-
Notifications
You must be signed in to change notification settings - Fork 172
/
benchmark_results.py
191 lines (163 loc) · 7.85 KB
/
benchmark_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import argparse
import yaml
import csv
import pandas as pd
from itertools import chain
from pyiqa.data import build_dataset, build_dataloader
from pyiqa.default_model_configs import DEFAULT_CONFIGS
from pyiqa.utils.options import ordered_yaml
from pyiqa.metrics import calculate_plcc, calculate_srcc, calculate_krcc
from tqdm import tqdm
import torch
from pyiqa import create_metric
def flatten_list(list_of_list):
if isinstance(list_of_list, list):
if isinstance(list_of_list[0], list):
return list(chain.from_iterable(list_of_list))
else:
return list_of_list
else:
return [list_of_list]
def str_to_bool(s: str) -> bool:
true_values = {"true", "1", "yes", "y", "t", "on"}
false_values = {"false", "0", "no", "n", "f", "off"}
# Convert the string to lowercase and strip any leading/trailing whitespace
s = s.strip().lower()
if s in true_values:
return True
elif s in false_values:
return False
else:
return s
def main():
"""benchmark test demo for pyiqa.
"""
parser = argparse.ArgumentParser()
parser.add_argument('-m', type=str, nargs='+', default=None, help='metric name list.')
parser.add_argument('-d', type=str, nargs='+', default=None, help='dataset name list.')
parser.add_argument('--metric_opt', type=str, default=None, help='Path to custom metric option YAML file.')
parser.add_argument('--extra_metric_opts', nargs='+', type=str, default=None, help='Extra options for all tested metrics.')
parser.add_argument('--data_opt', type=str, default=None, help='Path to custom data option YAML file.')
parser.add_argument('--batch_size', type=int, default=None, help='batch size for benchmark.')
parser.add_argument('--split_file', type=str, default=None, help='split file for test.')
parser.add_argument('--test_phase', type=str, default=None, help='phase for benchmark: val/test.')
parser.add_argument('--save_result_path', type=str, default=None, help='file to save results.')
parser.add_argument('--update_benchmark', type=str, default=None, help='update benchmark results.')
parser.add_argument('--use_gpu', action='store_true', default=False, help='use gpu or not')
args = parser.parse_args()
metrics_to_test = []
datasets_to_test = []
if args.m is not None:
metrics_to_test += args.m
if args.d is not None:
datasets_to_test += args.d
if args.use_gpu:
num_gpu = 1
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
num_gpu = 0
device = torch.device('cpu')
# ========== get metric and dataset options ===========
# load default options first
all_metric_opts = DEFAULT_CONFIGS
with open('./options/default_dataset_opt.yml', mode='r') as f:
all_data_opts = yaml.load(f, Loader=ordered_yaml()[0])
# load custom options to test
if args.metric_opt is not None:
with open(args.metric_opt, mode='r') as f:
custom_metric_opt = yaml.load(f, Loader=ordered_yaml()[0])
all_metric_opts.update(custom_metric_opt)
metrics_to_test += list(custom_metric_opt.keys())
extra_opt_dict = {}
if args.extra_metric_opts is not None:
for extra_opt in args.extra_metric_opts:
extra_opt = extra_opt.split('=')
if len(extra_opt) == 2:
extra_opt_dict[extra_opt[0]] = str_to_bool(extra_opt[1])
if args.data_opt is not None:
with open(args.data_opt, mode='r') as f:
custom_data_opt = yaml.load(f, Loader=ordered_yaml()[0])
all_data_opts.update(custom_data_opt)
datasets_to_test += list(custom_data_opt.keys())
# =====================================================
save_result_path = args.save_result_path
if save_result_path is not None:
csv_file = open(save_result_path, 'w')
csv_writer = csv.writer(csv_file)
csv_writer.writerow(['Metric name'] + [name + '(PLCC/SRCC/KRCC)' for name in datasets_to_test])
update_benchmark_file = args.update_benchmark
if update_benchmark_file is not None:
benchmark = pd.read_csv(update_benchmark_file, index_col='Metric name')
for metric_name in metrics_to_test:
# if metric_name exist in default config, load default config first
metric_opts = all_metric_opts[metric_name]['metric_opts']
metric_mode = all_metric_opts[metric_name]['metric_mode']
lower_better = all_metric_opts[metric_name].get('lower_better', False)
metric_opts.update(extra_opt_dict)
if metric_name == 'pieapp':
lower_better = False # ground truth score is also lower better for pieapp test set
iqa_model = create_metric(metric_name, device=device, metric_mode=metric_mode, **metric_opts)
results_row = [metric_name]
for dataset_name in datasets_to_test:
data_opts = all_data_opts[dataset_name]
data_opts.update({
'num_worker_per_gpu': 8,
'prefetch_mode': 'cpu',
'num_prefetch_queue': 8,
})
if args.batch_size is not None:
data_opts.update({
'batch_size_per_gpu': args.batch_size,
})
if args.split_file is not None:
data_opts.update({
'split_file': args.split_file,
})
if args.split_file is not None and args.test_phase is not None:
data_opts.update({
'phase': args.test_phase,
})
if 'phase' not in data_opts:
data_opts['phase'] = 'test'
dataset = build_dataset(data_opts)
dataloader = build_dataloader(dataset, data_opts, num_gpu=num_gpu)
gt_labels = []
result_scores = []
pbar = tqdm(total=len(dataloader), unit='image')
pbar.set_description(f'Testing *{metric_name}* on ({dataset_name})')
for data in dataloader:
try:
if metric_mode == 'FR':
iqa_score = iqa_model(data['img'], data['ref_img'])
else:
iqa_score = iqa_model(data['img'])
if not torch.isnan(iqa_score).any():
iqa_score = iqa_score.squeeze().cpu().tolist()
gt_labels += flatten_list(data['mos_label'].cpu().tolist())
result_scores += flatten_list(iqa_score)
except:
print(f'Error in testing {metric_name} on {dataset_name}: {data["img_path"]}')
pbar.update(1)
pbar.close()
if lower_better:
results_scores_for_cc = [-x for x in result_scores]
else:
results_scores_for_cc = result_scores
plcc_score = abs(round(calculate_plcc(results_scores_for_cc, gt_labels), 4))
srcc_score = abs(round(calculate_srcc(results_scores_for_cc, gt_labels), 4))
krcc_score = abs(round(calculate_krcc(results_scores_for_cc, gt_labels), 4))
results_row.append(f'{plcc_score}/{srcc_score}/{krcc_score}')
print(
f'Results of *{metric_name}* on ({dataset_name}) is [PLCC|SRCC|KRCC]: {plcc_score}, {srcc_score}, {krcc_score}'
)
if update_benchmark_file is not None:
benchmark.loc[metric_name, f'{dataset_name}(PLCC/SRCC/KRCC)'] = f'{plcc_score}/{srcc_score}/{krcc_score}'
if save_result_path is not None:
csv_writer.writerow(results_row)
if save_result_path is not None:
csv_file.close()
if update_benchmark_file is not None:
benchmark = benchmark.sort_values(by=benchmark.columns[0], key=lambda x: x.str.split('/').str[0].astype(float))
benchmark.to_csv(update_benchmark_file)
if __name__ == '__main__':
main()