Skip to content

Commit 4599840

Browse files
authored
Merge pull request #101 from bigbio/dev
Dev
2 parents d7b76a9 + 73acd40 commit 4599840

File tree

2 files changed

+35
-2
lines changed

2 files changed

+35
-2
lines changed

CITATION.cff

Lines changed: 29 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,29 @@
1+
cff-version: 1.2.0
2+
message: "If you use ibaqpy in your research, please cite this work."
3+
title: "ibaqpy: A scalable Python package for baseline quantification in proteomics leveraging SDRF metadata"
4+
authors:
5+
- family-names: "Zheng"
6+
given-names: "Ping"
7+
- family-names: "Audain"
8+
given-names: "Enrique"
9+
- family-names: "Webel"
10+
given-names: "Henry"
11+
- family-names: "Dai"
12+
given-names: "Chengxin"
13+
- family-names: "Klein"
14+
given-names: "Joshua"
15+
- family-names: "Hitz"
16+
given-names: "Marc-Phillip"
17+
- family-names: "Sachsenberg"
18+
given-names: "Timo"
19+
- family-names: "Bai"
20+
given-names: "Mingze"
21+
- family-names: "Perez-Riverol"
22+
given-names: "Yasset"
23+
abstract: "Intensity-based absolute quantification (iBAQ) is essential in proteomics as it allows for the assessment of a protein's absolute abundance in various samples or conditions. However, the computation of these values for increasingly large-scale and high-throughput experiments, such as those using DIA, TMT, or LFQ workflows, poses significant challenges in scalability and reproducibility. Here, we present ibaqpy, a Python package designed to compute iBAQ values efficiently for experiments of any scale."
24+
date-released: "2025-02-08"
25+
doi: "10.1101/2025.02.08.637208"
26+
url: "https://www.biorxiv.org/content/early/2025/02/08/2025.02.08.637208"
27+
journal: "bioRxiv"
28+
publisher: "Cold Spring Harbor Laboratory"
29+
version: "2025.02.08.637208"

README.md

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -221,9 +221,13 @@ Options:
221221
--help Show this message and exit.
222222
```
223223

224-
### How to cite ibaqpy
224+
### Citation
225225

226-
Wang H, Dai C, Pfeuffer J, Sachsenberg T, Sanchez A, Bai M, Perez-Riverol Y. Tissue-based absolute quantification using large-scale TMT and LFQ experiments. Proteomics. 2023 Oct;23(20):e2300188. doi: [10.1002/pmic.202300188](https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.202300188). Epub 2023 Jul 24. PMID: 37488995.
226+
> Zheng P, Audain E, Webel H, Dai C, Klein J, Hitz MP, Sachsenberg T, Bai M, Perez-Riverol Y. ibaqpy: A scalable Python package for baseline quantification in proteomics leveraging SDRF metadata. bioRxiv 2025.02.08.637208; doi: https://doi.org/10.1101/2025.02.08.637208
227+
228+
Other relevant publications:
229+
230+
> Wang H, Dai C, Pfeuffer J, Sachsenberg T, Sanchez A, Bai M, Perez-Riverol Y. Tissue-based absolute quantification using large-scale TMT and LFQ experiments. Proteomics. 2023 Oct;23(20):e2300188. doi: [10.1002/pmic.202300188](https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/pmic.202300188). Epub 2023 Jul 24. PMID: 37488995.
227231

228232
### Credits
229233

0 commit comments

Comments
 (0)