-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackup.py
790 lines (558 loc) · 32.7 KB
/
backup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#!/usr/bin/env python
# coding: utf-8
# In[1]:
import os
import re
import sys
import argparse
import logging
import time
import socket
from pyplink import PyPlink
import pandas as pd
import numpy as np
from scipy.stats import chi2
import statsmodels.api as sm
#jupyter nbconvert GAT.ipynb --to script
# In[108]:
def plink_get_dosage(marker,keep_allele_order=True,repeat=1):
dosage=plink.get_geno_marker(marker).astype(float)
dosage[dosage==-1]=np.nan
if keep_allele_order or ((dosage==0).sum()>(dosage==2).sum()):
a1=plink_bim.loc[marker]['a1']
a2=plink_bim.loc[marker]['a2']
else:
a1=plink_bim.loc[marker]['a2']
a2=plink_bim.loc[marker]['a1']
dosage=2-dosage
return a1,a2,np.repeat(dosage,repeat)
def phased_get_dosage(marker,a1=None):
phased_marker_idx=phased_marker_name_list.index(marker)
phased_marker_data=phased_marker_data_list[phased_marker_idx]
phased_marker_data_unique=np.unique(phased_marker_data)
if len(phased_marker_data_unique)>2:
raise NotImplementedError
if a1 is not None:
if a1==phased_marker_data_unique[1]:
a2=phased_marker_data_unique[0]
elif a1==phased_marker_data_unique[0]:
a2=phased_marker_data_unique[1]
else:
raise NotImplementedError
elif (phased_marker_data==phased_marker_data_unique[0]).sum()>(phased_marker_data==phased_marker_data_unique[1]).sum():
a1=phased_marker_data_unique[1]
a2=phased_marker_data_unique[0]
else:
a1=phased_marker_data_unique[0]
a2=phased_marker_data_unique[1]
phased_marker_data=np.where(phased_marker_data==a1, 1, phased_marker_data)
phased_marker_data=np.where(phased_marker_data==a2, 0, phased_marker_data)
return a1,a2, phased_marker_data.astype(float)
# In[3]:
def find_trivial_index(array2d):
array2d_sumcol=array2d.sum(axis=1)
array2d_sumrow=array2d.sum(axis=0)
array2d_sumrow_argmax=np.argmax(array2d_sumrow)
if array2d_sumrow.shape[0]>1:
return array2d_sumrow_argmax
else:
return None
# In[4]:
reduce_1d=lambda x: np.mean(y_data.reshape(-1,2),axis=1)
reduce_2d=lambda x: np.mean(x.reshape(int(x.shape[0]/2),-1,x.shape[1]),axis=1)
# In[5]:
def dir_path(path):
if os.path.dirname(path)=='' or os.path.exists(os.path.dirname(path)):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
def file_path(path):
if os.path.isfile(path):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
def bfile_path(path):
if os.path.isfile(path+'.fam') and os.path.isfile(path+'.bed') and os.path.isfile(path+'.bim'):
return path
else:
raise argparse.ArgumentTypeError(f"readable_dir:{path} is not a valid path")
parser = argparse.ArgumentParser(description='GAT (Generic Genome-Wide Association Tool) For more information, please see https://github.com/ch6845/GAT')
#required mode
parser.add_argument('--assoc',choices=['linear','logistic'],required=True)
#required output file
parser.add_argument('--out', type=dir_path,required=True,help='output file prefix. (prefix.log, prefix.assoc will be generated)')
#required input files
parser.add_argument('--bgl-phased', type=file_path,help='bgl-phased (See Beagle 5.1 documentation)')
parser.add_argument('--bfile', type=bfile_path,help='plink binary format')
parser.add_argument('--multialleic',type=str,help='regular expression for specifying multiple alleic marker (comma delimiter)')
