-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_diffusion.py
310 lines (274 loc) · 9.27 KB
/
main_diffusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import argparse
import os
from pathlib import Path
from diffusion.lattice_dataset import CrystalDataset
from lightning_wrappers.diffusion import PONITA_DIFFUSION
from torch_geometric.loader import DataLoader
import pytorch_lightning as pl
from lightning_wrappers.callbacks import EpochTimer
import torch
from pytorch_lightning.profilers import PyTorchProfiler
# ------------------------ Function to convert the nbody dataset to a dataloader for pytorch geometric graphs
def get_active_branch_name():
head_dir = Path(".") / ".git" / "HEAD"
with head_dir.open("r") as f:
content = f.read().splitlines()
for line in content:
if line[0:4] == "ref:":
return line.partition("refs/heads/")[2]
# ------------------------ Start of the main experiment script
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# ------------------------ Input arguments
# Run parameters
parser.add_argument("--epochs", type=int, default=10000, help="number of epochs")
parser.add_argument("--warmup", type=int, default=10, help="number of epochs")
parser.add_argument(
"--batch_size",
type=int,
default=100,
help="Batch size. Does not scale with number of gpus.",
)
parser.add_argument("--lr", type=float, default=1e-3, help="learning rate")
parser.add_argument(
"--weight_decay", type=float, default=1e-10, help="weight decay"
)
parser.add_argument("--log", type=eval, default=True, help="logging flag")
parser.add_argument(
"--enable_progress_bar", type=eval, default=False, help="enable progress bar"
)
parser.add_argument(
"--num_workers", type=int, default=0, help="Num workers in dataloader"
)
parser.add_argument("--seed", type=int, default=0, help="Random seed")
parser.add_argument(
"--val_interval",
type=int,
default=5,
metavar="N",
help="how many epochs to wait before logging validation",
)
# Train settings
parser.add_argument(
"--train_augm",
type=eval,
default=False,
help="whether or not to use random rotations during training",
)
parser.add_argument(
"--dataset",
type=str,
default="alexandria",
)
# Graph connectivity settings
parser.add_argument(
"--radius",
type=eval,
default=None,
help="radius for the radius graph construction in front of the force loss",
)
parser.add_argument(
"--loop", type=eval, default=True, help="enable self interactions"
)
# PONTA model settings
parser.add_argument(
"--num_ori", type=int, default=16, help="num elements of spherical grid"
)
parser.add_argument(
"--hidden_dim", type=int, default=128, help="internal feature dimension"
)
parser.add_argument(
"--basis_dim", type=int, default=256, help="number of basis functions"
)
parser.add_argument(
"--degree", type=int, default=3, help="degree of the polynomial embedding"
)
parser.add_argument(
"--layers", type=int, default=5, help="Number of message passing layers"
)
parser.add_argument(
"--widening_factor",
type=int,
default=4,
help="Number of message passing layers",
)
parser.add_argument(
"--layer_scale",
type=float,
default=1e-6,
help="Initial layer scale factor in ConvNextBlock, 0 means do not use layer scale",
)
parser.add_argument(
"--multiple_readouts",
type=eval,
default=True,
help="Whether or not to readout after every layer",
)
parser.add_argument(
"--num_timesteps", type=int, help="the number of diffusion timesteps"
)
parser.add_argument(
"--max_neighbors",
type=int,
required=True,
help="the maximum number of other atoms an atom can be directly influenced by",
)
parser.add_argument(
"--experiment_name", type=str, help="the number of diffusion timesteps"
)
parser.add_argument(
"--profiler",
type=str,
default=False,
help="Specifies the type of profiler",
choices=["pytorch", "advanced"],
)
# Parallel computing stuff
parser.add_argument(
"-g",
"--gpus",
default=1,
type=int,
