You can set these values by giving command-line arguments like argparse, not modifying this configuration file directly. For the detailed description, please refer here.
-
decomposition: The location of decomposition rule file.
-
n_primals: The number of the entire primals.
-
trainer: (leave blank)
- resume: Path to the checkpoint to resume from.
- work_dir: Path to save the checkpoints, the validation images, and log.
-
gen: (leave blank)
- n_experts: number of the experts.
python train_MX.py cfgs/MX/train.yaml cfgs/data/train/custom.yaml -g(optional) 2 -n(optional) 2 -nr(optional) -p(optional) 12241 0 --work_dir(optional) path/to/save/outputs
-g, -n, -nr, -p are arguments for the DistributedDataParallel training. You do not need to give these arguments if you are using a single GPU.
- arguments
- path/to/config (first argument): path to configration file.
- Multiple values are allowed but the first one should locate in
cfgs/MX
.
- Multiple values are allowed but the first one should locate in
- -g : number of gpus to use for the training.
- -n : number of nodes to use for the training.
- -nr : the ranking of current node within the nodes.
- -p : the port to use for the DistributedDataParallel training.
- --work_dir : path to save outputs. The
trainer.work_dir
in the configuration file will be overwrited to this value.
- path/to/config (first argument): path to configration file.
python inference.py cfgs/MX/eval.yaml cfgs/data/eval/kor_ttf.yaml \
--model MX \
--weight weights/MX_chn.pth \
--result_dir ./result/MX
- arguments
- path/to/config (first argument, multiple values are allowed): path to configration file.
- --model : The model to evaluate. DM, LF, MX and FUNIT are available.
- --weight: The weight to evaluate.
- --result_dir: Path to save generated images.
- --n_ref: The number of reference characters to use for the generation.