-
Notifications
You must be signed in to change notification settings - Fork 38
/
utils.py
108 lines (83 loc) · 2.79 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import numpy as np
import random
nucleotides_dict = {0:"A", 1:"T", 2:"G", 3:"C"}
def generate_random_sequence(N, rng):
synthetic_sequence = []
for i in range(N):
randnum = rng.choice(np.arange(len(nucleotides_dict)))
nucleotide = nucleotides_dict[randnum]
synthetic_sequence.append(nucleotide)
return synthetic_sequence
def write_to_file(k_mers, k, filename, metadata):
# Shuffle k-mer list before giving to students
random.shuffle(k_mers)
# Generate random phred scores
phred_scores = []
for score in np.random.choice(np.arange(20, 50), size=len(k_mers)*k):
phred_scores.append(chr(score + 33))
# Write generated k-mer reads to a file in FASTQ format
i = 0
with open(filename, "w") as f:
for k_mer in k_mers:
k = len(k_mer)
# FASTQ format:
# Metadata
f.write(metadata + "\n")
# Read
f.write(k_mer + "\n")
# '+' on line
f.write("+\n")
# Phred33 scores
f.write("".join(phred_scores[i:i+k]) + "\n")
i += k
def generate_sythetic_data(sequence_len, k, seed, filename="TeleTubby.fastq"):
rng = np.random.default_rng(seed)
# Generate random sequence
sequence = generate_random_sequence(sequence_len, rng)
# Get k-mers for given sequence
k_mers = get_k_mers(sequence, k)
# Write to file (with random scores)
metadata = "@TeleTubby Genome: Project 1"
write_to_file(k_mers, k, filename, metadata)
# Return sequence (for reference)
return "".join(sequence)
def read_fastq(filepath):
sequences = []
qualities = []
with open(filepath) as f:
while True:
meta_data = f.readline()
seq = f.readline().rstrip()
ph = f.readline()
qual = f.readline().rstrip()
if len(seq) == 0:
break
sequences.append(seq)
qualities.append(qual)
return sequences, qualities
# Generate k-mers for a given sequence
def get_k_mers(sequence, k_):
k_mers = []
for i in range(len(sequence)-k_+1):
k_mer = sequence[i:k_+i]
k_mers.append(''.join(k_mer))
return k_mers
def viz_debruijn(n, e):
""" visualize graph"""
dot_str = 'digraph "de Bruijn graph" {\n'
for src, dst in e:
dot_str += '{} -> {} ;\n'.format(src, dst)
return dot_str + '}\n'
def viz_overlap(n, e):
""" visualize graph"""
dot_str = 'digraph "Overlap graph" {\n'
for src, dst in e:
dot_str += '{} -> {} ;\n'.format(src, dst)
return dot_str + '}\n'
def match_score(seq1, seq2):
if len(seq1) != len(seq2):
return 0
score = 0
for s1, s2 in zip(seq1, seq2):
score += (s1 == s2)
return score / len(seq1)