forked from awickert/GRASS-fluvial-profiler
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHRU_params.py
396 lines (320 loc) · 16.2 KB
/
HRU_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
import numpy as np
from matplotlib import pyplot as plt
import sys
# GRASS
from grass.pygrass.modules.shortcuts import general as g
from grass.pygrass.modules.shortcuts import raster as r
from grass.pygrass.modules.shortcuts import vector as v
from grass.pygrass.modules.shortcuts import miscellaneous as m
from grass.pygrass.gis import region
from grass.pygrass import vector # Change to "v"?
from grass.script import vector_db_select
from grass.pygrass.vector import Vector, VectorTopo
from grass.pygrass.raster import RasterRow
from grass.pygrass import utils
from grass import script as gscript
# Attributes (in order given in manual)
# HRU
hru_columns = []
# Self ID
hru_columns.append('id integer') # nhru
# Basic Physical Attributes (Geometry)
hru_columns.append('hru_area double precision') # acres (!!!!)
hru_columns.append('hru_aspect double precision') # Mean aspect [degrees]
hru_columns.append('hru_elev double precision') # Mean elevation
hru_columns.append('hru_lat double precision') # Latitude of centroid
hru_columns.append('hru_slope double precision') # Mean slope [percent]
# Basic Physical Attributes (Other)
#hru_columns.append('hru_type integer') # 0=inactive; 1=land; 2=lake; 3=swale; almost all will be 1
#hru_columns.append('elev_units integer') # 0=feet; 1=meters. 0=default. I think I will set this to 1 by default.
# Measured input
hru_columns.append('outlet_sta integer') # Index of streamflow station at basin outlet:
# station number if it has one, 0 if not
# Note that the below specify projections and note lat/lon; they really seem
# to work for any projected coordinates, with _x, _y, in meters, and _xlong,
# _ylat, in feet (i.e. they are just northing and easting). The meters and feet
# are not just simple conversions, but actually are required for different
# modules in the code, and are hence redundant but intentional.
hru_columns.append('hru_x double precision') # Easting [m]
hru_columns.append('hru_xlong double precision') # Easting [feet]
hru_columns.append('hru_y double precision') # Northing [m]
hru_columns.append('hru_ylat double precision') # Northing [feet]
# Streamflow and lake routing
hru_columns.append('K_coef double precision') # Travel time of flood wave to next downstream segment;
# this is the Muskingum storage coefficient
# 1.0 for reservoirs, diversions, and segments flowing
# out of the basin
hru_columns.append('x_coef double precision') # Amount of attenuation of flow wave;
# this is the Muskingum routing weighting factor
# range: 0.0--0.5; default 0.2
# 0 for all segments flowing out of the basin
hru_columns.append('hru_segment integer') # ID of stream segment to which flow will be routed
# this is for non-cascade routing (flow goes directly
# from HRU to stream segment)
hru_columns.append('obsin_segment integer') # Index of measured streamflow station that replaces
# inflow to a segment
# PRODUCE THE DATA TABLES
##########################
# Create strings
hru_columns = ",".join(hru_columns)
# Copy to create a HRU file --> do this early in an eventual function
# version of this
g.copy(vector=('basins','HRU'), overwrite=True)
# Add columns to tables
v.db_addcolumn(map='HRU', columns=hru_columns)
# Produce the data table entries
##################################
colNames = np.array(gscript.vector_db_select('HRU', layer=1)['columns'])
colValues = np.array(gscript.vector_db_select('HRU', layer=1)['values'].values())
number_of_hrus = colValues.shape[0]
cats = colValues[:,colNames == 'cat'].astype(int).squeeze()
rnums = colValues[:,colNames == 'rnum'].astype(int).squeeze()
nhru = np.arange(1, number_of_hrus+1)
nhrut = []
for i in range(len(nhru)):
nhrut.append( (nhru[i], cats[i]) )
# Access the HRU's
hru = VectorTopo('HRU')
# Open the map with topology:
hru.open('rw')
# Create a cursor
cur = hru.table.conn.cursor()
# Use it to loop across the table
cur.executemany("update HRU set id=? where cat=?", nhrut)
