-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathutils.py
127 lines (114 loc) · 4.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import cv2
import torch
import numpy as np
from collections import OrderedDict
import torchvision.transforms as transforms
from PIL import Image
from .schp import networks
from .schp.utils.transforms import transform_logits, get_affine_transform
dataset_settings = {
'lip': {
'input_size': [473, 473],
'num_classes': 20,
'label': ['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm',
'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
},
'atr': {
'input_size': [512, 512],
'num_classes': 18,
'label': ['Background', 'Hat', 'Hair', 'Sunglasses', 'Upper-clothes', 'Skirt', 'Pants', 'Dress', 'Belt',
'Left-shoe', 'Right-shoe', 'Face', 'Left-leg', 'Right-leg', 'Left-arm', 'Right-arm', 'Bag', 'Scarf']
},
'pascal': {
'input_size': [512, 512],
'num_classes': 7,
'label': ['Background', 'Head', 'Torso', 'Upper Arms', 'Lower Arms', 'Upper Legs', 'Lower Legs'],
}
}
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def _box2cs(box, aspect_ratio):
x, y, w, h = box[:4]
return _xywh2cs(x, y, w, h, aspect_ratio)
def _xywh2cs(x, y, w, h, aspect_ratio):
center = np.zeros((2), dtype=np.float32)
center[0] = x + w * 0.5
center[1] = y + h * 0.5
if w > aspect_ratio * h:
h = w * 1.0 / aspect_ratio
elif w < aspect_ratio * h:
w = h * aspect_ratio
scale = np.array([w, h], dtype=np.float32)
return center, scale
def generate(image, type, device):
num_classes = dataset_settings[type]['num_classes']
input_size = dataset_settings[type]['input_size']
aspect_ratio = input_size[1] * 1.0 / input_size[0]
if type == 'lip':
model_path = 'models/schp/exp-schp-201908261155-lip.pth'
elif type == 'atr':
model_path = 'models/schp/exp-schp-201908301523-atr.pth'
elif type == 'pascal':
model_path = 'models/schp/exp-schp-201908270938-pascal-person-part.pth'
model = networks.init_model('resnet101', num_classes=num_classes, pretrained=None)
state_dict = torch.load(model_path)['state_dict']
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:]
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
model.to(device)
model.eval()
# Get person center and scale
input = 255. * image.cpu().numpy()
input = np.clip(input, 0, 255).astype(np.uint8)
input = cv2.cvtColor(input, cv2.COLOR_RGB2BGR)
h, w, _ = input.shape
person_center, s = _box2cs([0, 0, w - 1, h - 1], aspect_ratio)
trans = get_affine_transform(person_center, s, 0, input_size)
input = cv2.warpAffine(
input,
trans,
(int(input_size[1]), int(input_size[0])),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(0, 0, 0))
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
])
input = transform(input)
palette = get_palette(num_classes)
with torch.no_grad():
input = input[None, :, :, :]
output = model(input.to(device))
upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
upsample_output = upsample(output[0][-1][0].unsqueeze(0))
upsample_output = upsample_output.squeeze()
upsample_output = upsample_output.permute(1, 2, 0) # CHW -> HWC
logits_result = transform_logits(upsample_output.data.cpu().numpy(), person_center, s, w, h, input_size=input_size)
parsing_result = np.argmax(logits_result, axis=2)
output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
output_img.putpalette(palette)
return output_img