-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
82 lines (67 loc) · 2.73 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# -*- coding: utf-8 -*-
import argparse
import os
from utls import prepareData, myGenerator, loadWeight, train512Generator, displayOutput
import numpy as np
import imageio
from model import xNet
import datetime
import time
########## Set seed ##########
from numpy.random import seed
from tensorflow import set_random_seed
#seed(1)
#set_random_seed(2)
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', type=str, default='./Model')
parser.add_argument('--data_root', type=str, default='./hci_dataset')
parser.add_argument('--loadWeight', default=False, help='if load weight')
parser.add_argument('--batchsize', type=int, default=12)
parser.add_argument('--iterations', type=int, default=10000)
config = parser.parse_args()
def run():
# prepare dataset
trainDataRoot = config.data_root
trainDataAll, trainDataLabel = prepareData(trainDataRoot)
patchSize = 32
modelLR = 1e-6
print('LR is %f' % modelLR)
boolmaskImg4 = imageio.imread('hci_dataset/additional_invalid_area/kitchen/input_Cam040_invalid_ver2.png')
boolmaskImg6 = imageio.imread('hci_dataset/additional_invalid_area/museum/input_Cam040_invalid_ver2.png')
boolmaskImg15 = imageio.imread('hci_dataset/additional_invalid_area/vinyl/input_Cam040_invalid_ver2.png')
boolmaskImg4 = 1.0 * boolmaskImg4[:, :, 3] > 0
boolmaskImg6 = 1.0 * boolmaskImg6[:, :, 3] > 0
boolmaskImg15 = 1.0 * boolmaskImg15[:, :, 3] > 0
# prepare model
modelTrain = xNet(patchSize, patchSize, modelLR)
trainGenerator = myGenerator(trainDataAll, trainDataLabel, patchSize, config.batchsize, boolmaskImg4, boolmaskImg6,
boolmaskImg15)
# load weight
if config.loadWeight:
modelTrain, iterStart = loadWeight(modelTrain, config.model_path)
else:
iterStart = 0
f1 = open(txtName, 'a')
now = datetime.datetime.now()
f1.write('\n'+str(now)+'\n\n')
f1.close()
maxEpoch = 200
for iterN in range(iterStart, maxEpoch):
t0 = time.time()
hist = modelTrain.fit_generator(trainGenerator, steps_per_epoch=config.iterations, epochs=iterN+1, initial_epoch=iterN,
verbose=1, workers=8)
f1 = open(txtName, 'a')
f1.write('iter%4d:' % iterN + '\n')
f1.write(str(hist.history) + '\n')
f1.close()
t1 = time.time()
saveModelPath = '%s_iter%04d' % ('train', iterN)
modelTrain.save(os.path.join(config.model_path, saveModelPath + '.hdf5'))
print('model saved!')
if __name__ == '__main__':
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES']="0"
if not os.path.exists(config.model_path):
os.makedirs(config.model_path)
txtName = './log.txt'
run()