parser.add_argument('--multialleic-always',type=str,help='regular expression for specifying multiple alleic marker (comma delimiter)')
parser.add_argument('--skip',type=str,help='regular expression for specifying markers to skip (comma delimiter)')
parser.add_argument('--pheno', type=file_path,required=True,help='format is the same as plink. Tab-delimited file without header, of which the first and second columns is family and within-family IDs respectively, and the third column is pheotype')
#optional
parser.add_argument('--covar', type=file_path,help='format is the same as plink')
parser.add_argument('--condition-list',type=file_path,help='format is the same as plink')
# In[73]:
debug=True
#debug=True
if debug:
arg_split='--assoc linear --out /data/ch6845/MHC_phewas_testbench/data/out_assoc/ALP/step_00 --bgl-phased /data/ch6845/MHC_phewas_testbench/data/genotype/4_merge/KCHIP_HLA_AA_SNP.bgl.phased --bfile /data/ch6845/MHC_phewas_testbench/data/genotype/4_merge/1000G --pheno /data/ch6845/MHC_phewas_testbench/data/out_pheno/ALP.phe --covar /data/ch6845/MHC_phewas_testbench/data/out_assoc/ALP/step_01.covar --condition-list /data/ch6845/MHC_phewas_testbench/data/out_assoc/ALP/step_01.cond --skip (?P<name>6:[0-9]*_[A-Z]*/[\<\>A-Z\:0-9]*) --multialleic (?P<name>HLA_[0-9A-Z]*)\*(?P<allele>[0-9:]*) --multialleic-always (?P<name>AA_[A-Z0-9]*_[\-0-9]*_[0-9]*_exon[0-9]*)_*(?P<allele>[A-Z]*)'.split(' ')
args=parser.parse_args(arg_split)
else:
args=parser.parse_args()
if args.bfile is None and args.bgl_phased is None:
raise argparse.ArgumentTypeError("either --bfile or --bgl-phased parameter is needed")
# In[7]:
#%tb
# In[8]:
log = logging.getLogger('logger')
log.setLevel(logging.DEBUG)
log_file_path=args.out+'.log'
fileHandler = logging.FileHandler(log_file_path,'w')
streamHandler = logging.StreamHandler()
formatter = logging.Formatter('%(message)s')
fileHandler.setFormatter(formatter)
streamHandler.setFormatter(formatter)
log.addHandler(fileHandler)
log.addHandler(streamHandler)
log.info_head=lambda x: log.info('\n'+'*'*int((100-len(x))/2)+x+'*'*int((100-len(x))/2)+'\n')
# In[9]:
log.info_head("*********************************")
log.info("* GAT (Generic Genome-Wide Association Tool)")
log.info("* Description: Generic module for associating bialleic/multialleic phased/unphased markers")
log.info("* version 1.0")
log.info("* (C) 2020-, Seoul National University")
log.info("* Please report bugs to: Chanwoo Kim <[email protected]>")
log.info("* https://github.com/ch6845/GAT")
log.info_head("*********************************")
log.info("Start time: "+time.strftime('%c', time.localtime(time.time())))
log.info('Working directory: '+os.getcwd())
log.info('Hostname: '+socket.gethostname())
log.info('Parameters\n'+'\n'.join(['--{} {}'.format(key,value) for key,value in vars(args).items()]))
#print('Parameters\n'+'\n'.join(['--{} {}'.format(key,value) for key,value in vars(args).items()]))
# In[37]:
assoc=args.assoc
out=args.out
# In[11]:
log.info_head("Data Loading")
# # parse input files
# In[12]:
plink=None
plink_bim=None
plink_fam=None
if args.bfile is not None:
plink=PyPlink(args.bfile)
plink_bim=plink.get_bim()
plink_fam=plink.get_fam().astype({'fid':str,'iid':str}).rename(columns={'fid':'FID','iid':'IID','father':'fID', 'mother':'mID','gender':'sex'})
