-
Notifications
You must be signed in to change notification settings - Fork 16
/
inflate.lisp
767 lines (610 loc) · 22.9 KB
/
inflate.lisp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
;; inflate.cl
;;
;; copyright (c) 1986-2000 Franz Inc, Berkeley, CA
;;
;; This code is free software; you can redistribute it and/or
;; modify it under the terms of the version 2.1 of
;; the GNU Lesser General Public License as published by
;; the Free Software Foundation, as clarified by the AllegroServe
;; prequel found in license-allegroserve.txt.
;;
;; This code is distributed in the hope that it will be useful,
;; but without any warranty; without even the implied warranty of
;; merchantability or fitness for a particular purpose. See the GNU
;; Lesser General Public License for more details.
;;
;; Version 2.1 of the GNU Lesser General Public License is in the file
;; license-lgpl.txt that was distributed with this file.
;; If it is not present, you can access it from
;; http://www.gnu.org/copyleft/lesser.txt (until superseded by a newer
;; version) or write to the Free Software Foundation, Inc., 59 Temple Place,
;; Suite 330, Boston, MA 02111-1307 USA
;;
;;
;; $Id: inflate.lisp,v 1.1.1.1 2005/04/03 19:36:28 dlichteblau Exp $
;; Description:
;; inflate a stream of bytes which was compressed with the Deflate
;; algorithm
;;
;; john foderaro, August 2001
;;
;;- This code in this file obeys the Lisp Coding Standard found in
;;- http://www.franz.com/~jkf/coding_standards.html
;;-
#|
Programming interface:
(inflate input-stream output-stream)
- the compressed information from the input-stream is read and
the uncompressed information is written to the output-stream
- both streams must support (unsigned-byte 8) element reading and writing
(skip-gzip-header input-stream)
- if the input stream is positioned on the header of a gzip'ed file
then skip that header.
- if the input stream is not positioned on a gzip header then nothing
is done.
|#
#|
The Deflate Compression Algorithm
reference: http://www.gzip.org/zlib/rfc-deflate.html
Basic idea:
Deflation is a means of compressing an octet sequence that
combines the LZ77 algorithm for marking common substrings and
Huffman coding to take advantage of different frequency of occurance
for each possible values in the file.
This algorithm may not be as easy to understand or as efficient
as the LZW compression algorithm but Deflate does have the big
advantage in that it is not patented. Thus Deflate is a very
widely used. Nowdays it's the most common compression method
used in Windows Zip programs (e.g. Winzip) and in the Unix gzip program.
Java jar files, being just zip files, also use this compression method.
Lempel-Ziv 1977 (LZ77):
An octet sequence often contains repeated subsequences. The LZ algorithm
compresses a file by replacing repeated substrings with (Length,Distance)
markers which mean during decompression: Go back Distance octets
in output stream and copy Length bytes to the output stream.
Huffman Coding:
A Huffman code for a set of values V assigns a unique bitsequence
to each value in V. A bitsequence is a sequence of 0's and 1'.
An important property of Huffman codes is that if X is a bitsequence
for a value in V then no other value in V has a bitsequence
with X as a prefix of that sequence. This means that if you see
the bitsequence X in the stream you know that this denotes the value
v and you don't have to read any more bits.
Blocks:
A deflated file is a sequence of blocks. There are three types of
blocks:
1. uncompressed - The block simply contains the same sequence of
octets as were found in the input stream. This type of block
is useful when the input stream has already been compressed (e.g.
it's a jpg or gif file) as compressing a compressed file often
results in the file getting larger.
2. compressed with fixed Huffman code - The block contains a
huffman-coded LZ77 compressed bitsequence. The huffman code
used is specified by the deflate algorithm. This type of block
is useful when the octet sequence is short since in that case
the overhead of creating a custom huffman code is more than is gained
by that custom code.
3. compressed with a custom Huffman code - The block contains
a description of a Huffman code to be used in this block only
and then a Huffman-code LZ77 compressed bitsequence. The values
that describe the custome huffman tree are themselves huffman coded.
|#
(in-package :zip)
(defun inflate (p op)
;; user callable
;; inflate the stream p into the stream op
;; both streams should be unsigned-byte 8
;;
(let ((br (new-bit-reader p))
(buffer (make-array (* 32 1024) :element-type '(unsigned-byte 8)))
(end 0))
(loop
(if* (null (setq end (process-deflate-block br op buffer end)))
then ; last block, we're all done
(return)))))
;;; ------------ gzip support
;
; gzip preceeds files with a header and the only support we need
; give to handle gzip files is the ability to skip the header
; and get to the meat of the file
; gzip constants
; compression strategies (only one supported)
(defconstant z_deflated 8)
; flag bits
(defconstant gz_ascii_flags #x01) ; file probably ascii
(defconstant gz_head_crc #x02) ; header crc present
(defconstant gz_extra_field #x04) ; extra field present
(defconstant gz_orig_name #x08) ; original file name present
(defconstant gz_comment #x10) ; file comment present
(defconstant gz_reserved #xe0) ; no bits allowed on here
(defun skip-gzip-header (p)
;; If the next thing in the stream p is gzip header then skip
;; past it and return t.
