-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathprepare.py
648 lines (549 loc) · 29.8 KB
/
prepare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
#-*- coding:utf-8 -*-
#!/usr/bin/python
#-*- encoding:utf-8 -*-
import numpy as np
import time
import pandas as pd
import torch
import tqdm
import shutil
import torch.optim as optim
import torch.nn as nn
from torch.autograd import Variable
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
def train(train_loader,model,loss_type,optimizer,epoch):
'''
train_data: train data,include label in the last dimension
model: net model
loss: type of loss to be used
optimizer: training optimmizer
epoch: current epoch
return: None
'''
batch_time =AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
batch_size = 16
num_class = 12
# switch to train mode///why?
model.train()
end = time.time()
for step,(feature,label) in enumerate(train_loader):
feature = Variable(feature).cuda(async=True)
label = Variable(label).cuda(async=True)
y_pred = model(feature)
loss = loss_type(y_pred,label.squeeze())
losses.update(loss.item(),feature.size(0))
pred_acc,pred_count = accuracy(y_pred.data,label,topk=(1,1))
acc.update(pred_acc,pred_count)
optimizer.zero_grad()
loss.backward()
optimizer.step()
batch_time.update(time.time() - end,1)
end = time.time()
if step % 10 == 0:
print('opoch:[{0}][{1}/{2}]\t'
'Time:{batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data:{data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss:{loss.val:.4f} ({loss.avg:.4f})\t'
'Accuracy:{acc.val:.3f} ({acc.avg:.3f})'.format(
epoch,step,len(train_loader),batch_time=batch_time,data_time=data_time,loss=losses,acc=acc
)
)
def validate(validate_loader,model,loss_type,best_precision,lowest_loss):
batch_time = AverageMeter()
losses = AverageMeter()
acc = AverageMeter()
#switch to evalute model
model.eval()
end = time.time()
for step,(feature,label) in enumerate(validate_loader):
# feature,label = data
feature = Variable(feature).cuda(async=True)
label = Variable(label).cuda(async=True)
with torch.no_grad():
y_pred = model(feature)
loss = loss_type(y_pred,label.squeeze())
#measure accuracy and record loss
pred_acc,PRED_COUNT = accuracy(y_pred.data,label,topk=(1,1))
losses.update(loss.item(),feature.size(0))
acc.update(pred_acc,PRED_COUNT)
batch_time.update(time.time(),1)
end = time.time()
if step % 10 == 0:
print('TrainVal: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Accuray {acc.val:.3f} ({acc.avg:.3f})'.format(
step, len(validate_loader), batch_time=batch_time, loss=losses, acc=acc))
print(' * Accuray {acc.avg:.3f}'.format(acc=acc), '(Previous Best Acc: %.3f)' % best_precision,
' * Loss {loss.avg:.3f}'.format(loss=losses), 'Previous Lowest Loss: %.3f)' % lowest_loss)
return acc.avg,losses.avg
def test(test_loader,model,num_class,topk=1):
"""
test_loader: test data, type of DataLoader
model: pretrained model
filename: the file used to save inference result
"""
top1_prob = []
top1_pred_label = []
topk_prob = []
topk_pred_label = []
actual_label = []
correct = 0
predict_num = torch.zeros((1,num_class))
acc_num = torch.zeros((1,num_class))
target_num = torch.zeros((1,num_class))
topk_predict_num = torch.zeros((1,num_class))
topk_acc_num = torch.zeros((1,num_class))
topk_target_num = torch.zeros((1,num_class))
model.eval()
for step,(feature,label) in enumerate(test_loader):
feature = Variable(feature)
label = Variable(label)
with torch.no_grad():
y_pred = model(feature)
#使用softmax预测结果
smax = nn.Softmax(1)
smax_out = smax(y_pred)
probility,pred_label = torch.topk(smax_out,topk)
p1,l1 = torch.topk(smax_out,1)
top1_mask = torch.zeros(y_pred.size()).scatter_(1,l1.cpu().view(-1,1),1)