log.info("{} samples ({} males, {} females) loaded from {}".format(plink_fam.shape[0],(plink_fam['sex']==1).sum(),(plink_fam['sex']==2).sum(),args.bfile))
log.info("{} unphased variants loaded from {}".format(plink_bim.shape[0],args.bfile))
# In[13]:
phased_FID_list=None
phased_IID_list=None
phased_fID_list=None
phased_mID_list=None
phased_sex_list=None
phased_marker_name_list=None
phased_marker_data_list=None
if args.bgl_phased is not None:
log.info("Loading bgl phased")
with open(args.bgl_phased,'r') as f:
line_cnt=0
while True:
line=f.readline()
if not line or line_cnt%1000==5:
sys.stdout.write('\r read %5d markers' % (line_cnt-5))
sys.stdout.flush()
if not line:
break
line_cnt+=1
line_split=line.strip().split(' ')
line_type,line_id,line_data=line_split[0],line_split[1],line_split[2:]
if line_type=='P':
phased_FID_list1=np.array([line_data[i+0] for i in range(0,len(line_data),2)])
phased_FID_list2=np.array([line_data[i+1] for i in range(0,len(line_data),2)])
if np.all(phased_FID_list1==phased_FID_list2):
phased_FID_list=phased_FID_list1
else:
raise
elif line_type=='fID':
phased_fID_list1=np.array([line_data[i+0] for i in range(0,len(line_data),2)])
phased_fID_list2=np.array([line_data[i+1] for i in range(0,len(line_data),2)])
if np.all(phased_fID_list1==phased_fID_list2):
phased_fID_list=phased_fID_list1
else:
raise
elif line_type=='mID':
phased_mID_list1=np.array([line_data[i+0] for i in range(0,len(line_data),2)])
phased_mID_list2=np.array([line_data[i+1] for i in range(0,len(line_data),2)])
if np.all(phased_mID_list1==phased_mID_list2):
phased_mID_list=phased_mID_list1
else:
raise
elif line_type=='I':
phased_IID_list1=np.array([line_data[i+0] for i in range(0,len(line_data),2)])
phased_IID_list2=np.array([line_data[i+1] for i in range(0,len(line_data),2)])
if np.all(phased_IID_list1==phased_IID_list2):
phased_IID_list=phased_IID_list1
else:
raise
elif line_type=='C':
phased_sex_list1=np.array([line_data[i+0] for i in range(0,len(line_data),2)])
phased_sex_list2=np.array([line_data[i+1] for i in range(0,len(line_data),2)])
if np.all(phased_sex_list1==phased_sex_list2):
phased_sex_list=np.array(phased_sex_list1).astype(int)
else:
raise
elif line_type=='M':
if phased_marker_name_list is None:
phased_marker_name_list=[]
if phased_marker_data_list is None:
phased_marker_data_list=[]
phased_marker_name_list.append(line_id)
line_data=np.array(line_data)
phased_marker_data_list.append(line_data)
else:
print(line_type)
raise
assert phased_FID_list is not None
assert phased_IID_list is not None
assert phased_fID_list is not None
assert phased_mID_list is not None
assert phased_sex_list is not None
assert len(phased_marker_name_list)!=0
assert len(phased_marker_data_list)!=0
log.info("{} phsaed variants loaded from {}".format(len(phased_marker_name_list),args.bgl_phased))
log.info("{} samples ({} males, {} females) loaded from {}".format(len(phased_IID_list),(np.array(phased_sex_list).astype(int)==1).sum(),(np.array(phased_sex_list).astype(int)==2).sum(),args.bgl_phased))
# In[14]:
pheno=pd.read_csv(args.pheno,header=None,sep='\t',names=['FID','IID','pheno'])
pheno['pheno']=pheno['pheno'].replace(-9,np.nan)
if args.assoc=='linear':
assert len(pheno['pheno'].unique())>2
else:
assert np.all(np.isnan(pheno['pheno'])|(pheno['pheno']==1)|(pheno['pheno']==2))
pheno['pheno']=pheno['pheno']-1