# Commit changes to the table
hru.table.conn.commit()
# Close the table
hru.close()
# Do the same for basins
v.db_addcolumn(map='basins', columns='id int')
basins = VectorTopo('basins')
basins.open('rw')
cur = basins.table.conn.cursor()
cur.executemany("update basins set id=? where cat=?", nhrut)
basins.table.conn.commit()
basins.close()
# if you want to append to table
# cur.executemany("update HRU(id) values(?)", nhrut) # "insert into" will add rows
#hru_columns.append('hru_area double precision')
# Acres b/c USGS
v.to_db(map='HRU', option='area', columns='hru_area', units='acres')
# GET MEAN VALUES FOR THESE NEXT ONES, ACROSS THE BASIN
# Slope
r.slope_aspect(elevation='srtm', slope='slope', aspect='aspect', format='percent', zscale=0.01, overwrite=True) # zscale=0.01 to make percent be decimal
#grass.mapcalc('slope = tmp / 100.', overwrite=True)
v.rast_stats(map='HRU', raster='slope', method='average', column_prefix='tmp', flags='c')
v.db_update(map='HRU', column='hru_slope', query_column='tmp_average')
v.db_dropcolumn(map='HRU', columns='tmp_average')
# Dealing with conversion from degrees (no good average) to something I can
# average -- x- and y-vectors
# Geographic coordinates, so sin=x, cos=y.... not that it matters so long
# as I am consistent in how I return to degrees
r.mapcalc('aspect_x = sin(aspect)', overwrite=True)
r.mapcalc('aspect_y = cos(aspect)', overwrite=True)
#grass.run_command('v.db.addcolumn', map='HRU', columns='aspect_x_sum double precision, aspect_y_sum double precision, ncells_in_hru integer')
v.rast_stats(map='HRU', raster='aspect_x', method='sum', column_prefix='aspect_x', flags='c')
v.rast_stats(map='HRU', raster='aspect_y', method='sum', column_prefix='aspect_y', flags='c')
hru = VectorTopo('HRU')
hru.open('rw')
cur = hru.table.conn.cursor()
cur.execute("SELECT cat,aspect_x_sum,aspect_y_sum FROM %s" %hru.name)
_arr = np.array(cur.fetchall()).astype(float)
_cat = _arr[:,0]
_aspect_x_sum = _arr[:,1]
_aspect_y_sum = _arr[:,2]
aspect_angle = np.arctan2(_aspect_y_sum, _aspect_x_sum) * 180./np.pi
aspect_angle[aspect_angle < 0] += 360 # all positive
aspect_angle_cat = np.vstack((aspect_angle, _cat)).transpose()
cur.executemany("update HRU set hru_aspect=? where cat=?", aspect_angle_cat)
hru.table.conn.commit()
hru.close()
# hru_columns.append('hru_elev double precision') # Mean elevation
v.rast_stats(map='HRU', raster='srtm', method='average', column_prefix='tmp', flags='c')
v.db_update(map='HRU', column='hru_elev', query_column='tmp_average')
v.db_dropcolumn(map='HRU', columns='tmp_average')
# get x,y of centroid -- but have areas not in database table, that do have
# centroids, and having a hard time finding a good way to get rid of them!
# They have duplicate category values!
# Perhaps these are little dangles on the edges of the vectorization where
# the raster value was the same but pinched out into 1-a few cells?
# From looking at map, lots of extra centroids on area boundaries, and removing
# small areas (though threshold hard to guess) gets rid of these
v.db_addcolumn(map='HRU', columns='centroid_x double precision, centroid_y double precision')
v.to_db(map='HRU', type='centroid', columns='centroid_x, centroid_y', option='coor', units='meters')
# hru_columns.append('hru_lat double precision') # Latitude of centroid
colNames = np.array(gscript.vector_db_select('HRU', layer=1)['columns'])
colValues = np.array(gscript.vector_db_select('HRU', layer=1)['values'].values())
xy = colValues[:,(colNames=='centroid_x') + (colNames=='centroid_y')]
np.savetxt('_xy.txt', xy, delimiter='|', fmt='%s')
m.proj(flags='od', input='_xy.txt', output='_lonlat.txt', overwrite=True)
lonlat = np.genfromtxt('_lonlat.txt', delimiter='|',)[:,:2]
lonlat_cat = np.concatenate((lonlat, np.expand_dims(_cat, 2)), axis=1)
# why not just get lon too?
v.db_addcolumn(map='HRU', columns='hru_lon double precision')
hru = VectorTopo('HRU')
hru.open('rw')
cur = hru.table.conn.cursor()
cur.executemany("update HRU set hru_lon=?, hru_lat=? where cat=?", lonlat_cat)
hru.table.conn.commit()
hru.close()
