forked from harvardnlp/struct-attn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train-qa.lua
807 lines (680 loc) · 26 KB
/
train-qa.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
require("hdf5")
require("nn")
require("optim")
require("rnn")
require("nngraph")
require 'models/Util.lua'
require 'models/Markov.lua'
require "models/CRFB.lua"
cmd = torch.CmdLine()
-- Cmd Args
cmd:option('-datafile', 'qa11.hdf5', 'data file')
cmd:option('-classifier', 'binarycrf', 'classifier to use')
-- Hyperparameters
cmd:option('-eta',0.01,'learning rate hyperparameter for lr/nn')
cmd:option('-max_grad_norm',40, 'max norm for RNN models')
cmd:option('-grad_norm','global', '[global, local, off] gradient renormalization')
cmd:option('-N',100,'num epochs hyperparameter for lr/nn')
cmd:option('-D0',20,'num outputs of lookup layer of nn')
cmd:option('-debug','','specify model to debug')
cmd:option('-unit_test',false,'whether run all unit tests')
-- Model parameters
cmd:option('-max_history',25,'max history')
cmd:option('-max_sent_len',20,'max sent len')
cmd:option('-pe',false,'enable position encoding')
cmd:option('-te',false,'enable temporal encoding')
cmd:option('-save',false,'whether to save model')
cmd:option('-saveminacc',0.5,'minimum accuracy on test set required to save model')
cmd:option('-cuda',false,'whether to use cuda')
function main()
-- Parse input params
opt = cmd:parse(arg)
load()
if opt.debug ~= '' then
debugModel()
else
print(string.format("Using data file: %s", opt.datafile))
if opt.cuda then
require("cunn")
print("Using Cuda")
else
print("Using CPU")
end
if opt.pe then
print('Using Position Encoding')
end
if opt.te then
print('Using Temporal Encoding')
end
if opt.classifier == 'binarycrf' then
runCRF()
elseif opt.classifier == 'unarycrf' then
runCRF()
else
print("NOT IMPLEMENTED")
end
end
end
function runCRF()
trainCRF()
testModel(false)
end
function trainCRF()
print(string.format(
"Training %s model with N = %d, D0 = %d, Eta = %f, "..
"Max History = %d, Max Sentence Length = %d, Max Gradient Norm = %d, "..
"Gradient Norm Type = %s", opt.classifier,
opt.N, opt.D0, opt.eta, opt.max_history, opt.max_sent_len,
opt.max_grad_norm, opt.grad_norm))
D0 = opt.D0
local eta = opt.eta
local trainLoss = torch.zeros(opt.N)
local timer = torch.Timer()
create_embedding_layers()
-- number of states in CRF, including the <nil> state at start and end time step
nstates = opt.max_history + 1
-- number of time steps, i.e. length of sequence
T = 2
if opt.classifier == 'binarycrf' then
create_binarycrf_model()
else
create_unarycrf_model()
end
if opt.classifier == 'binarycrf' then
theta0 = torch.zeros(1, nstates, nstates)
theta12 = torch.zeros(1, nstates, nstates)
theta3 = torch.zeros(1, nstates, nstates)
end
if opt.cuda then
model:cuda()
crit = crit:cuda()
if opt.classifier == 'binarycrf' then
theta0 = theta0:cuda()
theta12 = theta12:cuda()
theta3 = theta3:cuda()
end
train_stories = train_stories:cuda()
train_questions = train_questions:cuda()
train_answers = train_answers:cuda()
end
params, gradParams = model:getParameters()
-- good initializations for params
gradParams:zero()
for i=1, params:size(1) do params[i] = torch.randn(1)[1]/ torch.sqrt(10) end -- IMPORTANT
if opt.pe then
resetPE()
end
for iEpoch = 1, opt.N do
local idxs = torch.randperm(train_stories:size(1)):long()