log.info("{} pheotype loaded from {}".format(pheno.shape[0],args.pheno))
log.info("Among them, valid: {}, missing: {}".format((~pheno['pheno'].isnull()).sum(),pheno['pheno'].isnull().sum()))
if assoc=='linear':
log.info("mean={:.3f} std={:.3f} median={:.3f} min={:.3f} max={:.3f}".format(pheno['pheno'].mean(),pheno['pheno'].std(),pheno['pheno'].median(),pheno['pheno'].min(),pheno['pheno'].max()))
else:
log.info("case: {} / control: {}".format((pheno['pheno']==1).sum(),(pheno['pheno']==0).sum()))
# # parse multialleic regular exp
# In[15]:
log.info_head("Multialleic expression parsing")
plink_multialleic_dict={}
plink_multialleic_always_dict={}
phased_multialleic_dict={}
phased_multialleic_always_dict={}
for expression in args.multialleic.split(','):
re_exp=re.compile(expression)
if plink is not None:
for marker in plink_bim.index:
name,allele=(re_exp.search(marker).group('name'),re_exp.search(marker).group('allele')) if re_exp.search(marker) is not None else (None,None)
if name is not None:
plink_multialleic_dict[marker]=name
if phased_marker_name_list is not None:
for marker in phased_marker_name_list:
name,allele=(re_exp.search(marker).group('name'),re_exp.search(marker).group('allele')) if re_exp.search(marker) is not None else (None,None)
if name is not None:
phased_multialleic_dict[marker]=name
for expression in args.multialleic_always.split(','):
re_exp=re.compile(expression)
if plink is not None:
for marker in plink_bim.index:
name,allele=(re_exp.search(marker).group('name'),re_exp.search(marker).group('allele')) if re_exp.search(marker) is not None else (None,None)
if name is not None:
plink_multialleic_always_dict[marker]=name
if phased_marker_name_list is not None:
for marker in phased_marker_name_list:
name,allele=(re_exp.search(marker).group('name'),re_exp.search(marker).group('allele')) if re_exp.search(marker) is not None else (None,None)
if name is not None:
phased_multialleic_always_dict[marker]=name
plink_multialleic_df=pd.DataFrame(list(zip(plink_multialleic_dict.keys(),plink_multialleic_dict.values())),columns=['marker','name'])
plink_multialleic_df['from']='plink'
plink_multialleic_df['always']=False
plink_multialleic_always_df=pd.DataFrame(list(zip(plink_multialleic_always_dict.keys(),plink_multialleic_always_dict.values())),columns=['marker','name'])
plink_multialleic_always_df['from']='plink'
plink_multialleic_always_df['always']=True
phased_multialleic_df=pd.DataFrame(list(zip(phased_multialleic_dict.keys(),phased_multialleic_dict.values())),columns=['marker','name'])
phased_multialleic_df['from']='phased'
phased_multialleic_df['always']=False
phased_multialleic_always_df=pd.DataFrame(list(zip(phased_multialleic_always_dict.keys(),phased_multialleic_always_dict.values())),columns=['marker','name'])
phased_multialleic_always_df['from']='phased'
phased_multialleic_always_df['always']=True
multialleic_df_concat=pd.concat([plink_multialleic_df,plink_multialleic_always_df,phased_multialleic_df,phased_multialleic_always_df],sort=False)
multialleic_collapse=set(multialleic_df_concat[multialleic_df_concat['always']==True]['name']).intersection(set(multialleic_df_concat[multialleic_df_concat['always']==False]['name']))
assert len(multialleic_collapse)==0
# Note: duplicated mulltialleic marker in --bfile and --bgl-phased is available. In that case, priority is on --bgl-phased.