# FIX!!!
# CENTROIDS ARE NOT REALLY CENTERS, AND DO NOT WORK IF THERE ARE MULTIPLE
# AREAS
# Pygrass to find area edges / cells, and get the center?
# https://grass.osgeo.org/grass70/manuals/libpython/pygrass.vector.html
# Easting and Northing for other columns
v.db_update(map='HRU', column='hru_x', query_column='centroid_x')
v.db_update(map='HRU', column='hru_xlong', query_column='centroid_x*3.28084') # feet
v.db_update(map='HRU', column='hru_y', query_column='centroid_y')
v.db_update(map='HRU', column='hru_ylat', query_column='centroid_y*3.28084') # feet
"""
hru = VectorTopo('HRU')
hru.open('rw')
cur = hru.table.conn.cursor()
cur.executemany("update HRU set hru_segment=? where id=?", hru_segmentt)
hru.table.conn.commit()
hru.close()
"""
# Segment number = HRU ID number
v.db_update(map='HRU', column='hru_segment', query_column='id')
"""
# In study basin?
grass.run_command('v.db.addcolumn', map='HRU', columns='in_study_basin int')
grass.run_command('v.what.vect', map='HRU', column='in_study_basin', query_map='segment', query_column='in_study_basin')
"""
"""
# Save global HRU
g.rename(vect='HRU,HRU_all')
"""
"""
# Output HRU -- will need to ensure that this is robust!
grass.run_command('v.extract', input='HRU_all', output='HRU', where='in_study_basin=1', overwrite=True)
"""
"""
cats = colValues[:,colNames == 'cat'].astype(int).squeeze()
xy1 = colValues[:,(colNames == 'x1') + (colNames == 'y1')].astype(float)
xy2 = colValues[:,(colNames == 'x2') + (colNames == 'y2')].astype(float)
xy = np.vstack((xy1, xy2))
# Redo nhru down here
nhru = np.arange(1, xy1.shape[0]+1)
nhrut = []
for i in range(len(nhru)):
nhrut.append( (nhru[i], cats[i]) )
hru = VectorTopo('HRU')
hru.open('rw')
cur = hru.table.conn.cursor()
cur.executemany("update HRU set id=? where cat=?", nhrut)
hru.table.conn.commit()
hru.close()
hru = VectorTopo('HRU')
hru.open('rw')
cur = hru.table.conn.cursor()
cur.executemany("update HRU set hru_segment=? where id=?", hru_segmentt)
hru.table.conn.commit()
hru.close()
"""
#import sys
#sys.stdout = open('HRU.csv', 'w')
#v.db_select(map='HRU', separator='comma')# > HRU.csv
import os
os.system('v.db.select map=HRU sep=comma > HRU.csv')