for l = 1, train_stories:size(1) do
zeroLookupTable()
i = idxs[l]
local x = getStory(train_stories, i, opt.max_history, opt.max_sent_len)
local q = train_questions[i]
local preds = model:forward({x,q,te_mask,theta0,theta12,theta3})
-- test various outputs
if opt.unit_test then
for i,node in ipairs(model.forwardnodes) do
if node.data.annotations.name == 'cp123' then
assert(torch.abs(node.data.module.output:sum()-1) <= 1e-8,
'incorrect distribution')
break
end
if node.data.annotations.name == 'nom' then
local nom_output = node.data.module.output:view(T,nstates-1)
assert(torch.all(nom_output:sum(2):add(-1):abs():le(1e-8)),
'incorrect node marginals')
break
end
end
-- embedding rows corresponding to padding should be zero
nng_x = get_module_output('x')
nng_m = get_module_output('m')
nng_c = get_module_output('c')
nng_c2 = get_module_output('c2')
nng_c3 = get_module_output('c3')
n_pad_rows = torch.sum(nng_x[{{},1}]:eq(idx_pad))
if nng_m then assert(n_pad_rows == n_zero_rows(nng_m), 'Embeddings incorrect.') end
if nng_c then assert(n_pad_rows == n_zero_rows(nng_c), 'Embeddings incorrect.') end
if nng_c2 then assert(n_pad_rows == n_zero_rows(nng_c2), 'Embeddings incorrect.') end
if nng_c3 then assert(n_pad_rows == n_zero_rows(nng_c3), 'Embeddings incorrect.') end
nng_theta = get_module_output('theta') -- unary crf model
if nng_theta then
assert(T*(n_pad_rows+1) == nng_theta[{1,{},{1,n_pad_rows+1}}]:eq(-math.huge):sum(), 'incorrect unary potentials')
end
end
if l < 2 then
local debug_names = Set { "x", "m", "theta", "cp123", "CRF", "Theta01", "Theta12", "Theta20" }
for i,v in ipairs(model.forwardnodes) do
if debug_names[v.data.annotations.name] then
print(v.data.annotations.name)
print(v.data.module.output)
end
end
end
local max_prob, max_idx = torch.max(preds,1)
local loss = crit:forward(preds,train_answers[i])
trainLoss[iEpoch] = trainLoss[iEpoch] + loss
local dLdinp = crit:backward(preds,train_answers[i])
gradParams:zero()
model:backward({x,q,te_mask,theta0,theta12,theta3},dLdinp)
zeroPEGrad()
adjustGrad()
params:add(-eta, gradParams)
end
print("epoch "..iEpoch,"loss "..trainLoss[iEpoch])
print("Total time taken",timer:time().real)
if trainLoss[iEpoch] < 5 then
print("Loss is sufficiently small. Exiting")
break
end
if iEpoch == 20 then
if opt.classifier == 'binarycrf' then
print('Re-inserting softmax')
THETA01_pre:insert(nn.LogSoftMax(), 3)
THETA12_pre:insert(nn.LogSoftMax(), 2)
THETA20_pre:insert(nn.LogSoftMax(), 3)
print('THETA01_pre')
print(THETA01_pre)
print('THETA12_pre')
print(THETA12_pre)
print('THETA20_pre')
print(THETA20_pre)
else
THETA_PRE:insert(nn.LogSoftMax(), 3)
end
end
testModel(true)
eta = adjustEta(eta, iEpoch)
end
end
function create_binarycrf_model()
-- theta^(t) (i,j) = u_1^T m_i + m_i^T n_j + u_2^T n_j
M_I = nn.Sequential():add(nn.SplitTable(1)):add(nn.MapTable()
:add(nn.Replicate(opt.max_history, 1))):add(nn.JoinTable(1))
N_J = nn.Sequential():add(nn.Replicate(opt.max_history, 1))
:add(nn.Reshape(opt.max_history * opt.max_history, D0))
U2 = nn.Linear(D0,D0)
U_MI = nn.MM(false,true) -- Mi * u
MI_NJ = nn.DotProduct() -- Mi * Mj
U_NJ = nn.MM(false, true) -- Nj * u
THETA01_pre = nn.Sequential()
:add(nn.MM(false,true))
:add(nn.View(1,opt.max_history))
:add(nn.Padding(2,-1,2,-math.huge))
:add(nn.Padding(1,opt.max_history,2,-math.huge))
