 10, 13, 20, 21, 22, 23, 24, 25, 26, 27, 29, 33, 34, 37, 38, 39, 41, 43, 45, 48, 50, 51, 53, 54, 57, 58, 60, 61, 62, 63, 66, 67, 68, 70, 71, 73, 74, 75, 76, 77, 78], "i4": 17, "i8": 62, "ibarh": [7, 28, 59], "iceland_krona_formatt": 53, "icelandkronaformatt": 53, "icon": 73, "icon_angl": 73, "id": [43, 73, 75], "ident": [20, 71], "identifi": 73, "ie": 71, "ignor": [8, 39], "ihist": 25, "illinoi": [42, 77], "import": [53, 66, 74, 77], "inch": [22, 23], "includ": [8, 9, 25, 26, 39, 42, 50, 58, 73, 75], "include_color_scale_outli": 73, "incorrect": 68, "increment": 75, "index": [10, 11, 14, 15, 19, 21, 22, 23, 25, 26, 32, 38, 45, 46, 53, 61, 66, 73, 75, 77], "index_map": 73, "index_or_label": 10, "indexerror": 61, "indic": [3, 8, 14, 15, 24, 38, 52, 53, 61, 73, 75], "inferentialthink": [42, 77], "infin": 78, "info": [73, 78], "inlin": 77, "inplac": [33, 34, 53], "input": [75, 77, 78], "insert": 13, "insid": 73, "instanc": [0, 10, 14, 15, 48, 52, 53, 55, 56, 57, 61, 78], "instead": [7, 25, 26, 41, 50, 51, 64, 73, 75, 78], "insuffici": 3, "int": [2, 3, 4, 5, 8, 10, 22, 23, 25, 26, 32, 38, 39, 45, 48, 51, 52, 53, 57, 66, 67, 68, 71, 73, 78], "int_to_float": 71, "integ": [11, 15, 36, 61, 73, 75], "integr": [8, 39], "interact": [7, 25, 28, 41, 46, 50, 51, 59, 75], "interactive_plot": [7, 25, 41, 50, 51, 59], "interior": 73, "intersect": 38, "interv": 75, "introduct": 77, "invalid": [43, 44, 73], "investig": 72, "involv": 77, "io": 73, "iowa": [42, 77], "iplot": [28, 41, 59], "ipython": [54, 77], "is_non_string_iter": 78, "iscatt": 50, "iscatter3d": 51, "issu": 73, "item": [16, 31], "iter": [68, 78], "ith": 48, "its": [11, 25, 26, 38, 53, 70, 76], "itself": [76, 78], "jackson": 75, "jame": 75, "japantown": 75, "job": [48, 57, 63], "johansson": 75, "johnni": 75, "jose": 75, "jr": 75, "juli": 73, "jun": 72, "just": [5, 21, 64, 75, 77], "k": [48, 49, 55, 57, 58], "kansa": [42, 77], "kearni": 75, "keep": 19, "keep_index": 19, "kei": [20, 27, 43, 58, 73, 77], "kept": 66, "key_on": 73, "keyerror": 52, "keyword": 73, "kg": 25, "kind": 75, "knight": 75, "known": [33, 34, 53], "kr": 53, "kwarg": [6, 7, 9, 22, 23, 25, 26, 29, 41, 50, 51, 73], "l": [74, 75], "l5673": 46, "l5765": 46, "lab": 77, "label": [0, 2, 3, 6, 7, 8, 10, 11, 14, 16, 18, 21, 24, 27, 29, 31, 32, 37, 38, 41, 43, 44, 50, 51, 52, 53, 58, 66, 67, 68, 71, 73, 77, 78], "labels_and_valu": 68, "lambda": 3, "larg": 37, "last": [2, 3, 9, 33, 38, 43, 44, 48, 61, 67, 68, 73, 75, 77], "lat": 73, "lat_lon": 73, "latitud": 73, "lbound": 78, "lead": 60, "leafletj": 73, "least": [37, 78], "leav": 75, "left": [25, 78], "left_end": 25, "legend": [25, 26, 73], "legend_nam": 73, "len": [53, 77], "length": [2, 43, 44, 48, 53, 61, 67, 68, 69, 70, 75, 78], "less": [74, 75], "let": 77, "letter": [0, 2, 3, 10, 11, 12, 15, 16, 30, 31, 36, 44, 47, 61, 62, 65, 67, 69, 70, 77], "librari": 75, "light": 75, "lightblu": 73, "lightgrai": 73, "lightgreen": 73, "lightr": 73, "like": [15, 22, 23, 47, 75, 76, 77], "line": [28, 41, 50, 59, 73, 75, 77], "line_color": 73, "line_opac": 73, "line_weight": 73, "linear": 73, "list": [0, 2, 10, 14, 15, 20, 24, 25, 27, 38, 45, 47, 58, 61, 67, 68, 73, 75, 76, 77, 78], "ljust": 53, "ll": 77, "load": 77, "loc": 77, "locat": 73, "log": [75, 78], "lon": 73, "long": 71, "long_arrai": 75, "longitud": 73, "look": [11, 75], "lotu": 52, "lower": [8, 25, 26, 39], "lowercas": 73, "lt": 75, "m": [32, 38, 71, 74], "made": [45, 73, 75], "magenta": 43, "magnitud": 73, "mai": [60, 71, 77], "main": 77, "make": [21, 25, 26, 66, 77, 78], "make_arrai": [0, 1, 2, 3, 7, 9, 10, 13, 14, 15, 21, 24, 25, 26, 27, 28, 29, 32, 