;; If it's not a gzip header than return nil
;; If it's starts to look like a gzip header but turns out to
;; not be valid signal an error. Note that the first byte of
;; a gzip header is an illegal byte to begin a deflated stream so
;; that if the first byte matches a gzip header but the rest do not
;; then the stream was positioned at neither a gzip header nor a
;; deflated stream
;
;; see check_header in gzio.c in rpm zlib-1.1.3 (or variant)
;; for details on what's in the header.
(let (method flags)
; look for magic number
(if* (not (eql #x1f (read-byte p)))
then ; not a gzip header, may be a deflate block
(unread-char (code-char #x1f) p)
(return-from skip-gzip-header nil))
; now check the second magic number
(if* (not (eql #x8b (read-byte p)))
then (error "non gzip magic number"))
(setq method (read-byte p)
flags (read-byte p))
(if* (or (not (eql method z_deflated))
(not (zerop (logand flags gz_reserved))))
then (error "bad method/flags in header"))
; discard time, xflags and os code */
(dotimes (i 6) (read-byte p))
; discard extra field if present
(if* (logtest flags gz_extra_field)
then (let ((length (+ (read-byte p)
(ash (read-byte p) 8))))
(dotimes (i length) (read-byte p))))
(if* (logtest flags gz_orig_name)
then ; discard name of file, null terminated
(do ((val (read-byte p) (read-byte p)))
((zerop val))))
(if* (logtest flags gz_comment)
then ; discard comment, null terminated
(do ((val (read-byte p) (read-byte p)))
((zerop val))))
(if* (logtest flags gz_head_crc)
then ; discard header crc
(dotimes (i 2) (read-byte p)))
; success!
t
))
;;;----------- end gzip support
;;;----------- support for reading bitfields from a stream
(defstruct bit-reader
stream
last-byte ; last byte read, possibly two combined bytes too
bits ; bits left of last byte to use
)
(defparameter *maskarray*
;; for a bit length, mask off junk bits
(make-array 17
:initial-contents
'(#x0
#x1 #x3 #x7 #xf
#x1f #x3f #x7f #xff
#x1ff #x3ff #x7ff #xfff
#x1fff #x3fff #x7fff #xffff)))
;; bit reader
(defun new-bit-reader (stream)
; create and initialize bit reader
(make-bit-reader :stream stream :last-byte 0 :bits 0))
(defun reset-bit-reader (br)
; clear out unused bit of the current byte
(setf (bit-reader-bits br) 0))
(defun read-bits (br count)
;; return a value from the current bit reader.
;; the count can be from 1 to 16
;;
(if* (eql count 0)
then (return-from read-bits 0))
(let ((last-byte (bit-reader-last-byte br))
(bits (bit-reader-bits br)))
(loop
(if* (>= bits count)
then ;we have enough now
(if* (> bits count)
then ; we have some left over
(setf (bit-reader-last-byte br)
(ash last-byte (- count)))
(setf (bit-reader-bits br) (- bits count))
(return (logand last-byte (svref *maskarray* count)))
else ; no bits left
(setf (bit-reader-bits br) 0)
(setf (bit-reader-last-byte br) 0)
(return last-byte)
)
else ; need a new byte
(let ((new-byte (read-byte (bit-reader-stream br))))
(setq last-byte (+ last-byte
(ash new-byte bits)))
(incf bits 8))))))
;;;----------- end bitfield reading
;;;----------- build constant tables needed by the algorithm
;; The tables needed to decode length and distance values
;; A compressed file contains a sequence of literal character values
;; or (length,distance) pairs. The length is computed by taking
;; the length-value in the file and using these tables to bind
;; a base length value and the number of extra bits to read from the file
;; and then to add to the length value.
;; The same is done for distance.