topk_mask = torch.zeros(y_pred.size())
topk_label_index = pred_label.view(1,-1)
topk_label_row = np.array([[x]*topk for x in range(feature.size(0))]).reshape(1,-1).tolist()
topk_mask[topk_label_row,topk_label_index] = 1
actual_mask = torch.zeros(y_pred.size()).scatter_(1,label.cpu().view(-1,1),1)
top1_acc_mask = top1_mask * actual_mask
topk_acc_mask = topk_mask * actual_mask
acc_num += top1_acc_mask.sum(0)
predict_num += top1_mask.sum(0)
target_num += actual_mask.sum(0)
topk_acc_num += topk_acc_mask.sum(0)
topk_predict_num += topk_mask.sum(0)
topk_target_num += actual_mask.sum(0)
actual_label += label.squeeze().tolist()
topk_prob += probility.tolist()
topk_pred_label += pred_label.tolist()
top1_prob += p1.tolist()
top1_pred_label += l1.tolist()
top1_prob = np.array(top1_prob)
top1_pred_label = np.array(top1_pred_label)
topk_prob = np.array(topk_prob)
topk_pred_label = np.array(topk_pred_label)
actual_label = np.array(actual_label).reshape(-1,1)
recall = acc_num / target_num
precision = acc_num / predict_num
F1 = 2*recall*precision/(recall + precision)
accuracy = acc_num.sum(1) / target_num.sum(1)
# accuracys = acc_num / target_num
topk_recall = topk_acc_num / topk_target_num
topk_precision = topk_acc_num / topk_predict_num
topk_F1 = 2*topk_recall*topk_precision/(topk_recall + topk_precision)
topk_accuracy = topk_acc_num.sum(1) / topk_target_num.sum(1)
# topk_accuracys = topk_acc_num / topk_target_num
recall = (recall.numpy()*100).round(4)
precision = (precision.numpy()*100).round(4)
F1 = (F1.numpy()*100).round(4)
accuracy = (accuracy.numpy()*100).round(4)
# accuracys = (accuracys.numpy()*100).round(4)
topk_recall = (topk_recall.numpy()*100).round(4)
topk_precision = (topk_precision.numpy()*100).round(4)
topk_F1 = (topk_F1.numpy()*100).round(4)
topk_accuracy = (topk_accuracy.numpy()*100).round(4)
# topk_accuracys = (topk_accuracys.numpy()*100).round(4)
result = (top1_prob,top1_pred_label,topk_prob,topk_pred_label,actual_label)
top1_metrics = (accuracy,recall,precision,F1)
topk_metrics = (topk_accuracy,topk_recall,topk_precision,topk_F1)
return result,top1_metrics,topk_metrics
def accuracy(y_pred,y_label,topk=(1,)):
""""
y_pred: the net predected label
y_label: the actual label
topk: the top k accuracy
return: accuracy and data length
"""
final_acc = 0
maxk = max(topk)
PRED_COUNT = y_label.size(0)
PRED_CORRECT_COUNT = 0
prob,pred_label = y_pred.topk(maxk,dim=1,largest=True,sorted=True)
for x in range(pred_label.size(0)):
if int(pred_label[x]) == y_label[x]:
PRED_CORRECT_COUNT += 1
if PRED_COUNT == 0:
return final_acc
final_acc = PRED_CORRECT_COUNT / PRED_COUNT
return final_acc*100,PRED_COUNT
def adjust_learning_rate(model,weight_decay,base_lr,lr_decay):
base_lr = base_lr / lr_decay
return optim.Adam(model.parameters(),base_lr,weight_decay=weight_decay,amsgrad=True)
def save_checkpoint(state,is_best,is_lowest_loss,filename):
s_filename = '../model/%s/checkpoint.pth.tar' %filename
torch.save(state,s_filename)
if is_best:
shutil.copyfile(s_filename,'../model/%s/model_best.pth.tar' %filename)
if is_lowest_loss:
shutil.copyfile(s_filename,'../model/%s/lowest_loss.pth.tar' %filename)
class DealDataSet(Dataset):
"""docstring for DealDataSet"""
def __init__(self,data_list,header_payload=False):
self.x = torch.from_numpy(data_list[:,:-1])
self.x = self.x.type(torch.FloatTensor)
if header_payload == True:
self.x = self.x.view(self.x.shape[0],1,22,22)
else:
self.x = self.x.view(self.x.shape[0],1,16,16)
self.y = torch.from_numpy(data_list[:,[-1]])
self.y = self.y.type(torch.LongTensor)
self.len = self.x.shape[0]
self.xshape = self.x.shape
self.yshape = self.y.shape
def __getitem__(self,index):