log.info("plink, multialleic: {}".format(','.join(multialleic_df_concat[(multialleic_df_concat['from']=='plink')&(multialleic_df_concat['always']==False)]['name'].unique())))
log.info("plink, multialleic always: {}".format(','.join(multialleic_df_concat[(multialleic_df_concat['from']=='plink')&(multialleic_df_concat['always']==True)]['name'].unique())))
log.info("phased, multialleic: {}".format(','.join(multialleic_df_concat[(multialleic_df_concat['from']=='phased')&(multialleic_df_concat['always']==False)]['name'].unique())))
log.info("phased, multialleic always: {}".format(','.join(multialleic_df_concat[(multialleic_df_concat['from']=='phased')&(multialleic_df_concat['always']==True)]['name'].unique())))
# In[74]:
skip_list=[]
for expression in args.skip.split(','):
re_exp=re.compile(expression)
if plink is not None:
for marker in plink_bim.index:
name=re_exp.search(marker).group('name') if re_exp.search(marker) is not None else None
if name is not None:
skip_list.append(name)
if phased_marker_name_list is not None:
for marker in phased_marker_name_list:
name=re_exp.search(marker).group('name') if re_exp.search(marker) is not None else None
if name is not None:
skip_list.append(name)
log.info("{} markers were identified from --skip".format(len(skip_list)))
# # parse optional input files
# In[18]:
if args.covar is None:
covar=fam.iloc[:,:2]
else:
covar=pd.read_csv(args.covar,sep='\t')
covar.columns=['FID','IID']+covar.columns[2:].tolist()
covar=covar.astype({'FID':str,'IID':str})
covar.iloc[:,2:]=covar.iloc[:,2:].astype(float)
covar.iloc[:,2:]=covar.iloc[:,2:].replace(-9,np.nan)
log.info("{} covariates loaded from {}".format(len(covar.columns[2:]),args.covar))
# In[19]:
if args.condition_list is None:
condition_list=[]
else:
with open(args.condition_list,'r') as f:
condition_list=f.read().strip().split('\n')
if condition_list[0]=='':
condition_list=[]
log.warning("Empty --condition-list {}".format(args.condition_list))
else:
#condition_list.append()
log.info("{} conditions loaded from --condition-list {}".format(len(condition_list),args.condition_list))
if len(np.unique(condition_list))!=len(condition_list):
condition_list=np.unique(condition_list).tolist()
log.info("After removing duplicated conditions, {} conditions remains".format(len(condition_list)))
for condition1 in condition_list:
if condition1 not in multialleic_df_concat['name'].values:
for condition2 in condition_list:
if condition1 in multialleic_df_concat[multialleic_df_concat['name']==condition2]['marker'].values:
condition_list.remove(condition1)
log.info("Removed bialleic condition({}) with correponding multialleic condition({})".format(condition1,condition2))
log.info("Finally {} conditions remains".format(len(condition_list)))
log.info('*********\n '+', '.join(condition_list)+'\n*********')
# # check idx integrity
# In[31]:
log.info_head("Input integrity check")
if plink_fam is not None and phased_FID_list is not None:
assert np.all(plink_fam['FID']==phased_FID_list)
assert np.all(plink_fam['IID']==phased_IID_list)
assert np.all(plink_fam['fID']==phased_fID_list)
assert np.all(plink_fam['mID']==phased_mID_list)
log.info("Passed individual integrity check (Individuals from --bfile is the same as individuals from --bgl-phased)")
try:
assert np.all(plink_fam['sex']==phased_sex_list)
except:
log.warning("However, sex is not matching ")
assert np.all(covar['FID']==(plink_fam['FID'] if plink_fam is not None else phased_FID_list))
assert np.all(covar['IID']==(plink_fam['IID'] if plink_fam is not None else phased_IID_list))
log.info("Passed individual integrity check (Individuals from --bfile or --bgl-phased is the same as individuals from --covar)")
diff=set(condition_list)
if phased_marker_name_list is not None:
diff=diff.difference(phased_marker_name_list)
if plink_bim is not None:
diff=diff.difference(plink_bim.index)
diff=diff.difference(multialleic_df_concat['name'])
assert len(diff)==0
log.info("Passed condition integrity check (All variants in --condition-list are identified from loaded variants)")
# In[32]:
log.info_head("Converting condtion to covariate")
# In[33]:
covar_phased=covar.loc[covar.index.repeat(2)].reset_index().drop(columns='index')
# In[34]:
pheno_phased=pheno.loc[pheno.index.repeat(2)].reset_index().drop(columns='index')#['pheno']
# In[35]:
for condition in condition_list:
if condition in multialleic_df_concat['name'].values:
if condition in multialleic_df_concat[(multialleic_df_concat['from']=='phased')]['name'].values:
bialleic_marker_list=multialleic_df_concat[(multialleic_df_concat['from']=='phased')&(multialleic_df_concat['name']==condition)]['marker'].values
bialleic_marker_info_list=[phased_get_dosage(bialleic_marker) for bialleic_marker in bialleic_marker_list]
elif condition in multialleic_df_concat[(multialleic_df_concat['from']=='plink')]['name'].values:
bialleic_marker_list=multialleic_df_concat[(multialleic_df_concat['from']=='plink')&(multialleic_df_concat['name']==condition)]['marker'].values
bialleic_marker_info_list=[plink_get_dosage(bialleic_marker,repeat=2) for bialleic_marker in bialleic_marker_list]
else:
raise
if len(np.unique(bialleic_marker_list))!=len(bialleic_marker_list):
raise
bialleic_marker_dosage=np.array([dosage for a1,a2,dosage in bialleic_marker_info_list]).transpose()
trivial_index=find_trivial_index(bialleic_marker_dosage)
bialleic_marker_list_cut=bialleic_marker_list if trivial_index is None else np.delete(bialleic_marker_list, trivial_index)
bialleic_marker_dosage_cut=bialleic_marker_dosage if trivial_index is None else np.delete(bialleic_marker_dosage, trivial_index,axis=1)
for bialleic_marker_idx,bialleic_marker in enumerate(bialleic_marker_list_cut):
covar_phased[bialleic_marker]=bialleic_marker_dosage_cut[:,bialleic_marker_idx]
log.info("{} bialleic marker(s) from mulitalleic marker specifier({}) were added.".format(len(bialleic_marker_list_cut),condition))
if trivial_index is not None:
log.info("==> To avoid coliearity, {} removed from {}".format(bialleic_marker_list[trivial_index] ,', '.join(bialleic_marker_list)))
elif phased_marker_name_list is not None and condition in phased_marker_name_list:
a1,a2,dosage=phased_get_dosage(condition)
covar_phased[condition]=dosage
log.info("1 bialleic marker {} was added from --bgl-phased".format(condition))
elif plink_bim is not None and condition in plink_bim.index:
a1,a2,dosage=plink_get_dosage(condition,repeat=2)
covar_phased[condition]=dosage
log.info("1 bialleic marker {} was added from --bfile".format(condition))
else:
raise NotImplementedError
# In[38]:
covar_phased.to_csv(out+'.covar.tsv',sep='\t',index=None)
covar_unphased=covar_phased.loc[np.arange(0,covar_phased.shape[0],2)].iloc[:,:2].merge(right=pd.DataFrame(reduce_2d(covar_phased.iloc[:,2:].values),columns=covar_phased.columns[2:],index=np.arange(0,covar_phased.shape[0],2)),
left_index=True,right_index=True
)
covar_unphased.to_csv(out+'.covar_unphased.tsv',sep='\t',index=None)
log.info("covariate of this analysis was saved to {} , {}".format(out+'.covar.tsv',out+'.covar_unphased.tsv'))
# # Run regression
# In[44]:
log.info_head("Regression")
log.info("Start time: "+time.strftime('%c', time.localtime(time.time())))
# In[75]:
test_marker_list=multialleic_df_concat['name'].tolist()
if plink_bim is not None:
test_marker_list+=plink_bim.index.tolist()
if phased_marker_name_list is not None:
test_marker_list+=phased_marker_name_list
test_marker_list=pd.Index(sorted(np.unique(test_marker_list).tolist()))
test_marker_list=test_marker_list.difference(multialleic_df_concat[multialleic_df_concat['always']==True]['marker'])
if len(skip_list)>0:
log.info("{} markers were identified from --skip".format(len(skip_list)))
