-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
executable file
·52 lines (42 loc) · 1.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# Import libraries
import os #operating system
import pandas as pd #pandas for dataframe management
import matplotlib.pyplot as plt #matplotlib for plotting
import matplotlib.dates as mdates # alias for date formatting
import numpy as np # for generating synthetic data
# Data
dataPath = './' # set data path
df = pd.read_csv(os.path.join(dataPath, 'data.csv')) # read in data
df['date'] = pd.to_datetime(df['date']) # convert column to datetime
df.set_index('date', inplace=True) # set date as the index
df_avg = df.resample('D').mean() # resample by DAY and take the mean and create a new dataframe called df_avg
############################ NEW #############################
# Moving on .. synthetic data
# This extracts the data as an array, creates a sythetic interval, samples the data based on provided data, and creates a new time series
data = df['demand'].values
interval = pd.date_range('2018-11-01', '2020-10-30', freq='15min')
synthetic_data = np.random.choice(data, len(interval))
ts = pd.DataFrame({'demand': synthetic_data}, index=interval)
ts.index.name = 'date'
# resampling analysis
ts_daily = ts.resample('D').mean()
days = ts_daily.index.strftime("%Y-%m-%d")
ts_monthly = ts.resample('M').mean()
months = ts_monthly.index.strftime("%Y-%m")
# Here we can just loop over what months we want to generate plots for
for month in months[2:5]:
fig, ax = plt.subplots(figsize=(15,7))
ts_daily[month].plot(ax=ax, kind='bar')
# display
plt.title("Monthly demand for {}".format(month))
plt.xlabel("day of month")
plt.ylabel('demand')
# #set ticks every week
ax.xaxis.set_major_locator(mdates.WeekdayLocator())
#set major ticks format
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d'))
# plt.show()
plt.savefig('figures/{}'.format(month))
# Output the daily data
ts_daily.to_csv("daily_average.csv", index=True)
ts_monthly.to_csv("monthly_average.csv", index=True)