(defvar *base-length*) ; array mapping code to length value
(defvar *length-extra-bits*) ; array saying how many more bitsworth to read
(defvar *base-distance*)
(defvar *distance-extra-bits*)
; build those arrays at load time:
(progn
(setq *base-length* (make-array (1+ (- 285 257)))
*length-extra-bits* (make-array (1+ (- 285 257))))
(let ((len 3)
(ind 0))
(dolist (ent '((8 0) ; count and number of extra bits
(4 1) (4 2) (4 3) (4 4) (4 5) (1 0)))
(dotimes (i (car ent))
(setf (svref *base-length* ind) len)
(setf (svref *length-extra-bits* ind) (cadr ent))
(incf ind 1)
(incf len (ash 1 (cadr ent)))
)
; special case, code 285 is length 258.
(setf (svref *base-length* (- 285 257)) 258)
))
(setq *base-distance* (make-array (1+ (- 29 0)))
*distance-extra-bits* (make-array (1+ (- 29 0))))
(let ((dist 1)
(ind 0))
(dolist (ent '((4 0) ; count and number of extra bits
(2 1) (2 2) (2 3) (2 4) (2 5) (2 6) (2 7) (2 8)
(2 9) (2 10) (2 11) (2 12) (2 13)))
(dotimes (i (car ent))
(setf (svref *base-distance* ind) dist)
(setf (svref *distance-extra-bits* ind) (cadr ent))
(incf ind 1)
(incf dist (ash 1 (cadr ent)))))))
;;;----------- end table building
;;;----------- Huffman tree support
(defstruct (bitinfo (:type list))
;; when we describe a range of values and the code width we
;; use a list of three elements. this structure describes it
minval
maxval
bitwidth)
;test case
; (generate-huffman-tree '((0 4 3) (5 5 2) (6 7 4)))
; will generate sample table from the Deutsch paper
;
(defun generate-huffman-tree (bitinfo)
;; bitinfo is a list of bitinfo items (minval maxval bitwidth)
;; which means that values from minval through maxval are
;; to be represented by codes of width bitwidth.
;;
;; we return two valuse: the huffman tree and the mininum bit width
;;
(let ((maxval 0)
(minval most-positive-fixnum)
(maxbitwidth 0)
(minbitwidth most-positive-fixnum)
bitwidthcounts
valuecode
valuewidth
nextcode
)
; find out the range of values (well the max) and the max bit width
(dolist (bi bitinfo)
(setq maxval (max maxval (bitinfo-maxval bi)))
(setq minval (min minval (bitinfo-minval bi)))
(setq maxbitwidth (max maxbitwidth (bitinfo-bitwidth bi)))
(setq minbitwidth (min minbitwidth (bitinfo-bitwidth bi)))
)
; per bitwidth arrays
(setq bitwidthcounts (make-array (1+ maxbitwidth)
:initial-element 0))
(setq nextcode (make-array (1+ maxbitwidth)
:initial-element 0))
; per value arrays
(setq valuecode (make-array (1+ (- maxval minval)))) ; huffman code chose
(setq valuewidth (make-array (1+ (- maxval minval))
:initial-element 0)) ; bit width
(dolist (bi bitinfo)
; set valuewidth array from the given data
(do ((v (bitinfo-minval bi) (1+ v)))
((> v (bitinfo-maxval bi)))
(setf (svref valuewidth (- v minval)) (bitinfo-bitwidth bi)))
; keep track of how many huffman codes will have a certain bit width
(incf (svref bitwidthcounts (bitinfo-bitwidth bi))
(1+ (- (bitinfo-maxval bi) (bitinfo-minval bi))))
)
; compute the starting code for each bit width
(let ((code 0))
(dotimes (widthm1 maxbitwidth)
(setq code
(ash (+ code (svref bitwidthcounts widthm1)) 1))
(setf (svref nextcode (1+ widthm1)) code)))
; compute the huffman code for each value
(do ((v minval (1+ v)))
((> v maxval))
(let ((width (svref valuewidth (- v minval))))
(if* (not (zerop width))
then ; must assign a code
(setf (svref valuecode (- v minval))
(svref nextcode width))
(incf (svref nextcode width)))))
;; now we know the code for each value in the valuecode array
;;
;; now compute the tree
(values (build-huffman-tree
minval
(mapcar #'(lambda (bi) (cons (car bi) (cadr bi))) bitinfo)
valuecode valuewidth 1)
; second value useful for decoding:
minbitwidth)))
(defun build-huffman-tree (minval minmaxes valuecode valuewidth pos)
;; compute a huffman cons tree
;; minmaxes is a list of conses. each cons
;; representing a (min . max) range of values.
;;
(multiple-value-bind (zero one) (split-on-position minval minmaxes
valuecode
valuewidth
pos)
(cons (if* (consp zero)
then (build-huffman-tree minval
zero valuecode valuewidth (1+ pos))
else zero)
(if* (consp one)
then (build-huffman-tree minval one valuecode valuewidth (1+ pos))
else one))))
(defun split-on-position (minval minmaxes valuecode valuewidth pos)
;; compute those values that have a zero in the pos (1 based) position
;; of their code and those that have one in that position.