log.info("And {} markers were skipped".format(len(test_marker_list.intersection(skip_list))))
test_marker_list=test_marker_list.difference(skip_list)
test_marker_list=list(test_marker_list)#np.random.shuffle(test_marker_list_temp)
log.info("Total markers to test : {}".format(len(test_marker_list)))
# In[76]:
if plink_fam is not None:
x_data_intercept=np.array([np.ones(2*plink_fam.shape[0])]).transpose()
else:
x_data_intercept=np.array([np.ones(2*len(phased_IID_list))]).transpose()
x_data_covariate=covar_phased.iloc[:,2:].values
x_data_null=np.concatenate([x_data_intercept,x_data_covariate],axis=1)
x_data_null_names=['const']+covar_phased.columns[2:].tolist()
x_data_null_reduce=reduce_2d(x_data_null)
y_data=pheno_phased['pheno'].values
y_data_reduce=reduce_1d(y_data)
# In[113]:
assoc_result_list=[]
assoc_result_list_keys=['marker_name','P','nobs','coef','std','Z','chisq','df','term','A1','A2','multi_allele','note']
def assoc_result_record(marker_name='',P=np.nan,nobs=np.nan,coef=np.nan,std=np.nan,Z=np.nan,chisq=np.nan,df=np.nan,term=np.nan,A1=np.nan,A2=np.nan,multi_allele=np.nan,note=''):
assoc_result_list.append({'marker_name':marker_name,'P':P,'nobs':nobs,'coef':coef,'std':std,'Z':Z,'chisq':chisq,'df':df,'term':term,'A1':A1,'A2':A2,'multi_allele':multi_allele,'note':note})
# In[114]:
#test_marker_list[4000:]
# In[116]:
family=(sm.families.Gaussian() if assoc=='linear' else sm.families.Binomial())
#check_point_list=[[],[],[],[],[],[]]
marker_check_interval=int(len(test_marker_list)/20)
for marker_idx,marker in enumerate(test_marker_list):
marker='6:28000361_T/C'
if marker_idx%marker_check_interval==0:
log.info("Time: {} - {:.3f} %".format(time.strftime('%c', time.localtime(time.time())),marker_idx/len(test_marker_list)*100))
try:
if phased_marker_name_list is not None and marker in phased_marker_name_list:
a1,a2,dosage=phased_get_dosage(marker)
dosage=np.expand_dims(dosage,axis=1)
x_data_full=np.concatenate([x_data_null,dosage],axis=1)
x_data_full_names=x_data_null_names+['THIS']
model=sm.GLM(y_data, x_data_full, family=family,missing='drop')
model_result=model.fit()
for model_result_idx in range(len(model_result.params)):
assoc_result_record(marker_name=marker,
P=model_result.pvalues[model_result_idx],
coef=model_result.params[model_result_idx],
std=model_result.bse[model_result_idx],
Z=model_result.tvalues[model_result_idx],
term=x_data_full_names[model_result_idx],
A1=a1 if x_data_full_names[model_result_idx]=='THIS' else np.nan,
A2=a2 if x_data_full_names[model_result_idx]=='THIS' else np.nan,
nobs=model_result.nobs,
note='phased bialleic')
elif marker in multialleic_df_concat[multialleic_df_concat['from']=='phased']['name'].values:
bialleic_marker_list=multialleic_df_concat[(multialleic_df_concat['from']=='phased')&(multialleic_df_concat['name']==marker)]['marker'].values
if len(np.unique(bialleic_marker_list))!=len(bialleic_marker_list):
raise
bialleic_marker_info_list=[phased_get_dosage(bialleic_marker) for bialleic_marker in bialleic_marker_list]
bialleic_marker_dosage=np.array([dosage for a1,a2,dosage in bialleic_marker_info_list]).transpose()
trivial_index=find_trivial_index(bialleic_marker_dosage)
bialleic_marker_list_cut=bialleic_marker_list if trivial_index is None else np.delete(bialleic_marker_list, trivial_index)
bialleic_marker_dosage_cut=bialleic_marker_dosage if trivial_index is None else np.delete(bialleic_marker_dosage, trivial_index,axis=1)
x_data_full=np.concatenate([x_data_null,bialleic_marker_dosage_cut],axis=1)
common_idx=(~np.isnan(y_data))&(np.isnan(x_data_null).sum(axis=1)==0)&(np.isnan(x_data_full).sum(axis=1)==0)
model_null=sm.GLM(y_data[common_idx], x_data_null[common_idx], family=family,missing='raise')
model_null_result=model_null.fit()
model_full=sm.GLM(y_data[common_idx], x_data_full[common_idx], family=family,missing='raise')