return self.x[index],self.y[index]
def __len__(self):
return self.len
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self,val,n=1):
self.val = val
self.sum += val*n
self.count += n
self.avg = self.sum / self.count
class TrainDataSetHeader():
def __init__(self,data_type=1):
self.data_type = data_type
super(TrainDataSetHeader, self).__init__()
def read_csv(self):
if self.data_type == 1:
mydata_botnet = pd.read_csv('../flow_labeled/labeld_Botnet.csv')#2075
mydata_DDoS = pd.read_csv('../flow_labeled/labeld_DDoS.csv')#261226
mydata_glodeneye = pd.read_csv('../flow_labeled/labeld_DoS-GlodenEye.csv')#20543
mydata_hulk = pd.read_csv('../flow_labeled/labeld_DoS-Hulk.csv')#474656
mydata_slowhttp = pd.read_csv('../flow_labeled/labeld_DoS-Slowhttptest.csv')#6786
mydata_slowloris = pd.read_csv('../flow_labeled/labeld_DoS-Slowloris.csv')#10537
mydata_ftppatator = pd.read_csv('../flow_labeled/labeld_FTP-Patator.csv')#19941
mydata_heartbleed = pd.read_csv('../flow_labeled/labeld_Heartbleed-Port.csv')#9859
mydata_infiltration_2 = pd.read_csv('../flow_labeled/labeld_Infiltration-2.csv')#5126
mydata_infiltration_4 = pd.read_csv('../flow_labeled/labeld_Infiltration-4.csv')#168
mydata_portscan_1 = pd.read_csv('../flow_labeled/labeld_PortScan_1.csv')#755
mydata_portscan_2 = pd.read_csv('../flow_labeled/labeld_PortScan_2.csv')#318881
mydata_sshpatator = pd.read_csv('../flow_labeled/labeld_SSH-Patator.csv')#27545
mydata_bruteforce = pd.read_csv('../flow_labeled/labeld_WebAttack-BruteForce.csv')#7716
mydata_sqlinjection = pd.read_csv('../flow_labeled/labeld_WebAttack-SqlInjection.csv')#25
mydata_xss = pd.read_csv('../flow_labeled/labeld_WebAttack-XSS.csv')#2796
elif self.data_type == 2:
mydata_botnet = pd.read_csv('../payload_labeled/labeld_Botnet_payload.csv')
mydata_DDoS = pd.read_csv('../payload_labeled/labeld_DDoS_payload.csv')
mydata_glodeneye = pd.read_csv('../payload_labeled/labeld_DoS-GlodenEye_payload.csv')
mydata_hulk = pd.read_csv('../payload_labeled/labeld_DoS-Hulk_payload.csv')
mydata_slowhttp = pd.read_csv('../payload_labeled/labeld_DoS-Slowhttptest_payload.csv')
mydata_slowloris = pd.read_csv('../payload_labeled/labeld_DoS-Slowloris_payload.csv')
mydata_ftppatator = pd.read_csv('../payload_labeled/labeld_FTP-Patator_payload.csv')
mydata_heartbleed = pd.read_csv('../payload_labeled/labeld_Heartbleed-Port_payload.csv')
mydata_infiltration_2 = pd.read_csv('../payload_labeled/labeld_Infiltration-2_payload.csv')
mydata_infiltration_4 = pd.read_csv('../payload_labeled/labeld_Infiltration-4_payload.csv')
mydata_portscan_1 = pd.read_csv('../payload_labeled/labeld_PortScan_1_payload.csv')
mydata_portscan_2 = pd.read_csv('../payload_labeled/labeld_PortScan_2_payload.csv')
mydata_sshpatator = pd.read_csv('../payload_labeled/labeld_SSH-Patator_payload.csv')
mydata_bruteforce = pd.read_csv('../payload_labeled/labeld_WebAttack-BruteForce_payload.csv')
mydata_sqlinjection = pd.read_csv('../payload_labeled/labeld_WebAttack-SqlInjection_payload.csv')
mydata_xss = pd.read_csv('../payload_labeled/labeld_WebAttack-XSS_payload.csv')
elif self.data_type == 3:
mydata_botnet = pd.read_csv('../head_payload_labeled/labeld_Botnet_head_payload.csv')
mydata_DDoS = pd.read_csv('../head_payload_labeled/labeld_DDoS_head_payload.csv')
mydata_glodeneye = pd.read_csv('../head_payload_labeled/labeld_DoS-GlodenEye_head_payload.csv')
mydata_hulk = pd.read_csv('../head_payload_labeled/labeld_DoS-Hulk_head_payload.csv')
mydata_slowhttp = pd.read_csv('../head_payload_labeled/labeld_DoS-Slowhttptest_head_payload.csv')
mydata_slowloris = pd.read_csv('../head_payload_labeled/labeld_DoS-Slowloris_head_payload.csv')