33, 34, 37, 38, 41, 43, 44, 45, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 63, 65, 66, 67, 68, 69, 70, 78], "man": 75, "mani": 75, "manipul": 72, "map": [18, 72], "map_tabl": 73, "mar_statu": 77, "marbl": [21, 24, 56, 66], "marker": [50, 73, 77], "marker_icon": 73, "markerclust": 73, "market": 75, "marri": 77, "mass": 8, "match": [3, 25, 26, 29, 38, 66, 73], "matern": 77, "math": [42, 77], "matplotlib": [6, 7, 9, 22, 23, 25, 26, 28, 41, 50, 59, 77], "max": [21, 53, 60], "max_row": [4, 5, 54], "max_width": 71, "maximum": [4, 5, 54, 60, 75], "mean": [13, 38, 53, 60, 76, 77, 78], "mechan": 75, "media": 73, "median": 60, "medium": [5, 49], "member": 77, "merg": 75, "messag": 75, "meter": 73, "method": [2, 4, 5, 22, 23, 53, 64, 71, 72, 73, 76, 77, 78], "michael": 75, "michigan": [42, 77], "min": 60, "min_width": 71, "minim": 78, "minimum": [60, 75], "minnesota": [42, 77], "mint": 75, "mirror": 77, "miscellan": 72, "mismatch": [2, 67, 68], "miss": [68, 76], "missouri": [42, 77], "mlk": 75, "model_proport": 75, "modifi": [73, 75, 76, 77], "modul": [73, 77], "montgomeri": 75, "more": [22, 23, 60, 68, 73, 75, 76, 77, 78], "more_con": 75, "morgan": 75, "most": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68, 77], "mother": 77, "mountain": 75, "move": [32, 33, 34], "movi": 75, "movies_by_year": 75, "multi": 78, "multinomi": [49, 78], "multipl": [24, 25, 26, 29, 45, 53, 73, 75], "multipolygon": 73, "murphi": 75, "must": [1, 2, 3, 6, 7, 9, 14, 26, 41, 43, 44, 48, 50, 51, 53, 57, 58, 66, 67, 68, 70, 73, 75, 76, 78], "mutat": 76, "mxl": 74, "my_tabl": 63, "n": [4, 5, 8, 68, 70, 75], "n1": 75, "n2": 75, "nabc": 5, "name": [4, 5, 8, 14, 17, 20, 22, 23, 24, 25, 26, 27, 39, 43, 50, 52, 53, 58, 60, 63, 64, 67, 68, 73, 74, 75, 76, 77, 78], "nan": [73, 75], "nbig": 5, "nearest": [73, 75], "need": [22, 23, 73], "neg": 78, "negat": 75, "neither": 74, "ness": 75, "new": [2, 13, 15, 19, 25, 29, 32, 37, 38, 39, 44, 48, 49, 52, 53, 55, 58, 61, 66, 67, 68, 73, 75, 76, 77, 78], "new_arr": 75, "new_arrai": 75, "new_col": 2, "new_col1": 2, "new_col2": 2, "new_label": [43, 44, 75], "new_str": 75, "new_tabl": 75, "newborn": 77, "nicer": 77, "nil": 75, "nmedium": 5, "non": [8, 9, 38, 39, 60, 77], "none": [0, 2, 6, 7, 9, 21, 24, 25, 26, 29, 38, 39, 41, 48, 50, 51, 58, 62, 63, 64, 66, 67, 71, 73, 78], "nonsmok": 77, "nonsmoking_mean": 77, "nonzero": 75, "nor": 74, "norm": [25, 39, 50], "normal": [8, 39, 71, 77, 78], "normal_data": 77, "north": [42, 77], "not_": 75, "not_abov": 74, "not_above_or_equal_to": 74, "not_below": 74, "not_below_or_equal_to": 74, "not_between": 74, "not_between_or_equal_to": 74, "not_contain": 74, "not_contained_in": 74, "not_equal_to": [74, 75], "not_strictly_between": 74, "notat": 77, "note": [8, 13, 15, 21, 22, 23, 24, 25, 26, 33, 34, 53, 60, 73, 75, 76, 77], "notebook": [75, 77], "notic": 75, "np": [17, 38, 49, 60, 61, 73, 77, 78], "nsmall": 5, "num_diffs_great": 77, "num_movi": 75, "num_nonsmok": 77, "num_row": [57, 77], "number": [2, 3, 4, 5, 8, 15, 17, 22, 23, 25, 26, 35, 36, 37, 39, 44, 45, 48, 49, 52, 54, 57, 67, 68, 71, 75, 77, 78], "numberformatt": 71, "numer": [6, 7, 9, 41, 50, 51, 60, 78], "numeric_col": 9, "numpi": [8, 10, 15, 17, 39, 62, 65, 77, 78], "nuvw": 5, "nxyz": 5, "oatmeal": 75, "object": [0, 13, 29, 47, 54, 65, 73, 75, 77], "observ": 4, "observed_diff": 77, "occur": [13, 25, 75], "occurr": 75, "off": [28, 59, 75], "often": 77, "old_label": 75, "old_str": 75, "omit": [4, 5, 39, 42, 56, 75, 77], "one": [6, 7, 21, 22, 23, 24, 25, 26, 29, 37, 41, 50, 51, 53, 68, 73, 75, 77, 78], "ones": [75, 77], "onli": [14, 25, 26, 29, 33, 34, 