;; return two values, the zero set and the one set.
;; The position is from the msbit of the huffman code.
;;
;; If the value of the specified pos selects a specific value
;; and no further bits need be read to identify that value then
;; we return that value rather than a list of conses.
(let (zero one)
(dolist (mm minmaxes)
(do ((v (car mm) (1+ v)))
((> v (cdr mm)))
(let ((width (svref valuewidth (- v minval)))
(code (svref valuecode (- v minval))))
(if* (logbitp (- width pos) code)
then ; one bit set
(if* (eql width pos)
then ; last bit
(setq one v)
else ; more bits to check
(let ((firstone (car one)))
(if* (and firstone
(eq (cdr firstone) (1- v)))
then ; increase renge
(setf (cdr firstone) v)
else (push (cons v v) one))))
else ; zero bit set
(if* (eql width pos)
then ; last bit
(setq zero v)
else ; more bits to check
(let ((firstzero (car zero)))
(if* (and firstzero
(eq (cdr firstzero) (1- v)))
then ; increase renge
(setf (cdr firstzero) v)
else (push (cons v v) zero))))))))
(values
(if* (consp zero) then (nreverse zero) else zero) ; order numerically
(if* (consp one) then (nreverse one) else one))))
(defun generate-huffman-tree-from-vector (vector start end)
;; generate huffman tree from items in the vector from start to end-1
;; assume start corresponds to value 0 in the tree
(do ((i start (1+ i))
(val 0 (1+ val))
(res))
((>= i end)
(generate-huffman-tree (nreverse res)))
(let ((len (svref vector i)))
(if* (> len 0)
then (push (list val val len) res)))))
;; the huffman tree to use for type 1 blocks
;;
(defparameter *fixed-huffman-tree*
(generate-huffman-tree '((0 143 8) (144 255 9) (256 279 7) (280 287 8))))
;; distance are represented by a trivial huffman code
(defparameter *fixed-huffman-distance-tree*
(generate-huffman-tree '((0 31 5))))
;;;----------- end Huffman support
(defun process-deflate-block (br op buffer end)
;; br is a bit stream, op is the output stream
;; process the next block in the stream
;; return false if this is the last block of data else
;; return the next index into the buffer
(let ((bfinal (read-bits br 1))
(btype (read-bits br 2)))
(setq end
(case btype
(0 (process-non-compressed-block br op buffer end))
(1 (process-fixed-huffman-block br op buffer end))
(2 (process-dynamic-huffman-block br op buffer end))
(3 (error "illegal deflate block value"))))
(if* (eql bfinal 1)
then (flush-buffer op buffer end)
nil
else end)
))
(defun process-non-compressed-block (br op buffer end)
;; process a block of uncompressed data
(reset-bit-reader br)
(let ((p (bit-reader-stream br)))
(let ((len (read-uword p))
(onecomplen (read-uword p)))
(if* (not (eql len (logxor #xffff onecomplen)))
then (error "bad length value in non compressed block"))
(dotimes (i len)
(setq end (put-byte-in-buffer op (read-byte p) buffer end))))
end))
(defun read-uword (stream)
;; read a little endian value
(+ (read-byte stream) (ash (read-byte stream) 8)))
(defun put-byte-in-buffer (op byte buffer end)
;; store the next output byte in the buffer
(if* (>= end (length buffer))
then (flush-buffer op buffer end)
(setq end 0))
(setf (aref buffer end) byte)
(1+ end))
(defun flush-buffer (op buffer end)
;; send bytes to the output stream. If op isn't a stream
;; then it must be a function to funcall to take the bytes.
(if* (> end 0)
then (if* (streamp op)
then (write-sequence buffer op :end end)
else (funcall op buffer end))))
(defun process-fixed-huffman-block (br op buffer end)
;; process a huffman block with the standard huffman tree
;;
(process-huffman-block br op *fixed-huffman-tree* 7 *fixed-huffman-distance-tree* 5
buffer end))
(defun process-huffman-block (br op
lengthlit-tree minwidth
distance-tree mindistwidth
buffer end)
;; the common code for blocks of type 1 and 2 that does
;; the decompression given a length/literal huffman tree
;; and a distance huffman tree.
;; If the distance tree is nil then we use the trivial huffman
;; code from the algorithm.
