-
Notifications
You must be signed in to change notification settings - Fork 160
/
glfw_compute_shader_ssbo_inc.c
264 lines (239 loc) · 8.82 KB
/
glfw_compute_shader_ssbo_inc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
Compute shader that increments an SSBO, and copies it to a texture that is then displayed.
Usage:
./prog [width [work_group_width [cpu]]]]
- width: window width
- work_group_width. Must divide width.
- cpu: if '1', use CPU, else GPU. If set, work_group_width is ignored.
This illustrates that even without shared memory, there is a minimal
work group size that gives better performance. My FPS went up until a size of 16 was reached.
TODO why? Couldn't the NVIDIA compiler just auto join them in this case?
Work groups of size 1 are very slow (60FPS). 16 by 16 was 1400FPS!
*/
#include "common.h"
static const GLuint WIDTH = 512;
static const GLuint WORK_GROUP_WIDTH = 16;
static const GLfloat vertices_xy_uv[] = {
-1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 0.0, 0.0,
1.0, -1.0, 1.0, 0.0,
-1.0, -1.0, 1.0, 1.0,
};
static const GLuint indices[] = {
0, 1, 2,
0, 2, 3,
};
static const GLchar *vertex_shader_source =
"#version 330 core\n"
"in vec2 coord2d;\n"
"in vec2 vertexUv;\n"
"out vec2 fragmentUv;\n"
"void main() {\n"
" gl_Position = vec4(coord2d, 0, 1);\n"
" fragmentUv = vertexUv;\n"
"}\n";
static const GLchar *fragment_shader_source =
"#version 330 core\n"
"in vec2 fragmentUv;\n"
"out vec3 color;\n"
"uniform sampler2D textureSampler;\n"
"void main() {\n"
" float r = texture(textureSampler, fragmentUv.yx).r;\n"
" color = vec3(r, r, r);\n"
"}\n";
static const char compute_shader_source_template[] =
"#version 430\n"
"layout (local_size_x = %d, local_size_y = %d) in;\n"
"layout (r32f, binding = 0) uniform image2D img_output;\n"
"layout (std430, binding=0) buffer temperatures {\n"
" float temperature[];\n"
"};\n"
"uniform uint width;\n"
"void main() {\n"
" ivec2 gid = ivec2(gl_GlobalInvocationID.xy);\n"
" ivec2 dims = imageSize(img_output);\n"
/* TODO: there must be a better way to do this with some GLSL magic? */
" uint i = gid.y * width + gid.x;\n"
" float t = temperature[i];\n"
" vec4 pixel = vec4(t, 0.0, 0.0, 1.0);\n"
" imageStore(img_output, gid, pixel);\n"
/* TODO: does the above pass just a single float, or can we reduce memory bandwidth with something like: */
/*" imageStore(img_output, pixel_coords, t);\n"*/
" temperature[i] = mod(t + 0.01, 1.0);\n"
"}\n";
void error_callback(int error, const char* description) {
puts(description);
}
int main(int argc, char **argv) {
GLFWwindow *window;
GLfloat *temperatures;
GLint
coord2d_location,
textureSampler_location,
vertexUv_location,
width_location
;
GLuint
compute_program,
ebo,
height,
program,
ssbo,
texture,
width,
work_group_width,
vao,
vbo
;
int cpu;
size_t n_temperatures;
char *compute_shader_source, *work_group_width_str;
/* CLI arguments. */
if (argc > 1) {
width = strtol(argv[1], NULL, 10);
} else {
width = WIDTH;
}
height = width;
if (argc > 2) {
work_group_width = strtol(argv[2], NULL, 10);
} else {
work_group_width = WORK_GROUP_WIDTH;
}
if (argc > 3) {
cpu = (argv[3][0] == '1');
} else {
cpu = 0;
}
/* Window. */
glfwInit();
glfwSetErrorCallback(error_callback);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);
window = glfwCreateWindow(width, height, __FILE__, NULL, NULL);
glfwMakeContextCurrent(window);
glfwSwapInterval(1);
glewInit();
/* Shader. */
program = common_get_shader_program(vertex_shader_source, fragment_shader_source);
coord2d_location = glGetAttribLocation(program, "coord2d");
vertexUv_location = glGetAttribLocation(program, "vertexUv");
textureSampler_location = glGetUniformLocation(program, "textureSampler");
if (!cpu) {
/* Compute shader. */
int work_group_width_len = snprintf(NULL, 0, "%d", work_group_width);
size_t compute_shader_source_len = sizeof(compute_shader_source_template) + 2 * work_group_width_len;