37, 52, 66, 68, 73, 75], "op": 60, "opac": 73, "open": 77, "oper": [33, 34, 53, 77], "optim": 78, "option": [4, 5, 25, 26, 50, 66, 73, 76, 77], "orang": 73, "order": [44, 52, 56, 61, 66, 68, 73, 75, 77, 78], "org": [6, 7, 9, 22, 23, 25, 26, 41, 50], "orient": [25, 26], "origin": [2, 8, 13, 21, 24, 25, 33, 34, 37, 43, 44, 48, 52, 53, 55, 58, 67, 68, 75, 76, 77], "original_t": 13, "orignal_t": 13, "orrd": 73, "other": [6, 7, 14, 21, 24, 25, 26, 29, 41, 50, 51, 66, 73, 75, 77, 78], "other_attr": 73, "other_label": 29, "other_t": 77, "otherwis": [20, 25, 29], "ounc": 77, "out": [61, 75, 77], "outcom": 78, "outlier": 73, "output": [49, 54, 63, 75], "outsid": [8, 39], "over": [8, 38, 39], "overlai": [6, 7, 22, 23, 25, 26, 40, 41, 50, 51, 73, 77], "overlaid": [25, 26], "overlain": 73, "overrid": 71, "overridden": 60, "p": [4, 37, 48, 78], "p_valu": 77, "packag": [72, 77], "pad": 71, "page": [75, 76], "paid": 77, "pair": [68, 73], "pairwis": [66, 75], "palett": 73, "panda": [19, 64, 77], "paramet": 78, "park": 75, "part": 74, "particip": [42, 77], "particular": 77, "partner": 77, "pass": [3, 4, 6, 7, 9, 22, 23, 25, 26, 38, 41, 50, 51, 53, 54, 58, 68, 73, 75, 77, 78], "path_or_json_or_string_or_url": 73, "peanut": 75, "peek": 77, "peopl": 75, "per": [6, 7, 8, 22, 23, 39, 41, 50, 51, 60, 70, 75], "percent": 75, "percentag": [71, 75], "percentformatt": 71, "percentil": 78, "perform": [13, 75], "perman": 53, "permut": 67, "petal": 52, "pick": [74, 75], "picnic": 75, "pink": [73, 75], "pivot": [39, 77], "pivot_column": 39, "pivot_column_label": 40, "pixel": [51, 73], "place": [1, 25, 43, 44, 45, 60, 64, 75, 76], "player": 68, "player_id": 68, "plaza": 75, "pleas": [46, 77], "plot": [6, 7, 9, 22, 23, 25, 26, 28, 50, 51, 59, 77, 78], "plot_cdf_area": 78, "plot_normal_cdf": 78, "plotli": [25, 28, 41, 51, 59, 75], "plt": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "plugin": 73, "point": [0, 2, 3, 11, 12, 16, 22, 23, 25, 26, 30, 31, 36, 37, 43, 47, 50, 62, 69, 70, 73, 77], "polk": 75, "polygon": 73, "pop": 73, "popul": 39, "popup": 73, "popup_width": 73, "posit": [3, 50, 73], "possibl": 77, "post": 75, "powel": 75, "preced": 75, "predic": [66, 72], "predict": [32, 38], "pregnanc": 77, "prepend": 60, "present": [4, 5, 75], "preserv": 77, "pretti": [53, 71], "prevent": 77, "previou": [29, 66], "price": [7, 14, 21, 24, 28, 41, 56, 59, 66, 75], "print": [53, 71, 77, 78], "probabl": [8, 48, 75, 78], "produc": [6, 7, 22, 23, 41, 50, 75], "project": [28, 41, 59], "properti": [12, 25, 30, 35, 36, 47, 65, 71, 73], "proport": [25, 49, 75, 78], "proportions_from_distribut": 78, "provid": [3, 8, 21, 24, 38, 39, 50, 51, 63, 73, 75, 78], "pth": [37, 78], "pubu": 73, "pubugn": 73, "purd": 73, "purpl": 73, "py": 46, "pyplot": [6, 7, 9, 22, 23, 25, 26, 41, 50, 77], "pyplot_api": [6, 7, 9, 22, 23, 25, 26, 41, 50], "python": [73, 75], "quantil": 73, "quantiti": 75, "quotient": 75, "radii": 73, "radiu": 73, "radius_in_met": 73, "radius_scal": 73, "rais": [2, 3, 7, 9, 10, 38, 41, 43, 44, 48, 50, 51, 52, 57, 61, 67, 68, 69, 70], "raisin": 75, "random": [49, 77, 78], "randomli": [48, 55, 57, 75], "rang": [8, 15, 25, 26, 39, 50, 51, 73, 77], "rate": [42, 75, 77], "rather": 56, "raw": 75, "rbound": 78, "rdpu": 73, "read": [42, 73, 75, 76, 77], "read_geojson": 73, "read_tabl": [63, 77], "real": 75, "realli": 40, "recent": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "recommend": 40, "record": [1, 20], "recreat": [63, 77], "rectangular": [21, 24, 56, 66], "recurs": 13, "red": [21, 24, 43, 56, 66, 73, 75], "redirect": [7, 25, 28, 41, 50, 59], "reduc": 77, "ref": 73, "refer": [13, 73, 