forked from ka9q/ka9q-radio
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rtlsdr.c
428 lines (371 loc) · 13.5 KB
/
rtlsdr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
// Built-in driver for RTL-SDR in radiod
// Adapted from old rtlsdrd.c
// Copyright July 2023, Phil Karn, KA9Q
#define _GNU_SOURCE 1
#include <assert.h>
#include <pthread.h>
#include <rtl-sdr.h>
#include <errno.h>
#include <iniparser/iniparser.h>
#include <sysexits.h>
#include <strings.h>
#include "conf.h"
#include "misc.h"
#include "radio.h"
#include "config.h"
// Define USE_NEW_LIBRTLSDR to use my version of librtlsdr with rtlsdr_get_freq()
// that corrects for synthesizer fractional-N residuals. If not defined, we do the correction
// here assuming an R820 tuner (the most common)
#undef USE_NEW_LIBRTLSDR
//#define REMOVE_DC 1
// Internal clock is 28.8 MHz, and 1.8 MHz * 16 = 28.8 MHz
#define DEFAULT_SAMPRATE (1800000)
// Time in 100 ms update intervals to wait between gain steps
static int const HOLDOFF_TIME = 2;
#if 0 // Reimplement this someday
// Configurable parameters
// decibel limits for power
static float const DC_alpha = 1.0e-6; // high pass filter coefficient for DC offset estimates, per sample
static float const AGC_upper = -20;
static float const AGC_lower = -40;
#endif
static float Power_smooth = 0.05; // Calculate this properly someday
// Global variables set by command line options
extern char const *App_path;
extern int Verbose;
struct sdr {
struct frontend *frontend;
struct rtlsdr_dev *device; // Opaque pointer
int dev;
char serial[256];
bool bias; // Bias tee on/off
// AGC
bool agc;
int holdoff_counter; // Time delay when we adjust gains
int gain; // Gain passed to manual gain setting
float scale; // Scale samples for #bits and front end gain
// Sample statistics
// int clips; // Sample clips since last reset
// float DC; // DC offset for real samples
pthread_t read_thread;
};
static double set_correct_freq(struct sdr *sdr,double freq);
//static void do_rtlsdr_agc(struct sdr *);
static void rx_callback(uint8_t *buf,uint32_t len, void *ctx);
static double true_freq(uint64_t freq);
int rtlsdr_setup(struct frontend *frontend,dictionary *dictionary,char const *section){
assert(dictionary != NULL);
struct sdr * const sdr = (struct sdr *)calloc(1,sizeof(struct sdr));
// Cross-link generic and hardware-specific control structures
sdr->frontend = frontend;
frontend->context = sdr;
{
char const *device = config_getstring(dictionary,section,"device",NULL);
if(strcasecmp(device,"rtlsdr") != 0)
return -1; // Not for us
}
sdr->dev = -1;
FREE(frontend->description);
frontend->description = strdup(config_getstring(dictionary,section,"description","rtl-sdr"));
{
unsigned const device_count = rtlsdr_get_device_count();
if(device_count < 1){
fprintf(stderr,"No RTL-SDR devices\n");
return -1;
}
struct {
char manufacturer[256];
char product[256];
char serial[256];
} devices[device_count];
// List all devices
fprintf(stderr,"Found %d RTL-SDR device%s:\n",device_count,device_count > 1 ? "s":"");
for(int i=0; i < device_count; i++){
rtlsdr_get_device_usb_strings(i,devices[i].manufacturer,devices[i].product,devices[i].serial);
fprintf(stderr,"#%d (%s): %s %s %s\n",i,rtlsdr_get_device_name(i),
devices[i].manufacturer,devices[i].product,devices[i].serial);
}
