diff --git a/doc/core_eqs.rst b/doc/core_eqs.rst index b20d75b5..0de0899b 100644 --- a/doc/core_eqs.rst +++ b/doc/core_eqs.rst @@ -79,7 +79,7 @@ effective field is In the continuum limit the exchange energy can be written as .. math:: - E_{ex} = \int_{V} A (\nabla \vec{m})^2 dx + E_{ex} = \int_{V} A (\nabla \vec{m})^2 \mathrm{d}V with :math:`V` as the volume of the system and :math:`A` the anisotropy constant in :math:`\text{J m}^{-1}`. Correspondingly, the effective @@ -176,15 +176,15 @@ For bulk materials :math:`\vec{D}_{ij} = D \vec{r}_{ij}` and for interfacial DMI In the continuum limit the bulk DMI energy is written as .. math:: - E_{\text{DMI}} = \int_\Omega D_a \vec{m} \cdot (\nabla \times \vec{m}) dx + E_{\text{DMI}} = \int_V D_a \vec{m} \cdot (\nabla \times \vec{m}) \, \mathrm{d}V -where :math:`D_a = -D/a^2` and the effective field is +where :math:`V` is the volume of the sample and :math:`D_a = -D/a^2`. The corresponding +effective field is .. math:: \vec{H}=-\frac{2 D_a}{\mu_0 M_s} (\nabla \times \vec{m}) - For the interfacial case, the effective field becomes, .. math:: @@ -197,14 +197,11 @@ Compared with the effective field [PRB 88 184422] where :math:`D_a = D/a^2`. Notice that there is no negative sign for the interfacial case. -In the micromagnetic code, it is also implemented DMI for materials with +In the micromagnetic code, it is also implemented the DMI for materials with :math:`D_{2d}` symmetry. The energy of this interaction reads .. math:: - E_{\text{DMI}} = D_a \vec{m} \cdot \left( - \frac{\partial \vec{m}}{\partial x} \times \hat{x} - - \frac{\partial \vec{m}}{\partial y} \times \hat{y} - \right) + E_{\text{DMI}} = \int_V D_a \vec{m} \cdot \left( \frac{\partial \vec{m}}{\partial x} \times \hat{x} - \frac{\partial \vec{m}}{\partial y} \times \hat{y} \right) \, \mathrm{d}V where :math:`D_a` is the DMI constant.