-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathD_init_data.m
76 lines (68 loc) · 2.02 KB
/
D_init_data.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
function D_c = D_init_data(X,M,K,n_rep)
% Function to initilaize dictionary comprising of typical phasic events
% INPUTS:
% X - structure of bandpassed single trial/ multi - trial EEG traces. Size: number of trials X 1. Field name must be set to Trial.
% M - Maximum length of event in samples. For ex., sleep spindles are 0.5s
% K - number of clusters
% n_rep - number of dictonary initializations
% OUTPUTS:
% D: Initialized dictionary. Struture of size 1 X n_rep
n_tr = size(X,1);
% Hilbert amplitude
X_abs = struct();
for i = 1:n_tr
X_abs(i).Trial = abs(hilbert(X(i).Trial));
end
% Smooth amplitude
X_abs_sm = struct();
aux_M = round(M/2);
spn = round(aux_M/2)*2 - 1;
for i = 1:n_tr
X_abs_sm(i).Trial = smooth(X_abs(i).Trial,spn);
end
% Find peaks
X_M = zeros(0,0);
alph = zeros(0,0);
min_pk_d = round(1*M);
for i = 1:n_tr
x_tr = X(i).Trial;
N = length(x_tr);
[~, pk_loc] = findpeaks(X_abs_sm(i).Trial,'MinPeakDistance',min_pk_d,'SortStr','descend');
n_pks = length(pk_loc);
alph_tr = zeros(n_pks,1);
X_M_tr = zeros(M,n_pks);
for j = 1:n_pks
if ~(pk_loc(j) - round(M/2) <= 0 || pk_loc(j) + round(M/2) - 1 > N)
idx = pk_loc(j) - round(M/2):pk_loc(j) + fix(M/2) - 1;
alph_tr(j,1) = norm(x_tr(idx));
X_M_tr(:,j) = x_tr(idx)';
end
end
idx_nnull = find(alph_tr ~= 0);
alph_tr = alph_tr(idx_nnull,1);
X_M_tr = X_M_tr(:,idx_nnull);
X_M = [X_M X_M_tr];
alph = [alph; alph_tr];
end
% Get outliers based on maximum norm
fl = 0;
prc_p = 90;
while fl == 0
idx = find(alph > prctile(alph,prc_p));
if length(idx) >= K
fl = 1;
else
prc_p = prc_p - 5;
end
if prc_p < 0 % Degenerate case
fl = 1;
idx = randperm(length(alph),K);
end
end
X_M_prc = X_M(:,idx);
D_c = struct();
for i = 1:n_rep
aux = X_M_prc(:,randperm(length(idx),K));
aux = bsxfun(@rdivide,aux,sqrt(sum(aux.^2)));
D_c(i).Num = aux;
end