;;
(let* ((bufflen (length buffer))
length
distance
)
(loop
(let ((value (decode-huffman-tree br lengthlit-tree minwidth)))
(if* (< value 256)
then ; output and add to buffer
(setq end (put-byte-in-buffer op value buffer end))
elseif (eql value 256)
then (return) ; end of block
else ; we have a length byte
; compute length, distance
(let ((adj-code (- value 257)))
(setq length (+ (svref *base-length* adj-code)
(read-bits br (svref *length-extra-bits*
adj-code)))))
(let ((dist-code (if* distance-tree
then (decode-huffman-tree br
distance-tree
mindistwidth)
else (read-bits br 5))))
(setq distance
(+ (svref *base-distance* dist-code)
(read-bits br (svref *distance-extra-bits*
dist-code)))))
; copy in bytes
(do ((i (mod (- end distance) bufflen) (1+ i))
(count length (1- count)))
((<= count 0))
(if* (>= i bufflen) then (setf i 0))
(setq end (put-byte-in-buffer op
(aref buffer i)
buffer
end))))))
; return where we left off
end))
(defparameter *code-index*
;; order of elements in the code index values
;; pretty crazy, eh?
(make-array 19
:initial-contents
'(16 17 18 0 8 7 9 6 10 5 11 4 12 3 13 2 14 1 15)))
(defun process-dynamic-huffman-block (br op buffer end)
;; process a block that includes a personalized huffman tree
;; just for this block
(let ((hlit (read-bits br 5))
(hdist (read-bits br 5))
(hclen (read-bits br 4))
code-length-huffman-tree
(minlen 9999)
)
; read in the huffman code width of each of the numbers
; from 0 18... this will be then used to create a huffman tree
;
(let ((codevec (make-array 19 :initial-element 0))
(len))
(dotimes (i (+ hclen 4))
(setf (svref codevec
(svref *code-index* i))
(setq len (read-bits br 3)))
(if* (> len 0) then (setq minlen (min len minlen))))
(setq code-length-huffman-tree
(generate-huffman-tree-from-vector codevec 0 (length codevec))))
; now we're in position to read the code lengths for the
; huffman table that will allow us to read the data.
; (Is this a nutty algorithm or what??)
;
(let ((bigvec (make-array (+ hlit 257 hdist 1)
:initial-element 0))
(index 0))
(loop
(if* (>= index (length bigvec)) then (return))
(let ((val (decode-huffman-tree br code-length-huffman-tree minlen)))
(if* (<= val 15)
then ; literal value
(setf (svref bigvec index) val)
(incf index)
elseif (eql val 16)
then ; repeat prev
(let ((prev-val (svref bigvec (1- index))))
(dotimes (i (+ 3 (read-bits br 2)))
(setf (svref bigvec index) prev-val)
(incf index)))
elseif (eq val 17)
then ; repeat zero
(dotimes (i (+ 3 (read-bits br 3)))
(setf (svref bigvec index) 0)
(incf index))
elseif (eq val 18)
then ; repeat zero a lot
(dotimes (i (+ 11 (read-bits br 7)))
(setf (svref bigvec index) 0)
(incf index)))))
(let (literal-length-huffman litlen-width
distance-huffman distance-width)
(multiple-value-setq (literal-length-huffman litlen-width)
(generate-huffman-tree-from-vector bigvec 0 (+ hlit 257)))
(multiple-value-setq (distance-huffman distance-width)
(generate-huffman-tree-from-vector bigvec (+ hlit 257)
(length bigvec)))
(process-huffman-block br op literal-length-huffman litlen-width
distance-huffman distance-width
buffer end)
))))
(defun decode-huffman-tree (br tree minbits)
;; find the next huffman encoded value.
; the minimum length of a huffman code is minbits so
; grab that many bits right away to speed processing and the
; go bit by bit until the answer is found
(let ((startval (read-bits br minbits)))
(dotimes (i minbits)
(if* (logtest 1 startval)
then (setq tree (cdr tree))
else (setq tree (car tree)))
(setq startval (ash startval -1)))
(loop
(if* (atom tree)
then (return tree)
else (if* (eql 1 (read-bits br 1))
then (setq tree (cdr tree))
else (setq tree (car tree)))))))
;;; test case...
;; Read file created with gzip and write the uncompressed version
;; to another file.
;;
;; Porting note: the open below works on ACL since it creates
;; a bivalent simple-stream. If you run this on other lispsj
;; you'll want to specify an :element-type of '(unsigned-byte 8)
;;
#+ignore
(defun testit (&optional (filename "foo.n.gz") (output-filename "out"))
(with-open-file (p filename :direction :input)
(skip-gzip-header p)
(with-open-file (op output-filename :direction :output
:if-exists :supersede)
(inflate p op))))