-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathnew_data_to_atlas_space.py
185 lines (157 loc) · 4.46 KB
/
new_data_to_atlas_space.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python3
import os
import os.path
from nipype.interfaces.utility import IdentityInterface, Function
from nipype.interfaces.io import SelectFiles, DataSink, DataGrabber
from nipype.pipeline.engine import Workflow, Node, MapNode
from nipype.interfaces.minc import Resample, BigAverage, VolSymm
import argparse
def create_workflow(
xfm_dir,
xfm_pattern,
atlas_dir,
atlas_pattern,
source_dir,
source_pattern,
work_dir,
out_dir,
name="new_data_to_atlas_space"
):
wf = Workflow(name=name)
wf.base_dir = os.path.join(work_dir)
datasource_source = Node(
interface=DataGrabber(
sort_filelist=True
),
name='datasource_source'
)
datasource_source.inputs.base_directory = os.path.abspath(source_dir)
datasource_source.inputs.template = source_pattern
datasource_xfm = Node(
interface=DataGrabber(
sort_filelist=True
),
name='datasource_xfm'
)
datasource_xfm.inputs.base_directory = os.path.abspath(xfm_dir)
datasource_xfm.inputs.template = xfm_pattern
datasource_atlas = Node(
interface=DataGrabber(
sort_filelist=True
),
name='datasource_atlas'
)
datasource_atlas.inputs.base_directory = os.path.abspath(atlas_dir)
datasource_atlas.inputs.template = atlas_pattern
resample = MapNode(
interface=Resample(
sinc_interpolation=True
),
name='resample_',
iterfield=['input_file', 'transformation']
)
wf.connect(datasource_source, 'outfiles', resample, 'input_file')
wf.connect(datasource_xfm, 'outfiles', resample, 'transformation')
wf.connect(datasource_atlas, 'outfiles', resample, 'like')
bigaverage = Node(
interface=BigAverage(
output_float=True,
robust=False
),
name='bigaverage',
iterfield=['input_file']
)
wf.connect(resample, 'output_file', bigaverage, 'input_files')
datasink = Node(
interface=DataSink(
base_directory=out_dir,
container=out_dir
),
name='datasink'
)
wf.connect([(bigaverage, datasink, [('output_file', 'average')])])
wf.connect([(resample, datasink, [('output_file', 'atlas_space')])])
wf.connect([(datasource_xfm, datasink, [('outfiles', 'transforms')])])
return wf
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--name",
type=str,
required=True
)
parser.add_argument(
"--xfm_dir",
type=str,
required=True
)
parser.add_argument(
"--xfm_pattern",
type=str,
required=True
)
parser.add_argument(
"--source_dir",
type=str,
required=True
)
parser.add_argument(
"--source_pattern",
type=str,
required=True
)
parser.add_argument(
"--atlas_dir",
type=str,
required=True
)
parser.add_argument(
"--atlas_pattern",
type=str,
required=True
)
parser.add_argument(
"--work_dir",
type=str,
required=True
)
parser.add_argument(
"--out_dir",
type=str,
required=True
)
parser.add_argument(
'--debug',
dest='debug',
action='store_true',
help='debug mode'
)
args = parser.parse_args()
if args.debug:
from nipype import config
config.enable_debug_mode()
config.set('execution', 'stop_on_first_crash', 'true')
config.set('execution', 'remove_unnecessary_outputs', 'false')
config.set('execution', 'keep_inputs', 'true')
config.set('logging', 'workflow_level', 'DEBUG')
config.set('logging', 'interface_level', 'DEBUG')
config.set('logging', 'utils_level', 'DEBUG')
wf = create_workflow(
xfm_dir=os.path.abspath(args.xfm_dir),
xfm_pattern=args.xfm_pattern,
atlas_dir=os.path.abspath(args.atlas_dir),
atlas_pattern=args.atlas_pattern,
source_dir=os.path.abspath(args.source_dir),
source_pattern=args.source_pattern,
work_dir=os.path.abspath(args.work_dir),
out_dir=os.path.abspath(args.out_dir),
name=args.name
)
wf.run(
plugin='MultiProc',
plugin_args={
'n_procs': int(
os.environ["NCPUS"] if "NCPUS" in os.environ else os.cpu_count
)
}
)