77], "regard": [22, 23], "regardless": 73, "region": [73, 77, 78], "rel": [50, 51], "relabel": [29, 77], "releas": [50, 51, 72], "remain": [53, 57, 75], "rememb": 75, "remov": [14, 50, 51, 53, 73, 75], "remove_nan": 73, "renam": 77, "render": 73, "repeat": [29, 56, 73], "repetit": 77, "replac": [2, 43, 44, 48, 49, 67, 68, 73], "replace_column": 73, "repo": 77, "repres": [4, 26, 71, 73, 77, 78], "represent": [58, 73], "requir": [22, 23, 38, 64, 68], "rerun": 75, "resampl": [48, 77], "respect": [39, 58, 61], "rest": [27, 57, 73, 77], "result": [3, 8, 21, 24, 29, 39, 62, 65, 73, 75, 77, 78], "retain": [50, 51], "return": [2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 24, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 75, 77, 78], "right": [25, 78], "right_end": 25, "rightmost": [8, 39], "ring": 73, "robert": 75, "robust": 73, "root": 75, "rose": 52, "round": [21, 24, 56, 66, 73], "row": [1, 2, 3, 4, 5, 15, 21, 24, 25, 26, 27, 29, 36, 37, 38, 39, 42, 45, 48, 49, 54, 55, 56, 57, 61, 62, 66, 67, 68, 69, 70, 73, 74, 75, 77], "row_index": 75, "row_indices_or_slic": [15, 61], "row_or_row_indic": 45, "row_or_t": 1, "rug": 25, "run": [53, 60, 63], "s3": 42, "salari": 68, "same": [2, 9, 20, 25, 26, 37, 44, 48, 49, 51, 53, 63, 65, 67, 68, 71, 73, 75, 77, 78], "sampl": [8, 39, 49, 57, 77, 78], "sample_df": 19, "sample_proport": 78, "sample_s": [75, 78], "sampled_with_replac": 75, "samuel": 75, "san": 75, "sansom": 75, "santa": 75, "sap": 75, "sat2014": [42, 77], "save": 53, "saw": 75, "scalar": [8, 39], "scale": [25, 26, 73, 77], "scarlett": 75, "scatter": [22, 23, 28, 41, 51, 59, 77], "scatterplot": [50, 51], "scheme": 42, "scienc": 77, "scipi": 78, "scratch": 77, "sd": 78, "season": 68, "second": [21, 23, 57, 58, 75, 77], "second_arg": 76, "secret": 75, "see": [6, 7, 9, 22, 23, 25, 26, 41, 46, 50, 66, 75, 76, 77], "seed": 49, "seem": 4, "select": [6, 7, 14, 41, 50, 51, 60, 61, 66, 77], "self": [1, 29, 41, 50, 51, 53, 65], "sens": [21, 25, 26], "sep": 5, "separ": [6, 7, 22, 23, 25, 26, 41, 50, 51, 71, 75], "seper": 5, "sequenc": [8, 15, 20, 39, 62, 67, 68, 69, 70, 73, 77], "serv": 75, "set": [21, 24, 28, 50, 51, 53, 68, 73, 75, 77], "sever": [25, 26, 60], "shade": [25, 78], "shade_split": 25, "shallow": 13, "shape": [21, 24, 56, 66, 70, 78], "shop": 75, "shorthand": 77, "should": [25, 26, 53, 73, 75, 78], "show": [7, 25, 41, 50, 51, 77], "showmean": 9, "shrek": 75, "side": [9, 25, 26, 40], "side_by_sid": [25, 26, 40], "sign": 73, "signatur": 76, "signific": 77, "similar": 78, "similarli": 75, "simpl": [4, 38, 77, 78], "simple_mark": 73, "sinc": [4, 75], "singl": [2, 32, 38, 43, 53, 66, 67, 68, 75], "size": [5, 23, 26, 48, 49, 50, 51, 61, 73, 74, 75, 77, 78], "sizes_astext": 5, "slice": [15, 61], "small": [5, 49], "smallest": [37, 73], "smoke": 77, "smoker": 77, "smoker_and_wt": 77, "smoking_mean": 77, "smooth": 78, "sniper": 75, "so": [13, 53, 64, 75, 77], "some": [64, 75, 77], "some_other_arg": 76, "some_str": 75, "some_t": 76, "somelistofstr": 75, "someth": [53, 75], "sort": 77, "sourc": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 73, 74, 78], "south": [42, 75, 77], "spear": 75, "special": [8, 39], "specif": [73, 75], "specifi": [3, 7, 11, 22, 23, 24, 25, 26, 27, 32, 38, 39, 43, 44, 48, 54, 67, 73, 75, 76, 78], "split": [25, 77], "spreadsheet": 77, "sproul": 75, "squar": [73, 75], "squirrel": 75, "st": 75, "stai": 73, "standard": [73, 75, 78], "star": 75, "start": [72, 73, 75, 78], "state": [36, 42, 73, 77], "static": [71, 74, 75], "static_plot": 28, "station": 75, "statist": 60, "std": 60, "step": [75, 77], "steuart": 75, "stop": 75, "store": 