forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dataset.py
289 lines (229 loc) · 11.3 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Input pipeline for the transformer model to read, filter, and batch examples.
Two things to note in the pipeline:
1. Batching scheme
The examples encoded in the TFRecord files contain data in the format:
{"inputs": [variable length array of integers],
"targets": [variable length array of integers]}
Where integers in the arrays refer to tokens in the English and German vocab
file (named `vocab.ende.32768`).
Prior to batching, elements in the dataset are grouped by length (max between
"inputs" and "targets" length). Each group is then batched such that:
group_batch_size * length <= batch_size.
Another way to view batch_size is the maximum number of tokens in each batch.
Once batched, each element in the dataset will have the shape:
{"inputs": [group_batch_size, padded_input_length],
"targets": [group_batch_size, padded_target_length]}
Lengths are padded to the longest "inputs" or "targets" sequence in the batch
(padded_input_length and padded_target_length can be different).
This batching scheme decreases the fraction of padding tokens per training
batch, thus improving the training speed significantly.
2. Shuffling
While training, the dataset is shuffled in two places in the code. The first
is the list of training files. Second, while reading records using
`parallel_interleave`, the `sloppy` argument is used to generate randomness
in the order of the examples.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import tensorflow as tf
from official.utils.misc import model_helpers
# Use the number of training files as the shuffle buffer.
_FILE_SHUFFLE_BUFFER = 100
# Buffer size for reading records from a TFRecord file. Each training file is
# 7.2 MB, so 8 MB allows an entire file to be kept in memory.
_READ_RECORD_BUFFER = 8 * 1000 * 1000
# Example grouping constants. Defines length boundaries for each group.
# These values are the defaults used in Tensor2Tensor.
_MIN_BOUNDARY = 8
_BOUNDARY_SCALE = 1.1
def _load_records(filename):
"""Read file and return a dataset of tf.Examples."""
return tf.data.TFRecordDataset(filename, buffer_size=_READ_RECORD_BUFFER)
def _parse_example(serialized_example):
"""Return inputs and targets Tensors from a serialized tf.Example."""
data_fields = {
"inputs": tf.VarLenFeature(tf.int64),
"targets": tf.VarLenFeature(tf.int64)
}
parsed = tf.parse_single_example(serialized_example, data_fields)
inputs = tf.sparse_tensor_to_dense(parsed["inputs"])
targets = tf.sparse_tensor_to_dense(parsed["targets"])
return inputs, targets
def _filter_max_length(example, max_length=256):
"""Indicates whether the example's length is lower than the maximum length."""
return tf.logical_and(tf.size(example[0]) <= max_length,
tf.size(example[1]) <= max_length)
def _get_example_length(example):
"""Returns the maximum length between the example inputs and targets."""
length = tf.maximum(tf.shape(example[0])[0], tf.shape(example[1])[0])
return length
def _create_min_max_boundaries(
max_length, min_boundary=_MIN_BOUNDARY, boundary_scale=_BOUNDARY_SCALE):
"""Create min and max boundary lists up to max_length.
For example, when max_length=24, min_boundary=4 and boundary_scale=2, the
returned values will be:
buckets_min = [0, 4, 8, 16, 24]
buckets_max = [4, 8, 16, 24, 25]
Args:
max_length: The maximum length of example in dataset.
min_boundary: Minimum length in boundary.
boundary_scale: Amount to scale consecutive boundaries in the list.
Returns:
min and max boundary lists
"""
# Create bucket boundaries list by scaling the previous boundary or adding 1
# (to ensure increasing boundary sizes).
bucket_boundaries = []
x = min_boundary
while x < max_length:
bucket_boundaries.append(x)
x = max(x + 1, int(x * boundary_scale))
# Create min and max boundary lists from the initial list.
buckets_min = [0] + bucket_boundaries
buckets_max = bucket_boundaries + [max_length + 1]
return buckets_min, buckets_max
def _batch_examples(dataset, batch_size, max_length):
"""Group examples by similar lengths, and return batched dataset.
Each batch of similar-length examples are padded to the same length, and may
have different number of elements in each batch, such that:
group_batch_size * padded_length <= batch_size.
This decreases the number of padding tokens per batch, which improves the
training speed.
Args:
dataset: Dataset of unbatched examples.
batch_size: Max number of tokens per batch of examples.
max_length: Max number of tokens in an example input or target sequence.
Returns:
Dataset of batched examples with similar lengths.