:add(nn.View(1,nstates,nstates))
THETA01 = nn.CAddTable()
THETA12_pre = nn.Sequential()
:add(nn.CAddTable())
:add(nn.View(opt.max_history,opt.max_history))
:add(nn.Padding(1,-1,2,-math.huge))
:add(nn.Padding(2,-1,2,-math.huge))
:add(nn.View(1,nstates,nstates))
THETA12 = nn.CAddTable()
THETA20_pre = nn.Sequential()
:add(nn.MM(false,true))
:add(nn.View(1,opt.max_history))
:add(nn.View(opt.max_history,1))
:add(nn.Padding(1,-1,2,-math.huge))
:add(nn.Padding(2,opt.max_history,2,-math.huge))
:add(nn.View(1,nstates,nstates))
THETA20 = nn.CAddTable()
CRF = nn.Sequential():add(nn.JoinTable(1)):add(nn.View(1,T+1,nstates,nstates))
:add(nn.NaN(nn.CRFB())):add(nn.Exp())
create_crf_infer_module()
-- nngraph based model
create_embedding_nodes()
T0_inp = nn.Identity()():annotate({name = 'T0', description = 'constant binary potentials for first step'})
T12_inp = nn.Identity()():annotate({name = 'T12', description = 'constant binary potentials for second step'})
T3_inp = nn.Identity()():annotate({name = 'T3', description = 'constant binary potentials for last step'})
m_i = M_I(m):annotate({name = 'mi', description = 'memory embeddings replicated'})
n_j = N_J(c):annotate({name = 'nj', description = 'memory embeddings replicated'})
u2 = U2(u):annotate({name = 'u2', description = 'second layer query embeddings'})
umi = U_MI({m_i,u}):annotate({name = 'umi', description = 'u^T m_i'})
minj = MI_NJ({m_i,n_j}):annotate({name = 'minj', description = 'm_i^T n_j'})
unj = U_NJ({n_j,u2}):annotate({name = 'unj', description = 'u^T n_j'})
theta01_pre = THETA01_pre({u,m}):annotate({name = 'Theta01_pre', description = 'binary potential theta at first step'})
theta01 = THETA01({theta01_pre,T0_inp}):annotate({name = 'Theta01', description = 'binary potential theta at first step'})
theta12_pre = THETA12_pre({umi,minj,unj}):annotate({name = 'Theta12_pre', description = 'binary potential theta'})
theta12 = THETA12({theta12_pre, T12_inp}):annotate({name = 'Theta12', description = 'binary potential theta'})
theta20_pre = THETA20_pre({u2,c}):annotate({name = 'Theta20_pre', description = 'binary potential theta at last step'})
theta20 = THETA20({T3_inp,theta20_pre}):annotate({name = 'Theta20', description = 'binary potential theta at last step'})
crf = CRF({theta01,theta12,theta20}):annotate({name = 'CRF', description = 'CRF layer'})
create_crf_infer_node()
model = nn.gModule({x_inp,q_inp,te_inp,T0_inp,T12_inp,T3_inp},{a_hat})
end
function create_unarycrf_model()
U_MI_1 = nn.MM(false,true) -- u^T * M1
U_MI_2 = nn.MM(false,true) -- u^T * M2
THETA_MASK = nn.Sequential()
:add(nn.Select(2,1))
:add(nn.Log())
:add(nn.Replicate(T,1))
:add(nn.Padding(2,-1,2,-math.huge))
:add(nn.View(1,T,nstates))
THETA_PRE = nn.Sequential()
:add(nn.JoinTable(1))
:add(nn.View(T,opt.max_history))
:add(nn.Padding(2,-1,2,-math.huge))
:add(nn.View(1,T,nstates))
THETA = nn.CAddTable()
M2_T_M1 = nn.MM(true, false)
U2 = nn.Sequential():add(nn.MM(false,true)):add(nn.View(1,D0))
CRF = nn.Sequential():add(nn.NaN(nn.CRF(nstates))):add(nn.Exp())
create_crf_infer_module()
-- nngraph based model
create_embedding_nodes()
m2_t_m1 = M2_T_M1({c,m}):annotate({name = 'm2tm1', description = 'M2^T * M1'})
u2 = U2({m2_t_m1,u}):annotate({name = 'u2', description = 'second layer query embeddings'})