model_full_result=model_full.fit()
chisq_diff=2*(model_full_result.llf-model_null_result.llf)
df_diff=model_full_result.df_model-model_null_result.df_model
p_value=chi2.sf(chisq_diff,df_diff)
assoc_result_record(marker_name=marker,
P=p_value,
chisq=chisq_diff,
df=df_diff,
multi_allele=','.join(bialleic_marker_list),
nobs=np.sum(common_idx),
note='phased multialleic')
elif plink_bim is not None and marker in plink_bim.index:
#check_point_list[0].append(time.time())
a1,a2,dosage=plink_get_dosage(marker,repeat=1)
dosage=np.expand_dims(dosage,axis=1)
x_data_full_reduce=np.concatenate([x_data_null_reduce,dosage],axis=1)
x_data_full_names=x_data_null_names+['THIS']
#y_data_reduce=y_data#reduce_1d(y_data)
#x_data_full_reduce=x_data_full#reduce_2d(x_data_full)
#check_point_list[1].append(time.time())
model=sm.GLM(y_data_reduce, x_data_full_reduce, family=family,missing='drop')
model_result=model.fit()
for model_result_idx in range(len(model_result.params)):
assoc_result_record(marker_name=marker,
P=model_result.pvalues[model_result_idx],
coef=model_result.params[model_result_idx],
std=model_result.bse[model_result_idx],
Z=model_result.tvalues[model_result_idx],
term=x_data_full_names[model_result_idx],
A1=a1 if x_data_full_names[model_result_idx]=='THIS' else np.nan,
A2=a1 if x_data_full_names[model_result_idx]=='THIS' else np.nan,
nobs=model_result.nobs,
note='plink bialleic')
#check_point_list[2].append(time.time())
elif marker in multialleic_df_concat[multialleic_df_concat['from']=='plink']['name'].values:
bialleic_marker_list=multialleic_df_concat[(multialleic_df_concat['from']=='plink')&(multialleic_df_concat['name']==marker)]['marker'].values
if len(np.unique(bialleic_marker_list))!=len(bialleic_marker_list):
raise
bialleic_marker_info_list=[plink_get_dosage(bialleic_marker,repeat=1) for bialleic_marker in bialleic_marker_list]
bialleic_marker_dosage=np.array([dosage for a1,a2,dosage in bialleic_marker_info_list]).transpose()
trivial_index=find_trivial_index(bialleic_marker_dosage)
bialleic_marker_list_cut=bialleic_marker_list if trivial_index is None else np.delete(bialleic_marker_list, trivial_index)
bialleic_marker_dosage_cut=bialleic_marker_dosage if trivial_index is None else np.delete(bialleic_marker_dosage, trivial_index,axis=1)
x_data_full_reduce=np.concatenate([x_data_null_reduce,bialleic_marker_dosage_cut],axis=1)
x_data_full_reduce=reduce_2d(x_data_full)
common_idx=(~np.isnan(y_data_reduce))&(np.isnan(x_data_null_reduce).sum(axis=1)==0)&(np.isnan(x_data_full_reduce).sum(axis=1)==0)
model_null=sm.GLM(y_data_reduce[common_idx], x_data_null_reduce[common_idx], family=family,missing='raise')
model_null_result=model_null.fit()
model_full=sm.GLM(y_data_reduce[common_idx], x_data_full_reduce[common_idx], family=family,missing='raise')
model_full_result=model_full.fit()
chisq_diff=2*(model_full_result.llf-model_null_result.llf)
df_diff=model_full_result.df_model-model_null_result.df_model
p_value=chi2.sf(chisq_diff,df_diff)
assoc_result_record(marker_name=marker,
P=p_value,
chisq=chisq_diff,
df=df_diff,
multi_allele=','.join(bialleic_marker_list),
nobs=np.sum(common_idx),
note='plink multialleic')
except sm.tools.sm_exceptions.PerfectSeparationError as e:
log.warning("{} PerfectSeparationError".format(marker))
assoc_result_record(marker_name=marker,note='PerfectSeparationError')
else:
pass
break
# In[123]:
assoc_result_df_verbose=pd.DataFrame(assoc_result_list)[assoc_result_list_keys]
assoc_result_df_concise=assoc_result_df_verbose[(assoc_result_df_verbose['term'].isnull())|(assoc_result_df_verbose['term']=='THIS')]
# In[103]:
assoc_result_df_verbose.to_csv(out+'.result_verbose.tsv',sep='\t',index=None)
assoc_result_df_concise.to_csv(out+'.result.tsv',sep='\t',index=None)
# In[102]:
log.info("End time: "+time.strftime('%c', time.localtime(time.time())))