mydata_ftppatator = pd.read_csv('../head_payload_labeled/labeld_FTP-Patator_head_payload.csv')
mydata_heartbleed = pd.read_csv('../head_payload_labeled/labeld_Heartbleed-Port_head_payload.csv')
mydata_infiltration_2 = pd.read_csv('../head_payload_labeled/labeld_Infiltration-2_head_payload.csv')
mydata_infiltration_4 = pd.read_csv('../head_payload_labeled/labeld_Infiltration-4_head_payload.csv')
mydata_portscan_1 = pd.read_csv('../head_payload_labeled/labeld_PortScan_1_head_payload.csv')
mydata_portscan_2 = pd.read_csv('../head_payload_labeled/labeld_PortScan_2_head_payload.csv')
mydata_sshpatator = pd.read_csv('../head_payload_labeled/labeld_SSH-Patator_head_payload.csv')
mydata_bruteforce = pd.read_csv('../head_payload_labeled/labeld_WebAttack-BruteForce_head_payload.csv')
mydata_sqlinjection = pd.read_csv('../head_payload_labeled/labeld_WebAttack-SqlInjection_head_payload.csv')
mydata_xss = pd.read_csv('../head_payload_labeled/labeld_WebAttack-XSS_head_payload.csv')
botnet = mydata_botnet.values[:,1:]
ddos = mydata_DDoS.values[:,1:]
glodeneye = mydata_glodeneye.values[:,1:]
hulk = mydata_hulk.values[:,1:]
slowhttp = mydata_slowhttp.values[:,1:]
slowloris = mydata_slowloris.values[:,1:]
ftp_patator = mydata_ftppatator.values[:,1:]
heartbleed = mydata_heartbleed.values[:,1:]
infiltration_2 = mydata_infiltration_2.values[:,1:]
infiltration_4 = mydata_infiltration_4.values[:,1:]
portscan_1 = mydata_portscan_1.values[:,1:]
portscan_2 = mydata_portscan_2.values[:,1:]
ssh_patator = mydata_sshpatator.values[:,1:]
bruteforce = mydata_bruteforce.values[:,1:]
sqlinjection = mydata_sqlinjection.values[:,1:]
xss = mydata_xss.values[:,1:]
return botnet,ddos,glodeneye,hulk,slowhttp,slowloris,ftp_patator,heartbleed,infiltration_2,infiltration_4,portscan_1,portscan_2,ssh_patator,bruteforce,sqlinjection,xss
def get_item(self):
botnet,ddos,glodeneye,hulk,slowhttp,slowloris,ftp_patator,heartbleed,infiltration_2,infiltration_4,portscan_1,portscan_2,ssh_patator,bruteforce,sqlinjection,xss = self.read_csv()
print('shape of botnet: ',botnet.shape)
print('shape of DDoS: ',ddos.shape)
print('shape of glodeneye: ',glodeneye.shape)
print('shape of hulk: ',hulk.shape)
print('shape of slowhttp: ',slowhttp.shape)
print('shape of slowloris: ',slowloris.shape)
print('shape of ftppatator: ',ftp_patator.shape)
print('shape of heartbleed: ',heartbleed.shape)
print('shape of infiltration_2: ',infiltration_2.shape)
print('shape of infiltration_4: ',infiltration_4.shape)
print('shape of portscan_1: ',portscan_1.shape)
print('shape of portscan_2: ',portscan_2.shape)
print('shape of sshpatator: ',ssh_patator.shape)
print('shape of brutefoece: ',bruteforce.shape)
print('shape of sqlinjection: ',sqlinjection.shape)
print('shape of xss: ',xss.shape)
x_botnet = botnet[:,:-1]
x_ddos = ddos[:,:-1]
x_glodeneye = glodeneye[:,:-1]
x_hulk = hulk[:,:-1]
x_slowhttp = slowhttp[:,:-1]
x_slowloris = slowloris[:,:-1]
x_ftppatator = ftp_patator[:,:-1]
x_heartbleed = heartbleed[:,:-1]
x_infiltration_2 = infiltration_2[:,:-1]
x_infiltration_4 = infiltration_4[:,:-1]
x_portscan_1 = portscan_1[:,:-1]
x_portscan_2 = portscan_2[:,:-1]
x_sshpatator = ssh_patator[:,:-1]
x_bruteforce = bruteforce[:,:-1]
x_sqlinjection = sqlinjection[:,:-1]
x_xss = xss[:,:-1]
y_botnet = botnet[:,-1]
y_ddos = ddos[:,-1]
y_glodeneye = glodeneye[:,-1]
y_hulk = hulk[:,-1]
y_slowhttp = slowhttp[:,-1]
y_slowloris = slowloris[:,-1]
y_ftppatator = ftp_patator[:,-1]
y_heartbleed = heartbleed[:,-1]
y_infiltration_2 = infiltration_2[:,-1]
y_infiltration_4 = infiltration_4[:,-1]
y_portscan_1 = portscan_1[:,-1]
y_portscan_2 = portscan_2[:,-1]
y_sshpatator = ssh_patator[:,-1]
y_bruteforce = bruteforce[:,-1]