char const * const p = config_getstring(dictionary,section,"serial",NULL);
if(p == NULL){
// Use first one, if any
sdr->dev = 0;
} else {
for(int i=0; i < device_count; i++){
if(strcasecmp(p,devices[i].serial) == 0){
sdr->dev = i;
break;
}
}
}
if(sdr->dev < 0){
fprintf(stderr,"RTL-SDR serial %s not found\n",p);
return -1;
}
strlcpy(sdr->serial,devices[sdr->dev].serial,sizeof(sdr->serial));
fprintf(stderr,"Using RTL-SDR #%d, serial %s\n",sdr->dev,sdr->serial);
}
{
int const ret = rtlsdr_open(&sdr->device,sdr->dev);
if(ret != 0){
fprintf(stderr,"rtlsdr_open(%d) failed: %d\n",sdr->dev,ret);
return -1;
}
}
{
int ngains = rtlsdr_get_tuner_gains(sdr->device,NULL);
int gains[ngains];
rtlsdr_get_tuner_gains(sdr->device,gains);
uint32_t rtl_freq = 0,tuner_freq = 0;
int const ret = rtlsdr_get_xtal_freq(sdr->device,&rtl_freq,&tuner_freq);
if(ret != 0)
fprintf(stderr,"rtlsdr_get_xtal_freq failed\n");
fprintf(stderr,"RTL freq %'u, tuner freq %'u, tuner type %'d, tuner gains",(unsigned)rtl_freq,(unsigned)tuner_freq,
rtlsdr_get_tuner_type(sdr->device));
for(int i=0; i < ngains; i++)
fprintf(stderr," %'d",gains[i]);
fprintf(stderr,"\n");
}
rtlsdr_set_direct_sampling(sdr->device, 0); // That's for HF
rtlsdr_set_offset_tuning(sdr->device,0); // Leave the DC spike for now
rtlsdr_set_freq_correction(sdr->device,0); // don't use theirs, only good to integer ppm
rtlsdr_set_tuner_bandwidth(sdr->device, 0); // Auto bandwidth
rtlsdr_set_agc_mode(sdr->device,0);
sdr->agc = config_getboolean(dictionary,section,"agc",false);
if(sdr->agc){
rtlsdr_set_tuner_gain_mode(sdr->device,0); // auto gain mode (i.e., the firmware does it)
sdr->gain = 0;
frontend->rf_gain = 0; // needs conversion to dB
sdr->holdoff_counter = HOLDOFF_TIME;
} else {
rtlsdr_set_tuner_gain_mode(sdr->device,1); // manual gain mode (i.e., we do it)
sdr->gain = (int)(config_getfloat(dictionary,section,"gain",0) * 10);
rtlsdr_set_tuner_gain(sdr->device,sdr->gain);
frontend->rf_gain = sdr->gain / 10.0f;
}
sdr->scale = scale_AD(frontend);
sdr->bias = config_getboolean(dictionary,section,"bias",false);
{
int ret = rtlsdr_set_bias_tee(sdr->device,sdr->bias);
if(ret != 0){
fprintf(stderr,"rtlsdr_set_bias_tee(%d) failed\n",sdr->bias);
}
}
frontend->samprate = config_getint(dictionary,section,"samprate",DEFAULT_SAMPRATE);
if(frontend->samprate <= 0){
fprintf(stderr,"Invalid sample rate, reverting to default\n");
frontend->samprate = DEFAULT_SAMPRATE;
}
{
int ret = rtlsdr_set_sample_rate(sdr->device,(uint32_t)frontend->samprate);
if(ret != 0){
fprintf(stderr,"rtlsdr_set_sample_rate(%d) failed\n",frontend->samprate);
}
}
double init_frequency = 0;
{
char const *p = config_getstring(dictionary,section,"frequency",NULL);
if(p != NULL)
init_frequency = parse_frequency(p,false);
}
if(init_frequency != 0){
set_correct_freq(sdr,init_frequency);
frontend->lock = true;
}
frontend->calibrate = config_getdouble(dictionary,section,"calibrate",0);
fprintf(stdout,"%s, samprate %'d Hz, agc %d, gain %d, bias %d, init freq %'.3lf Hz, calibrate %.3g\n",
frontend->description,frontend->samprate,sdr->agc,sdr->gain,sdr->bias,init_frequency,
frontend->calibrate);
// Just estimates - get the real number somewhere
frontend->min_IF = -0.47 * frontend->samprate;
frontend->max_IF = 0.47 * frontend->samprate;
frontend->isreal = false; // Make sure the right kind of filter gets created!