77, "stori": 75, "str": [2, 3, 5, 6, 7, 8, 10, 11, 16, 22, 23, 31, 32, 38, 41, 43, 44, 50, 51, 52, 53, 63, 66, 67, 68, 73], "straightforward": 76, "strawberri": 75, "street": 75, "strictli": 75, "strictly_between": 74, "string": [0, 2, 4, 5, 14, 21, 25, 42, 67, 68, 71, 72, 73, 74], "string_or_arrai": 75, "stringio": 42, "structur": [17, 62, 75, 77], "style": 77, "subscrib": 75, "subset": [54, 78], "substitut": 73, "substr": [74, 75], "sugar": 75, "sum": [8, 21, 24, 48, 60, 77, 78], "summari": 76, "sunflow": 52, "superstr": 74, "suppli": [58, 66], "support": [15, 25], "suppos": 75, "surviv": [32, 38], "symbol": 71, "synonym": [50, 51], "syntax": 76, "syntaxerror": 76, "t": [3, 7, 11, 12, 14, 15, 16, 17, 19, 20, 21, 25, 26, 27, 30, 31, 36, 39, 47, 54, 58, 62, 65, 73, 74, 75, 77], "tab": 77, "tabl": [71, 72, 73, 74, 78], "table2": [9, 29], "table_appli": 78, "table_as_html": 4, "table_as_html_2": 4, "table_astext": 5, "table_copi": 13, "table_df": 64, "table_shallow_copi": 13, "tabledemo": 77, "take": [3, 21, 53, 58, 67, 68, 73, 77, 78], "taken": 61, "tbaz": 53, "tbl1": 75, "tbl2": 75, "tbodi": 4, "td": 4, "temporari": 75, "temporarili": [50, 51], "termin": 75, "test": 77, "test1": 9, "test2": 9, "text": [5, 50, 51, 73, 77], "textbook": [75, 77], "th": 4, "than": [14, 56, 68, 74, 75], "thead": 4, "thei": [4, 25, 26, 49, 73], "them": [53, 60, 73], "theoret": 75, "thi": [2, 9, 13, 22, 23, 25, 26, 28, 33, 34, 50, 51, 53, 58, 59, 60, 65, 68, 71, 73, 75, 76, 77, 78], "third": 77, "those": [24, 75], "three": [29, 73], "threshold": 73, "threshold_scal": 73, "throw": 78, "tile": [0, 10, 44, 65, 69, 70], "time": [53, 71, 75], "timestamp": 71, "titan": [32, 38], "titl": 73, "to_csv": 77, "to_df": 77, "todo": 73, "toggl": 73, "toi": 75, "tom": 75, "top": [25, 26], "total": 75, "total_gross": 75, "townsend": 75, "tr": 4, "traceback": [2, 3, 9, 38, 43, 44, 48, 61, 67, 68], "transbai": 75, "transform": 76, "treat": [25, 26, 77], "trip": 75, "true": [6, 7, 8, 13, 25, 26, 39, 40, 41, 48, 49, 50, 51, 53, 56, 66, 73, 75, 77], "truncat": 71, "tupl": [12, 30, 39, 47, 57, 60, 77], "turn": [19, 28, 59, 75], "tutori": 72, "two": [25, 26, 57, 58, 73, 75, 77], "type": [5, 21, 24, 37, 64, 67, 68, 73, 75, 77, 78], "typeerror": [3, 38, 43], "u": [4, 77], "u1": [12, 62, 77], "u10": 17, "u14": 75, "u3": 78, "unchang": 52, "underli": [53, 73], "understand": 4, "unexpect": 60, "uniform": [8, 39], "union": 75, "uniqu": [21, 24, 38, 39, 75], "unit": [25, 73], "uniti": 8, "univers": 75, "unix": 71, "unless": [8, 53], "unmodifi": 44, "unset": 59, "unspecifi": 75, "untouch": 53, "up": [11, 73, 75], "updat": 13, "update_layout": 51, "upon": 53, "upper": [8, 39, 75], "url": [42, 73, 77], "us": [4, 6, 7, 20, 25, 26, 29, 38, 40, 41, 50, 51, 53, 56, 60, 64, 66, 67, 68, 71, 72, 73, 74, 75, 77, 78], "usag": 66, "user": 53, "usual": 75, "util": [19, 72], "uvw": [4, 5, 64], "v": 53, "v1": 75, "v2": 75, "val": 66, "val1": 75, "val2": 75, "val_width": 53, "valid": [14, 42, 48, 67, 68, 76, 77], "valu": [0, 2, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 22, 23, 24, 25, 26, 27, 29, 31, 36, 37, 38, 39, 41, 49, 50, 51, 53, 54, 56, 58, 60, 66, 67, 68, 69, 70, 71, 72, 73, 75, 76, 78], "value_column": 39, "value_column_label": 40, "value_or_pred": 66, "valuea": 75, "valueerror": [2, 3, 7, 9, 10, 41, 43, 44, 48, 50, 51, 57, 67, 68, 69, 70, 78], "van": 75, "vanilla": 75, "varad": 78, "varg": [6, 7, 8, 9, 22, 23, 25, 26, 39, 40, 41, 42, 50, 51, 71, 78], "variabl": [28, 59], "variad": 78, "veggi": 14, "velvet": 75, "versa": 38, "version": 75, "vert": 9, "vertic": 75, "via": 25, "vice": 38, "view": [47, 