umi_1 = U_MI_1({u,m}):annotate({name = 'umi1', description = 'u1^T mi'})
umi_2 = U_MI_2({u2,c}):annotate({name = 'umi2', description = 'u2^T mi'})
theta_mask = THETA_MASK(te_inp):annotate({name = 'theta_mask', description = 'binary potential theta'})
theta_pre = THETA_PRE({umi_1,umi_2}):annotate({name = 'theta_pre', description = 'binary potential theta'})
theta = THETA({theta_pre,theta_mask}):annotate({name = 'theta', description = 'binary potential theta'})
crf = CRF(theta):annotate({name = 'CRF', description = 'CRF layer'})
create_crf_infer_node()
model = nn.gModule({x_inp,q_inp,te_inp},{a_hat})
end
-- create full distribution nngraph modules
function create_crf_infer_module()
-- the following computes probability distribution over all sequences [x_i, x_j, x_k]
-- conditional probabilities p(x_j | x_i) = p(x_i,x_j) / sum_j' p(x_i,x_j')
CP = nn.Sequential():add(nn.View(T+1,nstates,nstates)):add(nn.SplitTable(1))
:add(nn.MapTable():add(nn.Normalize(1)))
-- p(x_i | <nil>)
CP1 = nn.Sequential():add(nn.SelectTable(1)):add(nn.Select(1,1)):add(nn.Replicate(nstates,2))
-- p(x_j | x_i)
CP2 = nn.SelectTable(2)
-- p(<nil>, x_i, x_j) = p(x_j | x_i) * p(x_i | <nil>)
CP12 = nn.CMulTable()
-- p(<nil> | x_j)
CP3 = nn.Sequential():add(nn.SelectTable(3)):add(nn.Select(2,1))
:add(nn.Replicate(nstates,1))
-- p(<nil>, x_i, x_j, <nil>), size = C x C
CP123 = nn.Sequential():add(nn.CMulTable()):add(nn.View(1, nstates * nstates))
-- compute c_i + c_j
-- pad c with an extra row for <nil> sentence
CPAD1 = nn.Padding(1,-1,2,0)
CPAD2 = nn.Padding(1,-1,2,0)
-- replicate c in two different ways so that summing them up would
-- result in the desired sum
CEMB1 = nn.Sequential():add(nn.Replicate(nstates, 1))
:add(nn.Reshape(nstates * nstates, D0))
CEMB2 = nn.Sequential():add(nn.SplitTable(1)):add(nn.MapTable()
:add(nn.Replicate(nstates,1)))
:add(nn.JoinTable(1)):add(nn.Reshape(nstates * nstates, D0))
CEMB = nn.Sequential():add(nn.ParallelTable():add(CEMB2):add(CEMB1))
:add(nn.CAddTable())
O = nn.MM(false,false)
W = nn.Sequential():add(nn.CAddTable()):add(nn.Linear(D0,nwords,false))
:add(nn.LogSoftMax()):add(nn.Squeeze())
end
function create_crf_infer_node()
cp = CP(crf):annotate({name = 'cp', description = 'conditional probabilities p(j | i)'})
cp1 = CP1(cp):annotate({name = 'cp1', description = 'p(x_i | <nil>)'})
cp2 = CP2(cp):annotate({name = 'cp2', description = 'p(x_j | x_i)'})
cp3 = CP3(cp):annotate({name = 'cp3', description = 'p(x_k | x_j)'})
cp12 = CP12({cp1,cp2}):annotate({name = 'cp12', description = 'p(<nil>, x_i, x_j)'})
cp123 = CP123({cp12,cp3}):annotate({name = 'cp123', description = 'p(<nil>, x_i, x_j, x_k)'})
cpad1 = CPAD1(c2):annotate({name = 'cpad1', description = 'nil-padded output embedding'})
cpad2 = CPAD2(c3):annotate({name = 'cpad2', description = 'nil-padded output embedding'})
cemb = CEMB({cpad1,cpad2}):annotate({name = 'cemb', description = 'Sum of embeddings c_i + c_j + c_k'})
o = O({cp123,cemb}):annotate({name = 'output', description = 'Output vector'})
a_hat = W({o,u2}):annotate({name = 'a_hat', description = 'output predictions'})
crit = nn.ClassNLLCriterion()
end
function create_embedding_layers()
ltx = nn.LookupTable(nwords,D0)
ltq = ltx:clone('weight', 'gradWeight')
A = nn.Sequential()
B = nn.Sequential()
if opt.pe then -- position encoding
A_pe = nn.CMul(opt.max_history,opt.max_sent_len,D0)
