-
Notifications
You must be signed in to change notification settings - Fork 3
/
Denoising_HOM.m
54 lines (47 loc) · 1.7 KB
/
Denoising_HOM.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
% Function that separates noise component from phasic event component
% according to higher-order statistical moments (HOM)
% Author: Carlos Loza
%%
function [X_PhEv, th] = Denoising_HOM(beta_all, beta_tr, X_M_snippet_tr)
% INPUTS:
% beta_all - Amplitude/Norm of all possible M-dimensional snippets for all
% trials, i.e. Embedding Transform. Vector format.
% beta_tr - Amplitude/Norm of all possible M-dimensional snippets separated
% by trials and mapped directly to the M-snippets in X_M_snippet_tr. Cell
% format
% X_M_snippet_tr - M-snippets separated by trials. Cell format.
% OUTPUTS:
% X_PhEv - M-snippets corresponding to phasic event component only. Cell
% format.
% th - Threshold to discriminate between noise and phasic event component
% according to the Embedding Transform and HOM.
% Estimate threshold between components
th = Threshold_HOM(beta_all);
% Separate phasic event component only
n_tr = size(X_M_snippet_tr,1);
X_PhEv = zeros(0,0);
for i = 1:n_tr
beta_aux = beta_tr{i,1};
idx = find(beta_aux >= th);
X_PhEv = [X_PhEv X_M_snippet_tr{i,1}(:,idx)];
end
end
%%
function th = Threshold_HOM(beta_all)
% INPUTS:
% beta_all - Amplitude/Norm of all possible M-dimensional snippets for all
% trials, i.e. Embedding Transform
% OUTPUTS:
% th - Threshold to discriminate between noise and phasic event component
% according to the Embedding Transform and HOM
prc_v = 5:95;
beta_pre = abs(beta_all);
skew_v = zeros(1,length(prc_v));
for i = 1:length(prc_v)
idx = find(beta_pre < prctile(beta_pre,prc_v(i)));
skew_v(i) = skewness(beta_pre(idx));
end
[~, idx_min] = min(abs(skew_v)); % Skewness value closest to zero
th = prctile(beta_pre,prc_v(idx_min));
end