-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathP18507.rs
78 lines (72 loc) · 2.87 KB
/
P18507.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
/*
Author : quickn (quickn.ga)
Email : [email protected]
*/
use std::str;
use std::io::{self, BufWriter, Write};
/* https://github.com/EbTech/rust-algorithms */
/// Same API as Scanner but nearly twice as fast, using horribly unsafe dark arts
/// **REQUIRES** Rust 1.34 or higher
pub struct UnsafeScanner<R> {
reader: R,
buf_str: Vec<u8>,
buf_iter: str::SplitAsciiWhitespace<'static>,
}
impl<R: io::BufRead> UnsafeScanner<R> {
pub fn new(reader: R) -> Self {
Self {
reader,
buf_str: Vec::new(),
buf_iter: "".split_ascii_whitespace(),
}
}
/// This function should be marked unsafe, but noone has time for that in a
/// programming contest. Use at your own risk!
pub fn token<T: str::FromStr>(&mut self) -> T {
loop {
if let Some(token) = self.buf_iter.next() {
return token.parse().ok().expect("Failed parse");
}
self.buf_str.clear();
self.reader
.read_until(b'\n', &mut self.buf_str)
.expect("Failed read");
self.buf_iter = unsafe {
let slice = str::from_utf8_unchecked(&self.buf_str);
std::mem::transmute(slice.split_ascii_whitespace())
}
}
}
}
fn main() {
let (stdin, stdout) = (io::stdin(), io::stdout());
let (mut scan, mut sout) = (UnsafeScanner::new(stdin.lock()), BufWriter::new(stdout.lock()));
let (n, m): (i32, i32) = (scan.token(), scan.token());
let mut res: u64 = 1 + if n & 1 != 1 { m as u64 } else { 0 };
for p in 1..=m {
// We may use sturm's theorem and get sign variations
// By using,
// $p_{0} = x^{n} + px + q$
// $p_{1} = nx^{n-1} + p$
// $p_{2} = p + \frac{(-1)^{n} n^{n+1} q^{n}}{(1-n)^{n} p^{n}}
if n & 1 == 1 {
// For $-\infty$,
// $p_{0}$ => (-)
// $p_{1}$ => (+)
// $p_{2}$ => ?
// Case #1: $p_{2} > 0 \wedge p > 0 \wedge \frac{n^{n+1} q^{n}}{(1-n)^{n} p^{n}} < 0$
// $\Rightarrow \frac{q^{n}}{p^{n}} > 0$
// Then, $q > 0$
// There exists $q > 0$ that satisfies conditions
res += m as u64;
// Case #2: $p_{2} > 0 \wedge p > 0 \wedge p >= \frac{n^{n+1} q^{n}}{(1-n)^{n} p^{n}}$
// $\Rightarrow 1 >= \frac{n^{n+1} q^{n}}{(1-n)^{n} p^{n+1}}$
// $\Rightarrow (1-n)^{n} p^{n+1} >= n^{n+1} q^{n}$
// $\Rightarrow \frac{(1-n)^{n} p^{n+1}}{n^{n+1}} >= q^{n}$
// $\Rightarrow \frac{(1-n) p^{\frac{1}{n}+1}}{n^{\frac{1}{n}+1}} >= q$
let upper = (((1-n) as f64)*((p as f64)/(n as f64)).powf(1.0 + 1.0/(n as f64))).floor() as i64;
res += ((m as i64) + 1 + upper) as u64;
// Case #3: $p_{2} > 0 \wedge p < 0 \wedge \frac{n^{n+1} q^{n}}{(1-n)^{n} p^{n}} < 0$
}
}
}