# and then sort by id, manually
# And then manually change the last segment's "tosegment" to 0.
# Except in this case, it was 0!
# Maybe I managed to do this automatically above... but tired and late,
# so will check later
# but hoping I did something right by re-doing all of the above before
# saving (and doing so inside this smaller basin)
# NOW FOR GSFLOW!
# work with grid.
# Cell numbers
v.db_addcolumn(map='grid', columns='id int')
colNames = np.array(gscript.vector_db_select('grid', layer=1)['columns'])
colValues = np.array(gscript.vector_db_select('grid', layer=1)['values'].values())
cats = colValues[:,colNames == 'cat'].astype(int).squeeze()
rows = colValues[:,colNames == 'row'].astype(int).squeeze()
cols = colValues[:,colNames == 'col'].astype(int).squeeze()
nrows = np.max(rows)
ncols = np.max(cols)
_id = ncols*(rows-1) + cols
_id_cat = []
for i in range(len(_id)):
_id_cat.append( (_id[i], cats[i]) )
grid = VectorTopo('grid')
grid.open('rw')
cur = grid.table.conn.cursor()
cur.executemany("update grid set id=? where cat=?", _id_cat)
grid.table.conn.commit()
grid.close()
# Cell areas
v.db_addcolumn(map='grid', columns='area_m2')
v.to_db(map='grid', option='area', units='meters', columns='area_m2')
# Basin areas
v.db_addcolumn(map='basins', columns='area_m2')
v.to_db(map='basins', option='area', units='meters', columns='area_m2')
# Create gravity reservoirs -- overlay cells=grid and HRUs
v.overlay(ainput='basins', binput='grid', operator='and', output='gravity_reservoirs', overwrite=True)
v.db_dropcolumn(map='gravity_reservoirs', columns='a_cat,a_rnum,a_label,b_cat')
# Cell and HRU ID's
v.db_renamecolumn(map='gravity_reservoirs', column=('a_id', 'gvr_hru_id'))
v.db_renamecolumn(map='gravity_reservoirs', column=('b_id', 'gvr_cell_id'))
# Percent areas
v.db_renamecolumn(map='gravity_reservoirs', column=('a_area_m2', 'hru_area_m2'))
v.db_renamecolumn(map='gravity_reservoirs', column=('b_area_m2', 'cell_area_m2'))
v.db_addcolumn(map='gravity_reservoirs', columns='area_m2')
v.to_db(map='gravity_reservoirs', option='area', units='meters', columns='area_m2')
v.db_addcolumn(map='gravity_reservoirs', columns='gvr_cell_pct double precision, gvr_hru_pct double precision')
v.db_update(map='gravity_reservoirs', column='gvr_cell_pct', query_column='100*area_m2/cell_area_m2')
v.db_update(map='gravity_reservoirs', column='gvr_hru_pct', query_column='100*area_m2/hru_area_m2')
# Gravity reservoirs: intersection of HRUs and cells
gr_columns = []
# Gravity reservoirs (PRMS soil zone that connects to MODFLOW cells)
gr_columns.append('gvr_cell_id int') # advances like reading a book
gr_columns.append('gvr_cell_pct double precision') # Percent of the cell that is
# covered by the gravity reservoir
gr_columns.append('gvr_hru_id int') # ID of the HRU in the gravity reservoir
gr_columns.append('gvr_hru_pct double precision') # Percent of HRU in this
# gravity reservoir
hru_columns.append('gvr_cell_pct double precision') # Mean aspect [degrees]
hru_columns.append('hru_elev double precision') # Mean elevation
hru_columns.append('hru_lat double precision') # Latitude of centroid
hru_columns.append('hru_slope double precision') # Mean slope [percent]
# Basic Physical Attributes (Other)
#hru_columns.append('hru_type integer') # 0=inactive; 1=land; 2=lake; 3=swale; almost all will be 1
#hru_columns.append('elev_units integer') # 0=feet; 1=meters. 0=default. I think I will set this to 1 by default.
# Measured input
hru_columns.append('outlet_sta integer') # Index of streamflow station at basin outlet:
# station number if it has one, 0 if not
# Note that the below specify projections and note lat/lon; they really seem
# to work for any projected coordinates, with _x, _y, in meters, and _xlong,
# _ylat, in feet (i.e. they are just northing and easting). The meters and feet
# are not just simple conversions, but actually are required for different
# modules in the code, and are hence redundant but intentional.
hru_columns.append('hru_x double precision') # Easting [m]
hru_columns.append('hru_xlong double precision') # Easting [feet]
hru_columns.append('hru_y double precision') # Northing [m]
hru_columns.append('hru_ylat double precision') # Northing [feet]
# Streamflow and lake routing
hru_columns.append('K_coef double precision') # Travel time of flood wave to next downstream segment;
# this is the Muskingum storage coefficient
# 1.0 for reservoirs, diversions, and segments flowing
# out of the basin
hru_columns.append('x_coef double precision') # Amount of attenuation of flow wave;
# this is the Muskingum routing weighting factor
# range: 0.0--0.5; default 0.2
# 0 for all segments flowing out of the basin
hru_columns.append('hru_segment integer') # ID of stream segment to which flow will be routed
# this is for non-cascade routing (flow goes directly
# from HRU to stream segment)
hru_columns.append('obsin_segment integer') # Index of measured streamflow station that replaces
# inflow to a segment
# PRODUCE THE DATA TABLES
##########################
# Create strings
hru_columns = ",".join(hru_columns)
# Copy to create a HRU file --> do this early in an eventual function
# version of this
g.copy(vector=('basins','HRU'), overwrite=True)
# Add columns to tables
v.db_addcolumn(map='HRU', columns=hru_columns)
print "COMPLETE."