y_sqlinjection = sqlinjection[:,-1]
y_xss = xss[:,-1]
x_tr_botnet,x_te_botnet,y_tr_botnet,y_te_botnet = train_test_split(x_botnet,y_botnet,test_size=0.2,random_state=1)
x_tr_ddos,x_te_ddos,y_tr_ddos,y_te_ddos = train_test_split(x_ddos,y_ddos,test_size=0.2,random_state=1)
x_tr_glodeneye,x_te_glodeneye,y_tr_glodeneye,y_te_glodeneye = train_test_split(x_glodeneye,y_glodeneye,test_size=0.2,random_state=1)
x_tr_hulk,x_te_hulk,y_tr_hulk,y_te_hulk = train_test_split(x_hulk,y_hulk,test_size=0.2,random_state=1)
x_tr_slowhttp,x_te_slowhttp,y_tr_slowhttp,y_te_slowhttp = train_test_split(x_slowhttp,y_slowhttp,test_size=0.2,random_state=1)
x_tr_slowloris,x_te_slowloris,y_tr_slowloris,y_te_slowloris = train_test_split(x_slowloris,y_slowloris,test_size=0.2,random_state=1)
x_tr_ftppatator,x_te_ftppatator,y_tr_ftppatator,y_te_ftppatator = train_test_split(x_ftppatator,y_ftppatator,test_size=0.2,random_state=1)
x_tr_heartbleed,x_te_heartbleed,y_tr_heartbleed,y_te_heartbleed = train_test_split(x_heartbleed,y_heartbleed,test_size=0.2,random_state=1)
x_tr_infiltration_2,x_te_infiltration_2,y_tr_infiltration_2,y_te_infiltration_2 = train_test_split(x_infiltration_2,y_infiltration_2,test_size=0.2,random_state=1)
x_tr_infiltration_4,x_te_infiltration_4,y_tr_infiltration_4,y_te_infiltration_4 = train_test_split(x_infiltration_4,y_infiltration_4,test_size=0.2,random_state=1)
x_tr_portscan_1,x_te_portscan_1,y_tr_portscan_1,y_te_portscan_1 = train_test_split(x_portscan_1,y_portscan_1,test_size=0.2,random_state=1)
x_tr_portscan_2,x_te_portscan_2,y_tr_portscan_2,y_te_portscan_2 = train_test_split(x_portscan_2,y_portscan_2,test_size=0.2,random_state=1)
x_tr_sshpatator,x_te_sshpatator,y_tr_sshpatator,y_te_sshpatator = train_test_split(x_sshpatator,y_sshpatator,test_size=0.2,random_state=1)
x_tr_bruteforce,x_te_bruteforce,y_tr_bruteforce,y_te_bruteforce = train_test_split(x_bruteforce,y_bruteforce,test_size=0.2,random_state=1)
x_tr_sqlinjection,x_te_sqlinjection,y_tr_sqlinjection,y_te_sqlinjection = train_test_split(x_sqlinjection,y_sqlinjection,test_size=0.2,random_state=1)
x_tr_xss,x_te_xss,y_tr_xss,y_te_xss = train_test_split(x_xss,y_xss,test_size=0.2,random_state=1)
x_tr_infiltration = np.concatenate((x_tr_infiltration_2,x_tr_infiltration_4),axis=0)
x_tr_portscan = np.concatenate((x_tr_portscan_1,x_tr_portscan_2),axis=0)
x_tr_webattack = np.concatenate((x_tr_bruteforce,x_tr_sqlinjection,x_tr_xss),axis=0)
y_tr_infiltration = np.concatenate((y_tr_infiltration_2,y_tr_infiltration_4))
y_tr_portscan = np.concatenate((y_tr_portscan_1,y_tr_portscan_2))
y_tr_webattack = np.concatenate((y_tr_bruteforce,y_tr_sqlinjection,y_tr_xss))
x_te_infiltration = np.concatenate((x_te_infiltration_2,x_te_infiltration_4),axis=0)
x_te_portscan = np.concatenate((x_te_portscan_1,x_te_portscan_2),axis=0)
x_te_webattack = np.concatenate((x_te_bruteforce,x_te_sqlinjection,x_te_xss),axis=0)
y_te_infiltration = np.concatenate((y_te_infiltration_2,y_te_infiltration_4))
y_te_portscan = np.concatenate((y_te_portscan_1,y_te_portscan_2))
y_te_webattack = np.concatenate((y_te_bruteforce,y_te_sqlinjection,y_te_xss))
#play label
y_tr_botnet = np.array([0]*len(y_tr_botnet))
y_tr_ddos = np.array([1]*len(y_tr_ddos))
y_tr_glodeneye = np.array([2]*len(y_tr_glodeneye))
y_tr_hulk = np.array([3]*len(y_tr_hulk))
y_tr_slowhttp = np.array([4]*len(y_tr_slowhttp))
y_tr_slowloris = np.array([5]*len(y_tr_slowloris))
y_tr_ftppatator = np.array([6]*len(y_tr_ftppatator))
y_tr_heartbleed = np.array([7]*len(y_tr_heartbleed))
y_tr_infiltration = np.array([8]*len(y_tr_infiltration))
y_tr_portscan = np.array([9]*len(y_tr_portscan))
y_tr_sshpatator = np.array([10]*len(y_tr_sshpatator))