75], "visual": [72, 73, 76], "vowel": 77, "w": [48, 77], "wa": [2, 53, 67, 68, 72, 73, 75, 77], "wage": [48, 57, 63], "wai": [63, 76, 77, 78], "waist": 74, "want": [4, 40, 73, 75, 77], "war": 75, "washington": 75, "we": [63, 64, 75, 77], "web": 42, "webpag": 4, "websit": 4, "weight": [25, 26, 48, 52, 60, 73, 77], "weighted_averag": 60, "well": 73, "were": [3, 75], "what": [33, 34, 53, 73, 77], "when": [4, 10, 13, 25, 26, 66, 68, 73], "where": [8, 21, 24, 37, 48, 55, 57, 72, 73, 74, 77], "wherea": [58, 73], "whether": [7, 25, 26, 41, 50, 51, 53, 71, 73, 77, 78], "which": [2, 4, 5, 22, 23, 27, 48, 58, 60, 75, 77], "while": [22, 23, 53], "white": 73, "whole": [3, 25], "whose": [56, 58, 75], "why": 60, "width": [6, 7, 8, 22, 23, 25, 26, 39, 40, 41, 50, 51, 73, 75], "wisconsin": [42, 77], "with_column": [1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15, 16, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 41, 43, 44, 45, 47, 48, 50, 51, 52, 53, 54, 56, 57, 59, 60, 61, 62, 63, 64, 65, 66, 73, 74, 77], "with_replac": [48, 75, 77], "with_row": [5, 49], "within": [53, 74, 77], "without": [15, 48, 75, 77], "woba": 68, "womb": 77, "work": 77, "world": [75, 76], "worth": 53, "would": [53, 75], "wrapper": 51, "write": [42, 53, 77], "written": 72, "www": [42, 77], "wyom": [42, 77], "x": [3, 6, 28, 41, 50, 51, 59, 60, 75, 77], "x_0": 75, "x_1": 75, "x_2": 75, "x_3": 75, "x_column": 75, "xl": 74, "xyz": [4, 5, 64], "y": [3, 7, 26, 50, 51, 71, 74, 75, 77], "y_column": 75, "ye": [75, 77], "year": 75, "yellow": 43, "yerba": 75, "ylgn": 73, "ylgnbu": 73, "ylorbr": 73, "ylorrd": 73, "yolo": 43, "you": [4, 40, 53, 73, 75, 76, 77], "your": 78, "yourself": 53, "z": [2, 3, 11, 12, 16, 30, 31, 36, 47, 50, 62, 74, 77], "z1": 51, "z2": 51, "zero": [38, 75], "zeroth": 16, "zip": [19, 73, 75], "zoom": 73}, "titles": ["datascience.tables.Table.__init__", "datascience.tables.Table.append", "datascience.tables.Table.append_column", "datascience.tables.Table.apply", "datascience.tables.Table.as_html", "datascience.tables.Table.as_text", "datascience.tables.Table.bar", "datascience.tables.Table.barh", "datascience.tables.Table.bin", "datascience.tables.Table.boxplot", "datascience.tables.Table.column", "datascience.tables.Table.column_index", "datascience.tables.Table.columns", "datascience.tables.Table.copy", "datascience.tables.Table.drop", "datascience.tables.Table.exclude", "datascience.tables.Table.first", "datascience.tables.Table.from_array", "datascience.tables.Table.from_columns_dict", "datascience.tables.Table.from_df", "datascience.tables.Table.from_records", "datascience.tables.Table.group", "datascience.tables.Table.group_bar", "datascience.tables.Table.group_barh", "datascience.tables.Table.groups", "datascience.tables.Table.hist", "datascience.tables.Table.hist_of_counts", "datascience.tables.Table.index_by", "datascience.tables.Table.interactive_plots", "datascience.tables.Table.join", "datascience.tables.Table.labels", "datascience.tables.Table.last", "datascience.tables.Table.move_column", "datascience.tables.Table.move_to_end", "datascience.tables.Table.move_to_start", "datascience.tables.Table.num_columns", "datascience.tables.Table.num_rows", "datascience.tables.Table.percentile", "datascience.tables.Table.pivot", "datascience.tables.Table.pivot_bin", "datascience.tables.Table.pivot_hist", "datascience.tables.Table.plot", "datascience.tables.Table.read_table", "datascience.tables.Table.relabel", "datascience.tables.Table.relabeled", "datascience.tables.Table.remove", "datascience.tables.Table.row", "datascience.tables.Table.rows", "datascience.tables.Table