compute_shader_source = malloc(compute_shader_source_len);
snprintf(
compute_shader_source,
compute_shader_source_len,
compute_shader_source_template,
work_group_width,
work_group_width
);
compute_program = common_get_compute_program(compute_shader_source);
free(compute_shader_source);
width_location = glGetUniformLocation(compute_program, "width");
}
/* vbo */
glGenBuffers(1, &vbo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glBufferData(GL_ARRAY_BUFFER, sizeof(vertices_xy_uv), vertices_xy_uv, GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);
/* ebo */
glGenBuffers(1, &ebo);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
/* vao */
glGenVertexArrays(1, &vao);
glBindVertexArray(vao);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
glBindBuffer(GL_ARRAY_BUFFER, vbo);
glVertexAttribPointer(coord2d_location, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(vertices_xy_uv[0]), (GLvoid*)0);
glEnableVertexAttribArray(coord2d_location);
glVertexAttribPointer(vertexUv_location, 2, GL_FLOAT, GL_FALSE, 4 * sizeof(vertices_xy_uv[0]), (GLvoid*)(2 * sizeof(vertices_xy_uv[0])));
glEnableVertexAttribArray(vertexUv_location);
glBindVertexArray(0);
/* ssbo */
srand(time(NULL));
n_temperatures = width * height;
temperatures = malloc(n_temperatures * sizeof(temperatures[0]));
for (size_t i = 0; i < n_temperatures; ++i) {
/* Doable with just a simple fragment shader + time uniform, but easier to see what is going on. */
temperatures[i] = 0.0;
/* Not doable with simple fragment shader, so closer to real applications. */
/*temperatures[i] = rand() / (float)RAND_MAX;*/
}
if (!cpu) {
glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
/* GL_DYNAMIC_COPY because we are copying to GPU memory several times. */
glBufferData(GL_SHADER_STORAGE_BUFFER, n_temperatures * sizeof(temperatures[0]), temperatures, GL_DYNAMIC_COPY);
/* 0 corresponds to the 0 of the shader at: "layout (std430, binding=0)". */
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, 0);
free(temperatures);
}
/* Texture. */
glGenTextures(1, &texture);
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, texture);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
if (!cpu) {
glTexImage2D(GL_TEXTURE_2D, 0, GL_R32F, width, height, 0, GL_RED, GL_FLOAT, NULL);
/* Bind to image unit so can write to specific pixels from the compute shader. */
glBindImageTexture(0, texture, 0, GL_FALSE, 0, GL_WRITE_ONLY, GL_R32F);
}
/* Constant state. */
glViewport(0, 0, width, height);
glClearColor(1.0f, 1.0f, 1.0f, 1.0f);
/* Main loop. */
common_fps_init();
while (!glfwWindowShouldClose(window)) {
if (cpu) {
for (unsigned int i = 0; i < height; ++i) {
for (unsigned int j = 0; j < width; ++j) {
GLfloat *t = &temperatures[i * width + j];
*t = fmod(*t + 0.01, 1.0);
}
}
/* GL_RED because there is no better way to do grayscale.
* http://stackoverflow.com/questions/680125/can-i-use-a-grayscale-image-with-the-opengl-glteximage2d-function */
glTexImage2D(
GL_TEXTURE_2D, 0, GL_RED, width, height,
0, GL_RED, GL_FLOAT, temperatures
);
} else {
/* Compute. */
glUseProgram(compute_program);
glUniform1ui(width_location, width);
glDispatchCompute((GLuint)width / work_group_width, (GLuint)height / work_group_width, 1);
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT);
}
/* Draw. */
glClear(GL_COLOR_BUFFER_BIT);
glUseProgram(program);
glUniform1i(textureSampler_location, 0);
glBindVertexArray(vao);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, 0);
glBindVertexArray(0);
glfwSwapBuffers(window);
glfwPollEvents();
common_fps_print();
}
/* Cleanup. */
glDeleteBuffers(1, &ebo);
if (cpu) {
free(temperatures);
} else {
glDeleteBuffers(1, &ssbo);
}
glDeleteBuffers(1, &vbo);
glDeleteVertexArrays(1, &vao);
glDeleteTextures(1, &texture);
glDeleteProgram(program);
glDeleteProgram(compute_program);
glfwTerminate();
return EXIT_SUCCESS;
}