y_tr_webattack = np.array([11]*len(y_tr_webattack))
y_te_botnet = np.array([0]*len(y_te_botnet))
y_te_ddos = np.array([1]*len(y_te_ddos))
y_te_glodeneye = np.array([2]*len(y_te_glodeneye))
y_te_hulk = np.array([3]*len(y_te_hulk))
y_te_slowhttp = np.array([4]*len(y_te_slowhttp))
y_te_slowloris = np.array([5]*len(y_te_slowloris))
y_te_ftppatator = np.array([6]*len(y_te_ftppatator))
y_te_heartbleed = np.array([7]*len(y_te_heartbleed))
y_te_infiltration = np.array([8]*len(y_te_infiltration))
y_te_portscan = np.array([9]*len(y_te_portscan))
y_te_sshpatator = np.array([10]*len(y_te_sshpatator))
y_te_webattack = np.array([11]*len(y_te_webattack))
x_train = np.concatenate((x_tr_botnet,x_tr_ddos,x_tr_glodeneye,x_tr_hulk,x_tr_slowhttp,x_tr_slowloris,x_tr_ftppatator,x_tr_heartbleed,x_tr_infiltration,x_tr_portscan,x_tr_sshpatator,x_tr_webattack))
y_train = np.concatenate((y_tr_botnet,y_tr_ddos,y_tr_glodeneye,y_tr_hulk,y_tr_slowhttp,y_tr_slowloris,y_tr_ftppatator,y_tr_heartbleed,y_tr_infiltration,y_tr_portscan,y_tr_sshpatator,y_tr_webattack))
x_test = np.concatenate((x_te_botnet,x_te_ddos,x_te_glodeneye,x_te_hulk,x_te_slowhttp,x_te_slowloris,x_te_ftppatator,x_te_heartbleed,x_te_infiltration,x_te_portscan,x_te_sshpatator,x_te_webattack))
y_test = np.concatenate((y_te_botnet,y_te_ddos,y_te_glodeneye,y_te_hulk,y_te_slowhttp,y_te_slowloris,y_te_ftppatator,y_te_heartbleed,y_te_infiltration,y_te_portscan,y_te_sshpatator,y_te_webattack))
return x_train,y_train,x_test,y_test
class TrainDataSetPayload():
"""docstring for TrainDataSetPayload"""
def __init__(self,):
super(TrainDataSetPayload, self).__init__()
def read_csv(self):
payload_botnet = pd.read_csv('../payload_labeled/labeld_Botnet_payload.csv')
payload_DDoS = pd.read_csv('../payload_labeled/labeld_DDoS_payload.csv')
payload_glodeneye = pd.read_csv('../payload_labeled/labeld_DoS-GlodenEye_payload.csv')
payload_hulk = pd.read_csv('../payload_labeled/labeld_DoS-Hulk_payload.csv')
payload_slowhttp = pd.read_csv('../payload_labeled/labeld_DoS-Slowhttptest_payload.csv')
payload_slowloris = pd.read_csv('../payload_labeled/labeld_DoS-Slowloris_payload.csv')
payload_ftppatator = pd.read_csv('../payload_labeled/labeld_FTP-Patator_payload.csv')
payload_heartbleed = pd.read_csv('../payload_labeled/labeld_Heartbleed-Port_payload.csv')
payload_infiltration_2 = pd.read_csv('../payload_labeled/labeld_Infiltration-2_payload.csv')
payload_infiltration_4 = pd.read_csv('../payload_labeled/labeld_Infiltration-4_payload.csv')
payload_portscan_1 = pd.read_csv('../payload_labeled/labeld_PortScan_1_payload.csv')
payload_portscan_2 = pd.read_csv('../payload_labeled/labeld_PortScan_2_payload.csv')
payload_sshpatator = pd.read_csv('../payload_labeled/labeld_SSH-Patator_payload.csv')
payload_brutefoece = pd.read_csv('../payload_labeled/labeld_WebAttack-BruteForce_payload.csv')
payload_sqlinjection = pd.read_csv('../payload_labeled/labeld_WebAttack-SqlInjection_payload.csv')
payload_xss = pd.read_csv('../payload_labeled/labeld_WebAttack-XSS_payload.csv')
# print('finish reading dataset, cost time :',time.time() - start)
botnet = payload_botnet.values[:,1:]
ddos = payload_DDoS.values[:,1:]
glodeneye = payload_glodeneye.values[:,1:]
hulk = payload_hulk.values[:,1:]
slowhttp = payload_slowhttp.values[:,1:]
slowloris = payload_slowloris.values[:,1:]
ftp_patator = payload_ftppatator.values[:,1:]
heartbleed = payload_heartbleed.values[:,1:]
infiltration_2 = payload_infiltration_2.values[:,1:]
infiltration_4 = payload_infiltration_4.values[:,1:]
portscan_1 = payload_portscan_1.values[:,1:]
portscan_2 = payload_portscan_2.values[:,1:]
ssh_patator = payload_sshpatator.values[:,1:]
