-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMNIST_Data.py
143 lines (98 loc) · 4.08 KB
/
MNIST_Data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
from DanTFDeepConvNet.DanTF_DeepNet import LayerType,NetLayer,TFReadyData,DanTFDeepNet
import tensorflow as tf
import cv2
import numpy as np
import os
import random
import matplotlib.pyplot as plt
class MnistData(TFReadyData):
def __init__(self,data,show_sample=False):
#pass tuple in the form (train_labels_file_path,test_labels_file_path,OPTIONAL_(num_train,num_test))
self.data=data
self.train_labels = []
self.test_labels = []
self.train_images = []
self.test_images = []
self.y_key = {"0":0,"1":1,"2":2,"3":3,"4":4,"5":5,"6":6,"7":7,"8":8,"9":9}
self.SetUpImages()
if(show_sample):
print("Showing sample...")
self.ShowSampleImage()
def SetUpImages(self):
num_categories = len(self.y_key)
load_limits = None
if(len(self.data) > 2):
load_limits = self.data[2]
print("Loading Train Images")
train_label_lines = [line.rstrip('\n') for line in open(self.data[0], "r")]
total_train = len(train_label_lines)
load_train = total_train
if(load_limits != None):
load_train = min(load_limits[0],total_train)
print("Train image limit:"+ str(load_train))
print("Train Images Found: "+str(total_train))
for train_label_line_index in range(0,load_train):
train_label_line = train_label_lines[train_label_line_index]
annotation_data = train_label_line.rstrip().split(",")
label = annotation_data.pop(0)
y_labels = [0] * num_categories
y_labels[self.y_key[label]] = 1
self.train_labels.append(y_labels)
annotation_data = [int(data) for data in annotation_data]
self.train_images.append(np.array(annotation_data, dtype='float32')/255)
print("Loading Test Images")
test_label_lines = [line.rstrip('\n') for line in open(self.data[1], "r")]
total_test = len(test_label_lines)
load_test = total_test
if(load_limits):
load_test = min(load_limits[1],total_test)
print("Train image limit:"+ str(load_test))
print("Test Images Found: "+str(total_test))
for test_label_line_index in range(0,load_test):
test_label_line = test_label_lines[test_label_line_index]
annotation_data = test_label_line.rstrip().split(",")
label = annotation_data.pop(0)
y_labels = [0] * num_categories
y_labels[self.y_key[label]] = 1
self.test_labels.append(y_labels)
annotation_data = [int(data) for data in annotation_data]
self.test_images.append(np.array(annotation_data, dtype='float32')/255)
def NextTrainBatch(self,batch_size):
#should return x and y data for next batch of training data
# (np.array( [ [[Xi]] ] ),np.array([ [Yi] ]) )
batch_image_index = random.sample(list(range(0,len(self.train_images))), batch_size)
y_values = [self.train_labels[i] for i in batch_image_index]
images = np.array([self.train_images[i] for i in batch_image_index])
return (images, np.array(y_values))
def NextTestBatch(self,batch_size):
#should return x and y data for next batch of test data
# (np.array( [ [[Xi]] ] ),np.array([ [Yi] ]) )
batch_image_index = random.sample(list(range(0,len(self.test_images))), batch_size)
y_values = [self.test_labels[i] for i in batch_image_index]
images = np.array([self.test_images[i] for i in batch_image_index])
self.OutputPathListToFile(batch_image_index)
return (images, np.array(y_values))
def OutputPathListToFile(self,paths,output_file="last_batch.csv"):
with open(output_file, "w") as output_file:
for path in paths:
output_file.write(str(path) + "\n")
def ShowSampleImage(self):
train_data = self.NextTrainBatch(10)
cv2.imshow('image',train_data[0][0].reshape(28,28))
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == '__main__':
train_file_path = os.path.join("mnist_csvs","mnist_train.csv")
test_file_path = os.path.join("mnist_csvs","mnist_test.csv")
mnist = MnistData( (train_file_path,test_file_path,(100,100)),True )
train_data = mnist.NextTrainBatch(10)
print(train_data[0].shape)
print(train_data[1])
print(train_data[0][0].reshape(28,28))
show_image = False
if(show_image):
for i in range(10):
print(train_data[1][i])
cv2.imshow('image',train_data[0][i].reshape(28,28))
cv2.waitKey(0)
cv2.destroyAllWindows()