A:add(A_pe)
end
A:add(nn.Sum(2))
if opt.te then -- temporal encoding
A:add(nn.View(1,D0*opt.max_history)):add(nn.Add(D0*opt.max_history))
:add(nn.View(opt.max_history,D0))
end
-- for query
-- adding position encoding
if opt.pe then
B_pe = nn.CMul(train_questions:size(2),D0)
B:add(B_pe)
end
B:add(nn.Sum(1)):add(nn.View(1,D0))
-- for output representation of the memories
C = nn.Sequential():add(nn.LookupTable(nwords,D0))
if opt.pe then -- position encoding
C_pe = nn.CMul(opt.max_history,opt.max_sent_len,D0)
C:add(C_pe)
end
C:add(nn.Sum(2))
if opt.te then -- temporal encoding
C:add(nn.View(1,D0*opt.max_history)):add(nn.Add(D0*opt.max_history))
:add(nn.View(opt.max_history,D0))
end
C2 = C:clone()
C3 = C:clone()
if opt.pe then
C2_pe = C2:get(2)
C3_pe = C3:get(2)
end
A_mask = nn.CMulTable()
C_mask = nn.CMulTable()
C2_mask = nn.CMulTable()
C3_mask = nn.CMulTable()
te_mask = torch.ones(opt.max_history, D0)
end
function create_embedding_nodes()
x_inp = nn.Identity()():annotate({name = 'x', description = 'memories'})
q_inp = nn.Identity()():annotate({name = 'q', description = 'query'})
te_inp = nn.Identity()():annotate({name = 'te_inp', description = 'temporal encoding'})
x_pre = ltx(x_inp):annotate({name = 'x_pre', description = 'pre embeddings'})
q_pre = ltq(q_inp):annotate({name = 'q_pre', description = 'pre embeddings'})
m_pre = A(x_pre):annotate({name = 'm_pre', description = 'memory embeddings'})
u = B(q_pre):annotate({name = 'u', description = 'query embeddings'})
c_pre = C(x_inp):annotate({name = 'c_pre', description = 'output embeddings'})
c2_pre = C2(x_inp):annotate({name = 'c2_pre', description = 'output embeddings'})
c3_pre = C3(x_inp):annotate({name = 'c3_pre', description = 'output embeddings'})
m = A_mask({m_pre,te_inp}):annotate({name = 'm', description = 'm'})
c = C_mask({c_pre,te_inp}):annotate({name = 'c', description = 'c'})
c2 = C2_mask({c2_pre,te_inp}):annotate({name = 'c2', description = 'c2'})
c3 = C3_mask({c3_pre,te_inp}):annotate({name = 'c3', description = 'c3'})
end
function adjustGrad()
if opt.grad_norm == 'off' then
return
end
local grad
if opt.grad_norm == 'global' then
renorm(gradParams, opt.max_grad_norm)
elseif opt.grad_norm == 'local' then
for i,node in ipairs(model.forwardnodes) do
if node.data.module then
local lmod = node.data.module
if lmod.gradWeight and lmod.gradBias then
grad = nn.JoinTable(1):forward({lmod.gradWeight:view(-1,1), lmod.gradBias:view(-1,1)})
elseif lmod.gradWeight then
grad = lmod.gradWeight:view(-1,1)
elseif lmod.gradBias then
grad = lmod.gradBias:view(-1,1)
end
renorm(grad, opt.max_grad_norm)
end
end
end
if opt.unit_test then -- test grad renorm
newParams, newGradParams = model:getParameters()
assert(torch.sum(gradParams:eq(newGradParams)) == gradParams:size()[1], 'renorm failed test')
params = newParams
gradParams = newGradParams
end
end
function renorm(t, norm)
if t and #t:size() > 0 then
local t_norm = torch.sqrt(t:dot(t))
local shrinkage = norm / t_norm
if shrinkage < 1 then
t:mul(shrinkage)
end
end
end
function adjustEta(eta, epoch)
if epoch <= 100 then
if epoch % 25 == 0 then
return eta / 2
end
end
return eta
end
function debugModel()
local nanswers = test_answers:size(1)
local all_predictions = torch.zeros(nanswers)
local all_prediction_scores = torch.zeros(nanswers, nwords)