bruteforce = payload_brutefoece.values[:,1:]
sqlinjection = payload_sqlinjection.values[:,1:]
xss = payload_xss.values[:,1:]
return botnet,ddos,glodeneye,hulk,slowhttp,slowloris,ftp_patator,heartbleed,infiltration_2,infiltration_4,portscan_1,portscan_2,ssh_patator,bruteforce,sqlinjection,xss
def get_item(self):
botnet,ddos,glodeneye,hulk,slowhttp,slowloris,ftp_patator,heartbleed,infiltration_2,infiltration_4,portscan_1,portscan_2,ssh_patator,bruteforce,sqlinjection,xss = self.read_csv()
print('shape of botnet: ',botnet.shape)
print('shape of DDoS: ',ddos.shape)
print('shape of glodeneye: ',glodeneye.shape)
print('shape of hulk: ',hulk.shape)
print('shape of slowhttp: ',slowhttp.shape)
print('shape of slowloris: ',slowloris.shape)
print('shape of ftppatator: ',ftp_patator.shape)
print('shape of heartbleed: ',heartbleed.shape)
print('shape of infiltration_2: ',infiltration_2.shape)
print('shape of infiltration_4: ',infiltration_4.shape)
print('shape of portscan_1: ',portscan_1.shape)
print('shape of portscan_2: ',portscan_2.shape)
print('shape of sshpatator: ',ssh_patator.shape)
print('shape of brutefoece: ',bruteforce.shape)
print('shape of sqlinjection: ',sqlinjection.shape)
print('shape of xss: ',xss.shape)
x_botnet = botnet[:,:-1]
x_ddos = ddos[:,:-1]
x_glodeneye = glodeneye[:,:-1]
x_hulk = hulk[:,:-1]
x_slowhttp = slowhttp[:,:-1]
x_slowloris = slowloris[:,:-1]
x_ftppatator = ftp_patator[:,:-1]
x_heartbleed = heartbleed[:,:-1]
x_infiltration_2 = infiltration_2[:,:-1]
x_infiltration_4 = infiltration_4[:,:-1]
x_portscan_1 = portscan_1[:,:-1]
x_portscan_2 = portscan_2[:,:-1]
x_sshpatator = ssh_patator[:,:-1]
x_bruteforce = bruteforce[:,:-1]
x_sqlinjection = sqlinjection[:,:-1]
x_xss = xss[:,:-1]
y_botnet = botnet[:,-1]
y_ddos = ddos[:,-1]
y_glodeneye = glodeneye[:,-1]
y_hulk = hulk[:,-1]
y_slowhttp = slowhttp[:,-1]
y_slowloris = slowloris[:,-1]
y_ftppatator = ftp_patator[:,-1]
y_heartbleed = heartbleed[:,-1]
y_infiltration_2 = infiltration_2[:,-1]
y_infiltration_4 = infiltration_4[:,-1]
y_portscan_1 = portscan_1[:,-1]
y_portscan_2 = portscan_2[:,-1]
y_sshpatator = ssh_patator[:,-1]
y_bruteforce = bruteforce[:,-1]
y_sqlinjection = sqlinjection[:,-1]
y_xss = xss[:,-1]
x_tr_botnet,x_te_botnet,y_tr_botnet,y_te_botnet = train_test_split(x_botnet,y_botnet,test_size=0.2,random_state=1)
x_tr_ddos,x_te_ddos,y_tr_ddos,y_te_ddos = train_test_split(x_ddos,y_ddos,test_size=0.2,random_state=1)
x_tr_glodeneye,x_te_glodeneye,y_tr_glodeneye,y_te_glodeneye = train_test_split(x_glodeneye,y_glodeneye,test_size=0.2,random_state=1)
x_tr_hulk,x_te_hulk,y_tr_hulk,y_te_hulk = train_test_split(x_hulk,y_hulk,test_size=0.2,random_state=1)
x_tr_slowhttp,x_te_slowhttp,y_tr_slowhttp,y_te_slowhttp = train_test_split(x_slowhttp,y_slowhttp,test_size=0.2,random_state=1)
x_tr_slowloris,x_te_slowloris,y_tr_slowloris,y_te_slowloris = train_test_split(x_slowloris,y_slowloris,test_size=0.2,random_state=1)
x_tr_ftppatator,x_te_ftppatator,y_tr_ftppatator,y_te_ftppatator = train_test_split(x_ftppatator,y_ftppatator,test_size=0.2,random_state=1)
x_tr_heartbleed,x_te_heartbleed,y_tr_heartbleed,y_te_heartbleed = train_test_split(x_heartbleed,y_heartbleed,test_size=0.2,random_state=1)
x_tr_infiltration_2,x_te_infiltration_2,y_tr_infiltration_2,y_te_infiltration_2 = train_test_split(x_infiltration_2,y_infiltration_2,test_size=0.2,random_state=1)
x_tr_infiltration_4,x_te_infiltration_4,y_tr_infiltration_4,y_te_infiltration_4 = train_test_split(x_infiltration_4,y_infiltration_4,test_size=0.2,random_state=1)
x_tr_portscan_1,x_te_portscan_1,y_tr_portscan_1,y_te_portscan_1 = train_test_split(x_portscan_1,y_portscan_1,test_size=0.2,random_state=1)