frontend->bitspersample = 8;
return 0;
}
static void *rtlsdr_read_thread(void *arg){
struct sdr *sdr = arg;
struct frontend *frontend = sdr->frontend;
rtlsdr_reset_buffer(sdr->device);
rtlsdr_read_async(sdr->device,rx_callback,frontend,0,16*16384); // blocks
exit(EX_NOINPUT); // return from read_async is an abort?
return NULL;
}
int rtlsdr_startup(struct frontend * const frontend){
struct sdr * const sdr = frontend->context;
pthread_create(&sdr->read_thread,NULL,rtlsdr_read_thread,sdr);
fprintf(stdout,"rtlsdr thread running\n");
return 0;
}
// Callback called with incoming receiver data from A/D
static void rx_callback(uint8_t * const buf, uint32_t len, void * const ctx){
int sampcount = len/2;
float energy = 0;
struct frontend *frontend = ctx;
struct sdr *sdr = (struct sdr *)frontend->context;
float complex * const wptr = frontend->in.input_write_pointer.c;
for(int i=0; i < sampcount; i++){
float complex samp;
if(buf[2*i] == 0 || buf[2*i] == 255){
frontend->overranges++;
frontend->samp_since_over = 0;
} else
frontend->samp_since_over++;
if(buf[2*i+1] == 0 || buf[2*i+1] == 255){
frontend->overranges++;
frontend->samp_since_over = 0;
} else
frontend->samp_since_over++;
__real__ samp = (int)buf[2*i] - 128; // Excess-128
__imag__ samp = (int)buf[2*i+1] - 128;
energy += cnrmf(samp);
wptr[i] = sdr->scale * samp;
}
frontend->timestamp = gps_time_ns();
write_cfilter(&frontend->in,NULL,sampcount); // Update write pointer, invoke FFT
frontend->if_power_instant = energy / sampcount;
frontend->if_power += Power_smooth * (frontend->if_power_instant - frontend->if_power);
frontend->samples += sampcount;
}
#if 0 // use this later
static void do_rtlsdr_agc(struct sdr * const sdr){
assert(sdr != NULL);
if(!sdr->agc)
return; // Execute only in software AGC mode
if(--sdr->holdoff_counter == 0){
sdr->holdoff_counter = HOLDOFF_TIME;
float powerdB = 10*log10f(frontend->output_level);
if(powerdB > AGC_upper && sdr->gain > 0){
sdr->gain -= 20; // Reduce gain one step
} else if(powerdB < AGC_lower){
sdr->gain += 20; // Increase one step
} else
return;
// librtlsdr inverts its gain tables for some reason
if(Verbose)
printf("new tuner gain %.0f dB\n",(float)sdr->gain/10.);
int r = rtlsdr_set_tuner_gain(sdr->device,sdr->gain);
if(r != 0)
printf("rtlsdr_set_tuner_gain returns %d\n",r);
frontend->rf_gain = sdr->gain; // Convert to dB?