.sample", "datascience.tables.Table.sample_from_distribution", "datascience.tables.Table.scatter", "datascience.tables.Table.scatter3d", "datascience.tables.Table.select", "datascience.tables.Table.set_format", "datascience.tables.Table.show", "datascience.tables.Table.shuffle", "datascience.tables.Table.sort", "datascience.tables.Table.split", "datascience.tables.Table.stack", "datascience.tables.Table.static_plots", "datascience.tables.Table.stats", "datascience.tables.Table.take", "datascience.tables.Table.to_array", "datascience.tables.Table.to_csv", "datascience.tables.Table.to_df", "datascience.tables.Table.values", "datascience.tables.Table.where", "datascience.tables.Table.with_column", "datascience.tables.Table.with_columns", "datascience.tables.Table.with_row", "datascience.tables.Table.with_rows", "Formats (datascience.formats)", "Welcome to datascience\u2019s documentation!", "Maps (datascience.maps)", "Predicates (datascience.predicates)", "Data 8 datascience Reference", "Tables (datascience.tables)", "Start Here: datascience Tutorial", "Utility Functions (datascience.util)"], "titleterms": {"": 72, "8": 75, "__init__": 0, "ab": 75, "abov": 75, "above_or_equal_to": 75, "access": 77, "advanc": 75, "an": 77, "append": [1, 75], "append_column": 2, "appli": [3, 75], "ar": 75, "arang": 75, "arrai": 75, "as_html": 4, "as_text": 5, "bar": 6, "barh": [7, 75], "below": 75, "below_or_equal_to": 75, "between": 75, "between_or_equal_to": 75, "bin": 8, "boxplot": 9, "choic": 75, "column": [10, 12, 75], "column_index": 11, "contain": 75, "contained_in": 75, "content": 77, "copi": 13, "count_nonzero": 75, "creat": 77, "data": [75, 77], "datasci": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78], "diff": 75, "document": 72, "draw": 77, "drop": [14, 75], "equal_to": 75, "exampl": 77, "exclud": 15, "export": 77, "first": 16, "format": 71, "from_arrai": 17, "from_columns_dict": 18, "from_df": 19, "from_record": 20, "function": [75, 78], "get": 77, "group": [21, 24, 75], "group_bar": 22, "group_barh": 23, "here": 77, "hist": [25, 75], "hist_of_count": 26, "index_bi": 27, "interactive_plot": [28, 75], "item": 75, "join": [29, 75], "label": [30, 75], "last": 31, "len": 75, "make_arrai": 75, "manipul": 77, "map": [73, 77], "max": 75, "mean": 75, "method": 75, "min": 75, "minim": 75, "miscellan": 75, "move_column": 32, "move_to_end": 33, "move_to_start": 34, "np": 75, "num": 75, "num_column": [35, 75], "num_row": [36, 75], "percentil": [37, 75], "pivot": [38, 75], "pivot_bin": 39, "pivot_hist": 40, "plot": [41, 75], "predic": [74, 75], "random": 75, "read_tabl": [42, 75], "refer": [72, 75], "relabel": [43, 44, 75], "remov": 45, "replac": 75, "round": 75, "row": [46, 47], "sampl": [48, 75], "sample_from_distribut": 49, "sample_proport": 75, "scatter": [50, 75], "scatter3d": 51, "select": [52, 75], "set_format": 53, "show": [54, 75], "shuffl": 55, "sort": [56, 75], "split": [57, 75], "sqrt": 75, "stack": 58, "start": 77, "stat": 60, "static_plot": [59, 75], "std": 75, "str": 75, "strictly_between": 75, "string": 75, "sum": 75, "tabl": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 75, 76, 77], "take": [61, 75], "tbl": 75, "to_arrai": 62, "to_csv": 63, "to_df": 64, "tutori": 77, "util": 78, "valu": [65, 77], "visual": [75, 77], "welcom": 72, "where": [66, 75], "with_column": [67, 68, 75], "with_row": [69, 70]}}) \ No newline at end of file diff --git a/tables.html b/tables.html index b80240698..e8073f2ae 100644 --- a/tables.html +++ b/tables.html @@ -7,10 +7,10 @@ Tables (datascience.tables) — datascience 0.17.6 documentation - + - + @@ -357,7 +357,7 @@