"""
# Get min and max boundary lists for each example. These are used to calculate
# the `bucket_id`, which is the index at which:
# buckets_min[bucket_id] <= len(example) < buckets_max[bucket_id]
# Note that using both min and max lists improves the performance.
buckets_min, buckets_max = _create_min_max_boundaries(max_length)
# Create list of batch sizes for each bucket_id, so that
# bucket_batch_size[bucket_id] * buckets_max[bucket_id] <= batch_size
bucket_batch_sizes = [batch_size // x for x in buckets_max]
# bucket_id will be a tensor, so convert this list to a tensor as well.
bucket_batch_sizes = tf.constant(bucket_batch_sizes, dtype=tf.int64)
def example_to_bucket_id(example_input, example_target):
"""Return int64 bucket id for this example, calculated based on length."""
seq_length = _get_example_length((example_input, example_target))
# TODO: investigate whether removing code branching improves performance.
conditions_c = tf.logical_and(
tf.less_equal(buckets_min, seq_length),
tf.less(seq_length, buckets_max))
bucket_id = tf.reduce_min(tf.where(conditions_c))
return bucket_id
def window_size_fn(bucket_id):
"""Return number of examples to be grouped when given a bucket id."""
return bucket_batch_sizes[bucket_id]
def batching_fn(bucket_id, grouped_dataset):
"""Batch and add padding to a dataset of elements with similar lengths."""
bucket_batch_size = window_size_fn(bucket_id)
# Batch the dataset and add padding so that all input sequences in the
# examples have the same length, and all target sequences have the same
# lengths as well. Resulting lengths of inputs and targets can differ.
return grouped_dataset.padded_batch(bucket_batch_size, ([None], [None]))
return dataset.apply(tf.contrib.data.group_by_window(
key_func=example_to_bucket_id,
reduce_func=batching_fn,
window_size=None,
window_size_func=window_size_fn))
def _read_and_batch_from_files(
file_pattern, batch_size, max_length, num_parallel_calls, shuffle, repeat,
static_batch=False):
"""Create dataset where each item is a dict of "inputs" and "targets".
Args:
file_pattern: String used to match the input TFRecord files.
batch_size: Maximum number of tokens per batch of examples
max_length: Maximum number of tokens per example
num_parallel_calls: Number of cpu cores for parallel input processing.
shuffle: If true, randomizes order of elements.
repeat: Number of times to repeat the dataset. If None, the dataset is
repeated forever.
static_batch: Whether the batches in the dataset should have static shapes.
If True, the input is batched so that every batch has the
shape [batch_size // max_length, max_length]. If False, the input is
grouped by length, and batched so that batches may have different
shapes [N, M], where:
N * M <= batch_size
M <= max_length
In general, this setting should be False. Dynamic shapes allow the inputs
to be grouped so that the number of padding tokens is minimized, and helps
model training. In cases where the input shape must be static
(e.g. running on TPU), this setting should be set to True.
Returns:
tf.data.Dataset object containing examples loaded from the files.
"""
dataset = tf.data.Dataset.list_files(file_pattern)
if shuffle:
# Shuffle filenames
dataset = dataset.shuffle(buffer_size=_FILE_SHUFFLE_BUFFER)
# Read files and interleave results. When training, the order of the examples
# will be non-deterministic.
dataset = dataset.apply(
tf.contrib.data.parallel_interleave(
_load_records, sloppy=shuffle, cycle_length=num_parallel_calls))
# Parse each tf.Example into a dictionary
# TODO: Look into prefetch_input_elements for performance optimization.
dataset = dataset.map(_parse_example,
num_parallel_calls=num_parallel_calls)
# Remove examples where the input or target length exceeds the maximum length,
dataset = dataset.filter(lambda x, y: _filter_max_length((x, y), max_length))
if static_batch:
dataset = dataset.apply(tf.contrib.data.padded_batch_and_drop_remainder(
batch_size // max_length, ([max_length], [max_length])))
else:
# Group and batch such that each batch has examples of similar length.
dataset = _batch_examples(dataset, batch_size, max_length)
dataset = dataset.repeat(repeat)
# Prefetch the next element to improve speed of input pipeline.
dataset = dataset.prefetch(buffer_size=tf.contrib.data.AUTOTUNE)
return dataset
def _generate_synthetic_data(params):
"""Create synthetic data based on the parameter batch size."""
batch = length = int(math.sqrt(params["batch_size"]))
return model_helpers.generate_synthetic_data(
input_shape=tf.TensorShape([batch, length]),
input_value=1,
input_dtype=tf.int32,
label_shape=tf.TensorShape([batch, length]),
label_value=1,
label_dtype=tf.int32,
)
def train_input_fn(params):
"""Load and return dataset of batched examples for use during training."""
file_pattern = os.path.join(params["data_dir"] or "", "*train*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern, params["batch_size"], params["max_length"],
params["num_parallel_calls"], shuffle=True,
repeat=params["repeat_dataset"], static_batch=params["static_batch"])
def eval_input_fn(params):
"""Load and return dataset of batched examples for use during evaluation."""
file_pattern = os.path.join(params["data_dir"] or "", "*dev*")
if params["use_synthetic_data"]:
return _generate_synthetic_data(params)
return _read_and_batch_from_files(
file_pattern, params["batch_size"], params["max_length"],
params["num_parallel_calls"], shuffle=False, repeat=1,
static_batch=params["static_batch"])