local all_marginals
debugFile = opt.debug
proto = torch.load(opt.debug)
model = proto.model
opt = proto.options
max_history = opt.max_history
D0 = opt.D0
max_sent_len = opt.max_sent_len
nstates = max_history + 1
T = 2
te_mask = torch.ones(max_history, D0)
local outDebugFile = hdf5.open(''..debugFile..'.debug', 'w')
if string.find(debugFile, ".binarycrf") or string.find(debugFile, ".unarycrf") then
print('Detected crf model')
if string.find(debugFile, ".binarycrf") then
theta0 = torch.zeros(1, nstates, nstates)
theta12 = torch.zeros(1, nstates, nstates)
theta3 = torch.zeros(1, nstates, nstates)
end
-- data to save to file
all_marginals = torch.zeros(nanswers, T + 1, nstates, nstates)
local all_distribution = torch.zeros(nanswers, T, nstates - 1)
for i = 1, test_stories:size(1) do
local x = getStory(test_stories, i, max_history, max_sent_len)
local q = test_questions[i]
all_prediction_scores[i] = model:forward({x,q,te_mask,theta0,theta12,theta3})
_, all_predictions[i] = torch.max(all_prediction_scores[i]:float(), 1)
for _, p in ipairs(model.forwardnodes) do
if p.data.annotations.name == 'nom' then
all_distribution[i] = p.data.module.output:view(T,nstates-1)
elseif p.data.annotations.name == 'CRF' then
all_marginals[i] = p.data.module.output
end
end
end
outDebugFile:write('distribution', all_distribution)
end
print('Accuracy = '..torch.eq(all_predictions:long(), test_answers):sum()/nanswers)
outDebugFile:write('scores', all_prediction_scores)
outDebugFile:write('answers', test_answers:squeeze())
outDebugFile:write('predictions', all_predictions:long())
outDebugFile:write('marginals', all_marginals)
outDebugFile:close()
end
function testModel(useHeldout)
if useHeldout then
testX = heldout_stories
testQ = heldout_questions
testA = heldout_answers
accuracyText = "Accuracy on held out = "
else
testX = test_stories
testQ = test_questions
testA = test_answers
accuracyText = "Accuracy on test set = "
model = bestHeldoutModel
end
if opt.cuda then
testX = testX:cuda()
testQ = testQ:cuda()
end
local Y_hat = torch.zeros(testA:size(1))
zeroLookupTable()
for i=1, testX:size(1) do
local x = getStory(testX,i,opt.max_history, opt.max_sent_len)
local q = testQ[i]
local preds = model:forward({x,q,te_mask,theta0,theta12,theta3})
_, Y_hat[i] = torch.max(preds:float(),1)
end
local correct = torch.eq(Y_hat:long() - testA, 0):sum()
local accuracy = correct/Y_hat:size(1)
print(accuracyText..accuracy)
if useHeldout then
if bestHeldoutAccuracy < accuracy then
bestHeldoutAccuracy = accuracy
bestHeldoutModel = model:clone()
end
else
-- re-test the best model on held out set for sanity check
local Y_hat_heldout = torch.zeros(heldout_answers:size(1))
for i=1, heldout_stories:size(1) do
local x = getStory(heldout_stories,i,opt.max_history, opt.max_sent_len)
local q = heldout_questions[i]
local preds = model:forward({x,q,te_mask,theta0,theta12,theta3})
_, Y_hat_heldout[i] = torch.max(preds:float(),1)
end
local accuracy_heldout = torch.eq(Y_hat_heldout:long()-heldout_answers, 0):sum() / Y_hat_heldout:size(1)
if accuracy_heldout ~= bestHeldoutAccuracy then
print('Best model on held out set is lost, cannot reproduce accuracy '..
bestHeldoutAccuracy .. ', actual accuracy = ' .. accuracy_heldout)
else
print('Using model which achieved ' .. accuracy_heldout .. ' on held out set.')
