forked from sccn/roiconnect
-
Notifications
You must be signed in to change notification settings - Fork 0
/
roi_connect_compare.m
206 lines (188 loc) · 8 KB
/
roi_connect_compare.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
% roi_connect_compare - Compare ROI in collection of datasets.
%
% Usage:
% roi_connect_compare(ALLEEG, datCond, 'key', 'val', ...);
%
% Inputs:
% ALLEEG - EEGLAB datasets
% datCond - [cell] list of datasets to compare { [1:10] [11:20 } to
% compare datasets 1-10 with 11:20
%
% Optional inputs:
%
% Output:
%
% Author: Arnaud Delorme
% Copyright (C) Arnaud Delorme, [email protected]
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
%
% 1. Redistributions of source code must retain the above copyright notice,
% this list of conditions and the following disclaimer.
%
% 2. Redistributions in binary form must reproduce the above copyright notice,
% this list of conditions and the following disclaimer in the documentation
% and/or other materials provided with the distribution.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
% AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
% IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
% ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
% LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
% CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
% SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
% INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
% CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
% ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
% THE POSSIBILITY OF SUCH DAMAGE.
function [EEG] = roi_connect_compare(EEG, datCond, varargin)
if nargin < 2
help roi_activity;
return
end
% decode input parameters
% -----------------------
[g,addopts] = finputcheck(varargin, { 'measure' 'string' {} 'MIM';
'freqrange' {'real' 'cell' } [] [];
'quantile' 'real' { } [];
'plotsubjmat' 'string' { 'on' 'off' } 'off'; ...
'threshold' 'real' { } 1.1;
'outputdir' 'string' { } '.';
'network' 'string' { 'on' 'off' } 'off'; ...
'addrois' 'string' { 'on' 'off' } 'off'; ...
'pmask' 'string' { 'on' 'off' } 'off' }, 'pop_roi_connectplot', 'ignore');
if ischar(g), error(g); end
if isempty(g.freqrange)
error('You must define freqrange');
end
if ~iscell(g.freqrange)
g.freqrange = { g.freqrange };
end
% select data
% -----------
dataCell = cell(1, length(datCond));
freqs = EEG(1).roi.freqs;
for iFreq = 1:length(g.freqrange)
for iCond = 1:length(datCond)
for iSet = 1:length(datCond{iCond}) % can only index datasets
setNum = datCond{iCond}(iSet);
dataCell{iFreq, iCond}(:,:,iSet) = selectconnect(EEG(setNum).roi.(g.measure), freqs, g.freqrange{iFreq}, g.quantile);
end
end
end
% compute stats
% -------------
freqTextSig = cell(1, length(g.freqrange));
freqTextSig(:) = { '' };
if strcmpi(g.pmask, 'on')
freqTextSig = {};
for iFreq = 1:length(g.freqrange)
pcond = std_stat(dataCell(iFreq,:)', 'condstats', 'on', 'method', 'permutation', 'naccu', 50, 'mcorrect', 'fdr');
%pcond = std_stat(dataCell', 'condstats', 'on', 'method', 'permutation', 'naccu', 200); %, 'mcorrect', 'fdr'); pcond{1} = pcond{1} < 0.5;
pcond = pcond{1};
for iDiag = 1:size(pcond,1), pcond(iDiag, iDiag) = 1; end
if all(pcond(:) == 1)
fprintf('Frequency %1.1f to %1.1f -> Nothing significant\n', g.freqrange{iFreq}(1), g.freqrange{iFreq}(2));
freqTextSig{iFreq} = 'ns';
else
fprintf(2, 'Frequency %1.1f to %1.1f -> Something significant\n', g.freqrange{iFreq}(1), g.freqrange{iFreq}(2));
