Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

OOM Problem when using pixel2pixel-zero #11

Open
nightrain-vampire opened this issue May 16, 2024 · 0 comments
Open

OOM Problem when using pixel2pixel-zero #11

nightrain-vampire opened this issue May 16, 2024 · 0 comments

Comments

@nightrain-vampire
Copy link

nightrain-vampire commented May 16, 2024

When I try to edit one image with the method pixel2pixel-zero on RTX3090, 24G, It reports:

editing image [scripts/0_right.jpg] with [directinversion+pix2pix-zero]
100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 50/50 [00:16<00:00,  3.11it/s]
Traceback (most recent call last):
  File "run_editing_pix2pix_zero_one_image.py", line 213, in <module>
    edited_image = edit_image_directinversion_pix2pix_zero(
  File "run_editing_pix2pix_zero_one_image.py", line 127, in edit_image_directinversion_pix2pix_zero
    latent_list, x_inv_image, x_dec_img = pipe(
  File "/data/user3/edit4fairness/PnPInversion/models/pix2pix_zero/ddim_inv.py", line 146, in __call__
    image = self.decode_latents(latents.detach())
  File "/data/user3/edit4fairness/PnPInversion/models/pix2pix_zero/base_pipeline.py", line 271, in decode_latents
    image = self.vae.decode(latents).sample
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/diffusers/models/autoencoder_kl.py", line 144, in decode
    decoded = self._decode(z).sample
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/diffusers/models/autoencoder_kl.py", line 116, in _decode
    dec = self.decoder(z)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/diffusers/models/vae.py", line 188, in forward
    sample = up_block(sample)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/diffusers/models/unet_2d_blocks.py", line 1714, in forward
    hidden_states = resnet(hidden_states, temb=None)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/diffusers/models/resnet.py", line 488, in forward
    hidden_states = self.conv2(hidden_states)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
    return forward_call(*args, **kwargs)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 463, in forward
    return self._conv_forward(input, self.weight, self.bias)
  File "/data/user3/miniconda3/envs/p2pzero/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 459, in _conv_forward
    return F.conv2d(input, weight, bias, self.stride,
torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 128.00 MiB (GPU 0; 23.65 GiB total capacity; 13.60 GiB already allocated; 23.56 MiB free; 13.82 GiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation.  See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

Why the OOM occurs since I only edit one image? How can I solve it?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant