-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathres18_senet.py
141 lines (123 loc) · 5.98 KB
/
res18_senet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import torch
from torch import nn
from layers_senet import *
config = {}
config['anchors'] = [5.0, 15.0, 35.]
config['chanel'] = 1
config['crop_size'] = [128, 128, 128]
config['stride'] = 4
config['max_stride'] = 16
config['num_neg'] = 800
config['th_neg'] = 0.02
config['th_pos_train'] = 0.5
config['th_pos_val'] = 1
config['num_hard'] = 2
config['bound_size'] = 12
config['reso'] = 1
config['sizelim'] = 3. # mm 筛选大于3mm的
config['sizelim2'] = 10
config['sizelim3'] = 20
config['aug_scale'] = True
config['r_rand_crop'] = 0.3
config['pad_value'] = 170
config['augtype'] = {'flip': True, 'swap': False, 'scale': True, 'rotate': False}
# config['blacklist'] = ['868b024d9fa388b7ddab12ec1c06af38', '990fbe3f0a1b53878669967b9afd1441',
# 'adc3bbc63d40f8761c59be10f1e504c3']
config['blacklist'] = ['868b024d9fa388b7ddab12ec1c06af38','d92998a73d4654a442e6d6ba15bbb827','990fbe3f0a1b53878669967b9afd1441','820245d8b211808bd18e78ff5be16fdb','adc3bbc63d40f8761c59be10f1e504c3',
'417','077','188','876','057','087','130','468']
class Net(nn.Module):
# __init__()中只是对神经网络的模块进行了声明,真正的搭建是在forwad() 中实现
def __init__(self):
super(Net, self).__init__() # 继承 __init__ 功能
# The first few layers consumes the most memory, so use simple convolution to save memory.
# Call these layers preBlock, i.e., before the residual blocks of later layers.
self.preBlock = nn.Sequential(
nn.Conv3d(1, 24, kernel_size=3, padding=1),
nn.BatchNorm3d(24),
nn.ReLU(inplace=True),
nn.Conv3d(24, 24, kernel_size=3, padding=1),
nn.BatchNorm3d(24),
nn.ReLU(inplace=True))
self.maxpool1 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=False)
# 3 poolings, each pooling downsamples the feature map by a factor 2.
# 3 groups of blocks. The first block of each group has one pooling.
num_blocks_forw = [2, 2, 3, 3]
num_blocks_back = [3, 3]
self.featureNum_forw = [24, 32, 64, 64, 64]
self.featureNum_back = [128, 64, 64]
for i in range(len(num_blocks_forw)):
blocks = []
for j in range(num_blocks_forw[i]):
if j == 0:
blocks.append(PostRes(self.featureNum_forw[i], self.featureNum_forw[i + 1]))
else:
blocks.append(PostRes(self.featureNum_forw[i + 1], self.featureNum_forw[i + 1]))
setattr(self, 'forw' + str(i + 1), nn.Sequential(*blocks))
self.path1 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2),
nn.BatchNorm3d(64),
nn.ReLU(inplace=True))
for i in range(len(num_blocks_back)):
blocks = []
for j in range(num_blocks_back[i]):
if j == 0:
if i == 0:
addition = 3
else:
addition = 0
blocks.append(PostRes(self.featureNum_back[i + 1] + self.featureNum_forw[i + 2] + addition,
self.featureNum_back[i]))
else:
blocks.append(PostRes(self.featureNum_back[i], self.featureNum_back[i]))
setattr(self, 'back' + str(i + 2), nn.Sequential(*blocks))
self.maxpool2 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True)
self.maxpool3 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True)
self.maxpool4 = nn.MaxPool3d(kernel_size=2, stride=2, return_indices=True)
self.unmaxpool1 = nn.MaxUnpool3d(kernel_size=2, stride=2)
self.unmaxpool2 = nn.MaxUnpool3d(kernel_size=2, stride=2)
self.path2 = nn.Sequential(
nn.ConvTranspose3d(64, 64, kernel_size=2, stride=2),
nn.BatchNorm3d(64),
nn.ReLU(inplace=True))
self.drop = nn.Dropout3d(p=0.5, inplace=False)
self.output = nn.Sequential(nn.Conv3d(self.featureNum_back[0], 64, kernel_size=1),
nn.ReLU(),
# nn.Dropout3d(p = 0.3),
nn.Conv3d(64, 5 * len(config['anchors']), kernel_size=1))
def forward(self, x, coord):
out = self.preBlock(x) # 16 ? 24
out_pool = self.maxpool1(out)
out1 = self.forw1(out_pool) # 32
out1_pool, indices1 = self.maxpool2(out1)
out2 = self.forw2(out1_pool) # 64
# out2 = self.drop(out2)
out2_pool, indices2 = self.maxpool3(out2)
out3 = self.forw3(out2_pool) # 64
out3_pool, indices3 = self.maxpool4(out3)
out4 = self.forw4(out3_pool) # 64
# out4 = self.drop(out4)
rev3 = self.path1(out4)
comb3 = self.back3(torch.cat((rev3, out3), 1)) # 64+64
# comb3 = self.drop(comb3)
rev2 = self.path2(comb3)
comb2 = self.back2(torch.cat((rev2, out2, coord), 1)) # 64+64 net_detect feat=
comb2 = self.drop(comb2)
out = self.output(comb2)
size = out.size()
out = out.view(out.size(0), out.size(1), -1)
# out = out.transpose(1, 4).transpose(1, 2).transpose(2, 3).contiguous()
out = out.transpose(1, 2).contiguous().view(size[0], size[2], size[3], size[4], len(config['anchors']), 5)
# out = out.view(-1, 5)
return out
def get_model():
net = Net()
loss = Loss(config['num_hard'])
get_pbb = GetPBB(config)
return config, net, loss, get_pbb
def load_model(pretrained=False):
model = Net()
if pretrained:
# checkpoint = torch.load('E:/PycharmProjects/grt - SENET/training/detector/results/res18_senet-20181113-183106/100.ckpt')
checkpoint = torch.load('D:/1TJU/AAcode/practice2/CADNet/training/detector/100.ckpt')
model.load_state_dict(checkpoint['state_dict'])
return model