freqTextSig{iFreq} = 'significant';
for iCond = 1:length(datCond(:))
dataCell{iFreq, iCond} = bsxfun(@times,dataCell{iFreq, iCond}, pcond<1 );
end
end
end
end
% plot matrices
% -------------
if strcmpi(g.plotsubjmat, 'on')
for iFreq = 1:length(g.freqrange)
figure('position', [275 1075 1725 262]);
numDat = size(dataCell{1},3);
numRows = length(dataCell(:));
cl = [0.03 0.1];
%cl = [0.0 1];
for iCond = 1:numRows
for iDat = 1:numDat
subplot(numRows, numDat, iDat+numDat*(iCond-1));
imagesc(dataCell{iCond}(:,:,iDat));
clim(cl);
axis off;
end
end
textsc('title', sprintf('Connectivity %g-%g Hz %s', g.freqrange{iFreq}(1), g.freqrange{iFreq}(2)), freqTextSig{iFreq});
end
end
% plot surfaces
% -------------
if isfield(EEG(1).roi.cortex, 'Faces')
for iFreq = 1:length(g.freqrange)
mn = inf;
mx = -inf;
for iCond = 1:length(datCond)
tmpData = mean(dataCell{iFreq, iCond},3);
mn = min(mn, min(tmpData(:)));
mx = max(mx, max(tmpData(:)));
end
load -mat cm17;
for iCond = 1:length(datCond)
tmpData = mean(dataCell{iFreq, iCond},3);
figure; allplots_cortex_BS(EEG(1).roi.cortex, tmpData, [mn mx*0.5], cm17a, '', 0.35);
textsc('title', sprintf('Connectivity %g-%g Hz condition %d', freqrange{iFreq}(1), freqrange{iFreq}(2)), iCond);
end
end
end
% define connectivity regions
% ---------------------------
if strcmpi(g.network, 'on')
tab1 = readtable('NGNetworkROIs_v4.txt','delimiter', char(9));
for iCond = 1:length(dataCell(:))
if strcmpi(g.addrois, 'on')
tab2 = readtable('NGNetworkROIs_area_definition_v2.txt','delimiter', char(9));
[EEG(1),net,dataCell{iCond}] = roi_definenetwork(EEG(1), tab1, 'addrois', tab2, 'connectmat', dataCell{iCond}, 'ignoremissing', 'on'); % adding missing ROIs
else
[EEG(1),net,dataCell{iCond}] = roi_definenetwork(EEG(1), tab1, 'connectmat', dataCell{iCond}, 'ignoremissing', 'on'); % adding missing ROIs
end
end
if size(dataCell,2) > 1
for iNetwork = 1:length(net)
netTmp = net([iNetwork iNetwork iNetwork]);
netTmp(1).name = [ netTmp(1).name 'Condition 1' ];
netTmp(2).name = [ netTmp(2).name 'Condition 2' ];
netTmp(2).name = [ netTmp(2).name 'Difference' ];
for iFreq = 1:length(g.freqrange)
tit = sprintf('MIM %g_%g Hz', g.freqrange{iFreq}(1), g.freqrange{iFreq}(2));
medthresh = nanmedian(dataCell{iFreq,1}(:))*g.threshold;
roi_networkplot(EEG(1), netTmp, [ dataCell(iFreq,:) {dataCell{iFreq,2}-dataCell{iFreq,1}}], 'threshold', medthresh, 'subplots', 'on', 'title', tit, 'columns', 3, addopts{:}); %, 'limits'); %, [0.05 0.08]);
tit(tit == ' ') = '_';
print('-djpeg', [g.outputdir filesep 'Connectivity_maps_MIM_' net(iNetwork).name '_' tit '.jpg']);
close;
end
end
else
for iFreq = 1:length(g.freqrange)
tit = sprintf('MIM %g_%g Hz', g.freqrange{iFreq}(1), g.freqrange{iFreq}(2));
roi_networkplot(EEG(1), net, dataCell{iFreq}, 'threshold', 0, 'subplots', 'on', 'title', tit, 'limits', [0.1 0.2]);
tit(tit == ' ') = '_';
print('-djpeg', [g.outputdir filesep 'Connectivity_maps_' tit '_fixed.jpg']);
close;
end
end
end
% select connection based on frequencies and freq range
% -----------------------------------------------------
function MIMtmp = selectconnect(CON, freqs, range, quant)
[~,fBeg] = min(abs(freqs-range(1)));
[~,fEnd] = min(abs(freqs-range(2)));
MIMtmp = mean(CON(fBeg:fEnd,:,:),1);
if ~isempty(quant)
TMPCON = MIMtmp(:);
TMPCON(TMPCON == 0) = [];
if quant < 0.5
quant = 1-quant;
end
mn = quantile(TMPCON, quant);
mx = quantile(TMPCON, 1-quant);
MIMtmp = (MIMtmp-mn)/(mx-mn);
end