help="number of gpus to use (assumes all are on one node)",
)
# Arg parser
args = parser.parse_args()
# ------------------------ Device settings
if args.gpus > 0:
accelerator = "gpu"
devices = args.gpus
# torch.set_default_device("cuda:0")
else:
accelerator = "cpu"
devices = "auto"
if args.num_workers == -1:
args.num_workers = os.cpu_count()
torch.set_default_dtype(torch.float64)
# ------------------------ Dataset
def get_default_device():
"""Pick GPU if available, else CPU"""
if torch.cuda.is_available():
return torch.device("cuda")
else:
return torch.device("cpu")
# TODO: remove this if statement and put it all into a config
if args.dataset == "alexandria-dev":
print("Using dev dataset")
dataset = CrystalDataset(
[
"datasets/alexandria_hdf5/alexandria_ps_000_take10.h5",
]
)
train_dataset = dataset
valid_dataset = dataset
test_dataset = dataset
z_table = train_dataset.z_table
elif args.dataset == "eval-equivariance":
train_dataset = CrystalDataset(
[
"datasets/alexandria_hdf5/alexandria_ps_000_take1.h5",
]
)
valid_dataset = CrystalDataset(
[
"datasets/alexandria_hdf5/alexandria_ps_000_take1_rotated.h5",
]
)
test_dataset = valid_dataset
z_table = train_dataset.z_table
else:
dataset = CrystalDataset(
[
"datasets/alexandria_hdf5/alexandria_ps_000.h5",
"datasets/alexandria_hdf5/alexandria_ps_001.h5",
"datasets/alexandria_hdf5/alexandria_ps_002.h5",
"datasets/alexandria_hdf5/alexandria_ps_003.h5",
"datasets/alexandria_hdf5/alexandria_ps_004.h5",
]
)
z_table = dataset.z_table
train_dataset, valid_dataset, test_dataset = torch.utils.data.random_split(
dataset,
[0.7, 0.15, 0.15],
# generator=torch.Generator(device=get_default_device()),
)
datasets = {"train": train_dataset, "valid": valid_dataset, "test": test_dataset}
# Make the dataloaders
dataloaders = {
split: DataLoader(
dataset,
batch_size=args.batch_size,
shuffle=(split == "train"),
num_workers=args.num_workers,
persistent_workers=True,
)
for split, dataset in datasets.items()
}
# ------------------------ Load and initialize the model
model = PONITA_DIFFUSION(args, z_table)
# ------------------------ Weights and Biases logger
if args.experiment_name is None:
args.experiment_name = get_active_branch_name()
if args.dataset == "alexandria-dev":
args.experiment_name = "local-" + args.experiment_name
elif args.dataset == "eval-equivariance":
args.experiment_name = "eval-equivariance-" + args.experiment_name
if args.log:
if not args.experiment_name:
raise ValueError("You need to specify an experiment name")
logger = pl.loggers.WandbLogger(
project="PONITA-alexandria",
name=args.experiment_name,
config=args,
save_dir="logs",
)
else:
logger = None
# ------------------------ Set up the trainer
# Seed
pl.seed_everything(args.seed, workers=True)
# Pytorch lightning call backs
callbacks = []
# if args.dataset != "eval-equivariance":
# callbacks.append(
# EMA(0.99)
# ) # disable this for eval-equivariance so the train and validation loss matches
callbacks += [
pl.callbacks.ModelCheckpoint(
dirpath="checkpoints",
filename="model-{epoch:02d}-{valid_loss:.2f}",
monitor="valid loss",
mode="min",
save_top_k=3,
save_last=True,
),
EpochTimer(),
]
if args.log:
callbacks.append(pl.callbacks.LearningRateMonitor(logging_interval="epoch"))
if args.profiler == "pytorch":
profiler = PyTorchProfiler(
dirpath="profile_results",
row_limit=None,
)
elif args.profiler == "advanced":
profiler = "advanced"
else:
profiler = None
# Initialize the trainer
trainer = pl.Trainer(
logger=logger,
max_epochs=args.epochs,
callbacks=callbacks,
gradient_clip_val=0.5,
accelerator=accelerator,
devices=devices,
check_val_every_n_epoch=args.val_interval,
enable_progress_bar=args.enable_progress_bar,
profiler=profiler,
)
# log_every_n_steps=1) # TODO: increase this
# Do the training
trainer.fit(model, dataloaders["train"], dataloaders["valid"])
# And test
trainer.test(model, dataloaders["test"], ckpt_path="best")