end
if opt.save and accuracy >= opt.saveminacc then
local acc = torch.LongTensor({accuracy*10000}):double()[1]/100
local modelFile = opt.datafile.."."..acc.."."..opt.classifier
torch.save(modelFile, {model = model, options = opt})
print('Saved model to ' .. modelFile)
end
end
end
function makePosEncMat(inputLayer)
if inputLayer == nil then
return
end
local input = inputLayer.weight
input:zero()
if input:dim() == 3 then
num_sent , sent_len, embed_size = input:size(1), input:size(2), input:size(3)
for i=1, num_sent do
for j=1, sent_len do
for k=1, embed_size do
input[i][j][k] = (1-j/sent_len) - (k/embed_size)*(1- (2*j/sent_len))
end
end
end
else
sent_len, embed_size = input:size(1), input:size(2)
for j=1, sent_len do
for k=1, embed_size do
input[j][k] = (1-j/sent_len) - (k/embed_size)*(1- (2*j/sent_len))
end
end
end
end
-- convert 1 x all_stories_by_question to num_stories x max_single_story_len
function getStory(X,q_id,max_history,max_sent_len)
local story = X[ {q_id, {num_history - max_history + 1, num_history}, {1, max_sent_len} } ]
-- detect empty memories and clear out theta potentials
local num_empty_sentences = torch.sum(story[{{},1}]:eq(idx_pad))
if te_mask then
te_mask:fill(1)
if num_empty_sentences > 0 then
te_mask[{{1,num_empty_sentences}}]:fill(0)
end
end
num_empty_sentences = num_empty_sentences + 1 -- add 1 for the <nil> state
if theta0 then
theta0:fill(-math.huge)
theta0[{{},1,{num_empty_sentences+1,nstates}}]:fill(0) -- first row
end
if theta3 then
theta3:fill(-math.huge)
theta3[{{},{num_empty_sentences+1,nstates},1}]:fill(0) -- first column
end
if theta12 then
theta12:fill(-math.huge)
theta12[{{},{num_empty_sentences+1,nstates},{num_empty_sentences+1,nstates}}]:fill(0) -- bottom right n x n square
for i=1,nstates do
theta12[{1,i,i}] = -math.huge
end
end
return story
end
function get_module_output(name)
for i,v in ipairs(model.forwardnodes) do
if v.data.annotations.name == name and v.data.module then
return v.data.module.output
end
end
return nil
end
function n_zero_rows(ts)
if ts then
return torch.sum(torch.sum(torch.abs(ts),2):eq(0))
else
return 0
end
end
function resetPE()
makePosEncMat(A_pe)
makePosEncMat(B_pe)
makePosEncMat(C_pe)
makePosEncMat(C2_pe)
makePosEncMat(C3_pe)
end
function zeroPEGrad()
if opt.pe then
if A_pe then A_pe.gradWeight:zero() end
if B_pe then B_pe.gradWeight:zero() end
if C_pe then C_pe.gradWeight:zero() end
if C2_pe then C2_pe.gradWeight:zero() end
if C3_pe then C3_pe.gradWeight:zero() end
end
end
function zeroLookupTable()
zeroWeight(ltx.weight)
zeroWeight(ltq.weight)
if ltn then
zeroWeight(ltn.weight)
end
if C2 then zeroWeight(C2.modules[1].weight) end
if C3 then zeroWeight(C3.modules[1].weight) end
zeroWeight(C.modules[1].weight)
end
function zeroWeight(wt)
wt[idx_pad]:zero()
wt[idx_start]:zero()
wt[idx_end]:zero()
wt[idx_rare]:zero()
end
function Set (list)
local set = {}
for _, l in ipairs(list) do set[l] = true end
return set
end
function load()
if opt.debug ~= '' then
opt.datafile = string.sub(opt.debug, 1, 9)
print('Loading detected data file ' .. opt.datafile)
end
-- get the data out of the datafile
local f = hdf5.open(opt.datafile, 'r')
local data = f:all()
idx_start = data.idx_start[1]
idx_end = data.idx_end[1]
idx_pad = data.idx_pad[1]
idx_rare = data.idx_rare[1]
nwords = data.nwords[1]
train_stories = data.train_stories:long() -- [# Questions x Max Story Length]
train_questions = data.train_questions:long() -- [# Questions x Max Q Length]
train_answers = data.train_answers:long() -- [# Questions x 1]
train_facts = data.train_facts:long() -- [# Questions x Max Fact Length]
local ntrains = train_stories:size(1)
local endtrain = math.floor(ntrains * 0.9)
heldout_stories = train_stories[{ {endtrain + 1, ntrains} }]
heldout_questions = train_questions[{ {endtrain + 1, ntrains} }]
heldout_answers = train_answers[{ {endtrain + 1, ntrains} }]
heldout_facts = train_facts[{ {endtrain + 1, ntrains} }]
train_stories = train_stories[{ {1, endtrain} }]
train_questions = train_questions[{ {1, endtrain} }]
train_answers = train_answers[{ {1, endtrain} }]
train_facts = train_facts[{ {1, endtrain} }]
test_stories = data.test_stories:long()
test_questions = data.test_questions:long()
test_answers = data.test_answers:long()
test_facts = data.test_facts:long()
num_history = train_stories:size(2)
len_sentence = train_stories:size(3)
opt.max_history = math.min(opt.max_history, num_history)
opt.max_sent_len = math.min(opt.max_sent_len, len_sentence)
bestHeldoutAccuracy = 0
end
main()