x_tr_portscan_2,x_te_portscan_2,y_tr_portscan_2,y_te_portscan_2 = train_test_split(x_portscan_2,y_portscan_2,test_size=0.2,random_state=1)
x_tr_sshpatator,x_te_sshpatator,y_tr_sshpatator,y_te_sshpatator = train_test_split(x_sshpatator,y_sshpatator,test_size=0.2,random_state=1)
x_tr_bruteforce,x_te_bruteforce,y_tr_bruteforce,y_te_bruteforce = train_test_split(x_bruteforce,y_bruteforce,test_size=0.2,random_state=1)
x_tr_sqlinjection,x_te_sqlinjection,y_tr_sqlinjection,y_te_sqlinjection = train_test_split(x_sqlinjection,y_sqlinjection,test_size=0.2,random_state=1)
x_tr_xss,x_te_xss,y_tr_xss,y_te_xss = train_test_split(x_xss,y_xss,test_size=0.2,random_state=1)
x_tr_infiltration = np.concatenate((x_tr_infiltration_2,x_tr_infiltration_4),axis=0)
x_tr_portscan = np.concatenate((x_tr_portscan_1,x_tr_portscan_2),axis=0)
x_tr_webattack = np.concatenate((x_tr_bruteforce,x_tr_sqlinjection,x_tr_xss),axis=0)
y_tr_infiltration = np.concatenate((y_tr_infiltration_2,y_tr_infiltration_4))
y_tr_portscan = np.concatenate((y_tr_portscan_1,y_tr_portscan_2))
y_tr_webattack = np.concatenate((y_tr_bruteforce,y_tr_sqlinjection,y_tr_xss))
x_te_infiltration = np.concatenate((x_te_infiltration_2,x_te_infiltration_4),axis=0)
x_te_portscan = np.concatenate((x_te_portscan_1,x_te_portscan_2),axis=0)
x_te_webattack = np.concatenate((x_te_bruteforce,x_te_sqlinjection,x_te_xss),axis=0)
y_te_infiltration = np.concatenate((y_te_infiltration_2,y_te_infiltration_4))
y_te_portscan = np.concatenate((y_te_portscan_1,y_te_portscan_2))
y_te_webattack = np.concatenate((y_te_bruteforce,y_te_sqlinjection,y_te_xss))
#play label
y_tr_botnet = np.array([0]*len(y_tr_botnet))
y_tr_ddos = np.array([1]*len(y_tr_ddos))
y_tr_glodeneye = np.array([2]*len(y_tr_glodeneye))
y_tr_hulk = np.array([3]*len(y_tr_hulk))
y_tr_slowhttp = np.array([4]*len(y_tr_slowhttp))
y_tr_slowloris = np.array([5]*len(y_tr_slowloris))
y_tr_ftppatator = np.array([6]*len(y_tr_ftppatator))
y_tr_heartbleed = np.array([7]*len(y_tr_heartbleed))
y_tr_infiltration = np.array([8]*len(y_tr_infiltration))
y_tr_portscan = np.array([9]*len(y_tr_portscan))
y_tr_sshpatator = np.array([10]*len(y_tr_sshpatator))
y_tr_webattack = np.array([11]*len(y_tr_webattack))
y_te_botnet = np.array([0]*len(y_te_botnet))
y_te_ddos = np.array([1]*len(y_te_ddos))
y_te_glodeneye = np.array([2]*len(y_te_glodeneye))
y_te_hulk = np.array([3]*len(y_te_hulk))
y_te_slowhttp = np.array([4]*len(y_te_slowhttp))
y_te_slowloris = np.array([5]*len(y_te_slowloris))
y_te_ftppatator = np.array([6]*len(y_te_ftppatator))
y_te_heartbleed = np.array([7]*len(y_te_heartbleed))
y_te_infiltration = np.array([8]*len(y_te_infiltration))
y_te_portscan = np.array([9]*len(y_te_portscan))
y_te_sshpatator = np.array([10]*len(y_te_sshpatator))
y_te_webattack = np.array([11]*len(y_te_webattack))
x_train = np.concatenate((x_tr_botnet,x_tr_ddos,x_tr_glodeneye,x_tr_hulk,x_tr_slowhttp,x_tr_slowloris,x_tr_ftppatator,x_tr_heartbleed,x_tr_infiltration,x_tr_portscan,x_tr_sshpatator,x_tr_webattack))
y_train = np.concatenate((y_tr_botnet,y_tr_ddos,y_tr_glodeneye,y_tr_hulk,y_tr_slowhttp,y_tr_slowloris,y_tr_ftppatator,y_tr_heartbleed,y_tr_infiltration,y_tr_portscan,y_tr_sshpatator,y_tr_webattack))
x_test = np.concatenate((x_te_botnet,x_te_ddos,x_te_glodeneye,x_te_hulk,x_te_slowhttp,x_te_slowloris,x_te_ftppatator,x_te_heartbleed,x_te_infiltration,x_te_portscan,x_te_sshpatator,x_te_webattack))
y_test = np.concatenate((y_te_botnet,y_te_ddos,y_te_glodeneye,y_te_hulk,y_te_slowhttp,y_te_slowloris,y_te_ftppatator,y_te_heartbleed,y_te_infiltration,y_te_portscan,y_te_sshpatator,y_te_webattack))
return x_train,y_train,x_test,y_test