diff --git a/src/multiego/ensemble.py b/src/multiego/ensemble.py index fad42808..03307794 100644 --- a/src/multiego/ensemble.py +++ b/src/multiego/ensemble.py @@ -862,11 +862,13 @@ def generate_OO_LJ(meGO_ensemble): HH_LJ["mg_sigma"] = HH_LJ["c12"] ** (1 / 12) HH_LJ["mg_epsilon"] = -HH_LJ["c12"] HO_LJ = pd.DataFrame(full_matrix, columns=["ai", "aj"]) - HO_LJ["c12"] = 1.153070e-08 * type_definitions.mg_eps - HO_LJ["c6"] = 2.147622e-04 * type_definitions.mg_eps + # HO_LJ["c12"] = 1.153070e-08 * type_definitions.mg_eps + # HO_LJ["c6"] = 2.147622e-04 * type_definitions.mg_eps + HO_LJ["c12"] = 2.249554e-09 * type_definitions.mg_eps + HO_LJ["c6"] = 9.485893e-05 * type_definitions.mg_eps HO_LJ["epsilon"] = type_definitions.mg_eps - HO_LJ["sigma"] = (HO_LJ["c12"] / HO_LJ["c6"])**(1/6) - HO_LJ["mg_sigma"] = (HO_LJ["c12"] / HO_LJ["c6"])**(1/6) + HO_LJ["sigma"] = (HO_LJ["c12"] / HO_LJ["c6"]) ** (1 / 6) + HO_LJ["mg_sigma"] = (HO_LJ["c12"] / HO_LJ["c6"]) ** (1 / 6) HO_LJ["mg_epsilon"] = type_definitions.mg_eps rc_LJ = pd.concat([OO_LJ, HO_LJ, HH_LJ], axis=0) rc_LJ["type"] = 1