This Page

rel="nofollow">Show Source - + @@ -392,7 +392,7 @@

Navigation

\ No newline at end of file diff --git a/tutorial.html b/tutorial.html index 2a2922a43..e1183a814 100644 --- a/tutorial.html +++ b/tutorial.html @@ -7,10 +7,10 @@ Start Here: datascience Tutorial — datascience 0.17.6 documentation - + - + @@ -448,17 +448,17 @@

Visualizing Data< In [47]: normal_data Out[47]: -data1 | data2 --1.20011 | 2.81614 -1.94625 | 1.98461 --2.23617 | 4.33198 -0.163808 | 4.7598 -2.13657 | 6.68041 --1.09672 | 5.5486 -0.5919 | 6.09641 -2.28616 | 5.60395 -2.61927 | 1.99552 -4.92661 | 8.06488 +data1 | data2 +1.82671 | 0.575557 +-0.111294 | 4.77468 +-0.527647 | -3.20745 +4.51506 | 0.852124 +4.59658 | 3.55468 +-0.410764 | 4.74999 +0.773757 | 7.00782 +4.83982 | 0.587711 +-2.05991 | 5.39061 +3.46965 | 2.40147 ... (90 rows omitted) @@ -510,17 +510,17 @@

Exportingto_df():

In [56]: normal_data
 Out[56]: 
-data1    | data2
--1.20011 | 2.81614
-1.94625  | 1.98461
--2.23617 | 4.33198
-0.163808 | 4.7598
-2.13657  | 6.68041
--1.09672 | 5.5486
-0.5919   | 6.09641
-2.28616  | 5.60395
-2.61927  | 1.99552
-4.92661  | 8.06488
+data1     | data2
+1.82671   | 0.575557
+-0.111294 | 4.77468
+-0.527647 | -3.20745
+4.51506   | 0.852124
+4.59658   | 3.55468
+-0.410764 | 4.74999
+0.773757  | 7.00782
+4.83982   | 0.587711
+-2.05991  | 5.39061
+3.46965   | 2.40147
 ... (90 rows omitted)
 
 # index = False prevents row numbers from appearing in the resulting CSV
@@ -634,8 +634,8 @@ 

An ExampleIn [73]: bootstrapped_diff_means[:10] Out[73]: -array([-1.77816171, 0.23773786, -1.50497738, 1.95732895, -1.18618462, - -2.90481588, -0.09267639, -0.90782028, -1.84637019, 0.3219617 ]) +array([ 1.80388805, -0.67214224, -1.15283758, -1.27664579, -0.44090985, + -0.94612185, 0.43169249, -0.59991468, -0.63643677, -0.09511404]) In [74]: num_diffs_greater = (abs(bootstrapped_diff_means) > abs(observed_diff)).sum() @@ -708,7 +708,7 @@

This Page

rel="nofollow">Show Source

- +
@@ -743,7 +743,7 @@

Navigation

\ No newline at end of file diff --git a/util.html b/util.html index 43b239c9e..c40f86508 100644 --- a/util.html +++ b/util.html @@ -7,10 +7,10 @@ Utility Functions (datascience.util) — datascience 0.17.6 documentation - + - + @@ -243,7 +243,7 @@

This Page

rel="nofollow">Show Source - + @@ -275,7 +275,7 @@

Navigation

\ No newline at end of file