sdr->scale = scale_AD(frontend);
}
}
#endif
#if ORIGINAL_TRUE_FREQ
static double true_freq(uint64_t freq){
// Code extracted from tuner_r82xx.c
int rc, i;
unsigned sleep_time = 10000;
uint64_t vco_freq;
uint32_t vco_fra; /* VCO contribution by SDM (kHz) */
uint32_t vco_min = 1770000;
uint32_t vco_max = vco_min * 2;
uint32_t freq_khz, pll_ref, pll_ref_khz;
uint16_t n_sdm = 2;
uint16_t sdm = 0;
uint8_t mix_div = 2;
uint8_t div_buf = 0;
uint8_t div_num = 0;
uint8_t vco_power_ref = 2;
uint8_t refdiv2 = 0;
uint8_t ni, si, nint, vco_fine_tune, val;
uint8_t data[5];
/* Frequency in kHz */
freq_khz = (freq + 500) / 1000;
// pll_ref = priv->cfg->xtal;
pll_ref = 28800000;
pll_ref_khz = (pll_ref + 500) / 1000;
/* Calculate divider */
while (mix_div <= 64) {
if (((freq_khz * mix_div) >= vco_min) &&
((freq_khz * mix_div) < vco_max)) {
div_buf = mix_div;
while (div_buf > 2) {
div_buf = div_buf >> 1;
div_num++;
}
break;
}
mix_div = mix_div << 1;
}
vco_freq = (uint64_t)freq * (uint64_t)mix_div;
nint = vco_freq / (2 * pll_ref);
vco_fra = (vco_freq - 2 * pll_ref * nint) / 1000;
ni = (nint - 13) / 4;
si = nint - 4 * ni - 13;
/* sdm calculator */
while (vco_fra > 1) {
if (vco_fra > (2 * pll_ref_khz / n_sdm)) {
sdm = sdm + 32768 / (n_sdm / 2);
vco_fra = vco_fra - 2 * pll_ref_khz / n_sdm;
if (n_sdm >= 0x8000)
break;
}
n_sdm <<= 1;
}
double f;
{
int ntot = (nint << 16) + sdm;
double vco = pll_ref * 2 * (nint + sdm / 65536.);
f = vco / mix_div;
return f;
}
}
#else // Cleaned up version
// For a requested frequency, give the actual tuning frequency
// similar to the code in airspy.c since both use the R820T tuner
static double true_freq(uint64_t freq_hz){
const uint32_t VCO_MIN=1770000000u; // 1.77 GHz
const uint32_t VCO_MAX=(VCO_MIN << 1); // 3.54 GHz
const int MAX_DIV = 5;
// Clock divider set to 2 for the best resolution
const uint32_t pll_ref = 28800000u / 2; // 14.4 MHz
// Find divider to put VCO = f*2^(d+1) in range VCO_MIN to VCO_MAX (for ref freq 26 MHz)
// MHz step, Hz
// 0: 885.0 1770.0 190.735
// 1: 442.50 885.00 95.367
// 2: 221.25 442.50 47.684
// 3: 110.625 221.25 23.842
// 4: 55.3125 110.625 11.921
// 5: 27.65625 55.312 5.960
int8_t div_num;
for (div_num = 0; div_num <= MAX_DIV; div_num++){
uint32_t vco = freq_hz << (div_num + 1);
if (VCO_MIN <= vco && vco <= VCO_MAX)
break;
}
if(div_num > MAX_DIV)
return 0; // Frequency out of range
// PLL programming bits: Nint in upper 16 bits, Nfract in lower 16 bits
// Freq steps are pll_ref / 2^(16 + div_num) Hz
// Note the '+ (pll_ref >> 1)' term simply rounds the division to the nearest integer
uint32_t r = (((uint64_t) freq_hz << (div_num + 16)) + (pll_ref >> 1)) / pll_ref;
// Compute true frequency; the 1/4 step bias is a puzzle
return ((double)(r + 0.25) * pll_ref) / (double)(1 << (div_num + 16));
}
#endif
// set the rtlsdr tuner to the requested frequency applying calibration offset,
// true frequency correction model for 820T synthesizer
// the calibration offset is a holdover from the Funcube dongle and doesn't
// really fit the Rtlsdr with its internal factory calibration
// All this really works correctly only with a gpsdo
// Remember, rtlsdr firmware always adds Fs/4 MHz to frequency we give it.
static double set_correct_freq(struct sdr * const sdr,double freq){
struct frontend * const frontend = sdr->frontend;
int64_t intfreq = round(freq / (1 + frontend->calibrate));
rtlsdr_set_center_freq(sdr->device,intfreq);
#ifdef USE_NEW_LIBRTLSDR
double tf = rtlsdr_get_freq(sdr->device);
#else
double tf = true_freq(rtlsdr_get_center_freq(sdr->device)); // We correct the original imprecise version
#endif
frontend->frequency = tf * (1 + frontend->calibrate);
return frontend->frequency;
}
double rtlsdr_tune(struct frontend * const frontend,double freq){
struct sdr * const sdr = (struct sdr *)frontend->context;
assert(sdr != NULL);
if(frontend->lock)
return frontend->frequency; // Don't change frequency
return set_correct_freq(sdr,freq);
}