-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathgenerate_dataset_masks.py
249 lines (214 loc) · 8.04 KB
/
generate_dataset_masks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import argparse
import os
import PIL
import cv2 # Import OpenCV for image processing
import numpy as np
import supervision as sv
import torch
from PIL import Image, ImageOps
from typing import Union, Any, Tuple, Dict
from unittest.mock import patch
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
from gradio_client import handle_file
from transformers import AutoModelForCausalLM, AutoProcessor
from transformers.dynamic_module_utils import get_imports
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Constants
FLORENCE_CHECKPOINT = "microsoft/Florence-2-large"
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK = "<OPEN_VOCABULARY_DETECTION>"
SAM_CONFIG = "sam2_hiera_l.yaml"
SAM_CHECKPOINT = "checkpoints/sam2_hiera_large.pt"
def load_sam_image_model(
device: torch.device, config: str = SAM_CONFIG, checkpoint: str = SAM_CHECKPOINT
) -> SAM2ImagePredictor:
model = build_sam2(config, checkpoint, device=device)
return SAM2ImagePredictor(sam_model=model)
def run_sam_inference(
model: Any, image: Image.Image, detections: sv.Detections
) -> sv.Detections:
image_np = np.array(image.convert("RGB"))
model.set_image(image_np)
masks, scores, _ = model.predict(box=detections.xyxy, multimask_output=False)
# Ensure mask dimensions are correct
if len(masks.shape) == 4:
masks = np.squeeze(masks)
detections.mask = masks.astype(bool)
return detections
def fixed_get_imports(filename: Union[str, os.PathLike]) -> list[str]:
"""Workaround for specific import issues."""
if not str(filename).endswith("/modeling_florence2.py"):
return get_imports(filename)
imports = get_imports(filename)
if "flash_attn" in imports:
imports.remove("flash_attn")
return imports
def load_florence_model(
device: torch.device, checkpoint: str = FLORENCE_CHECKPOINT
) -> Tuple[Any, Any]:
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
model = (
AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True)
.to(device)
.eval()
)
processor = AutoProcessor.from_pretrained(checkpoint, trust_remote_code=True)
return model, processor
def run_florence_inference(
model: Any,
processor: Any,
device: torch.device,
image: Image.Image,
task: str,
text: str = "",
) -> Tuple[str, Dict]:
prompt = task + text
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
num_beams=3,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
response = processor.post_process_generation(
generated_text, task=task, image_size=image.size
)
return generated_text, response
def main():
# Set up argument parser
parser = argparse.ArgumentParser(
description="Mask images in a directory using Florence SAM Masking."
)
parser.add_argument(
"--input_dir",
type=str,
required=True,
help="Path to the input directory containing images.",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to the output directory to save masked images.",
)
parser.add_argument(
"--text_input",
type=str,
default="person",
help='Text prompt for masking (default: "person").',
)
parser.add_argument(
"--invert_mask",
action="store_true",
help="Invert the mask to ignore the segmented portion instead of isolate it.",
)
parser.add_argument(
"--mask_padding",
type=int,
default=0,
help="Number of pixels to pad the mask (default: 0).",
)
parser.add_argument(
"--mask_blur",
type=int,
default=0,
help="Amount of Gaussian blur to apply to the mask edges (default: 0).",
)
args = parser.parse_args()
if args.input_dir is None or args.output_dir is None:
import sys
sys.exit(1)
input_path = args.input_dir
output_path = args.output_dir
text_input = args.text_input
DEVICE = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps" if torch.backends.mps.is_available() else "cpu"
)
# Retrieve model
from huggingface_hub import hf_hub_download
print(f"Downloading SAM2 to {os.getcwd()}/checkpoints.")
hf_hub_download(
"SkalskiP/florence-sam-masking",
repo_type="space",
subfolder="checkpoints",
local_dir="./",
filename="sam2_hiera_large.pt",
)
# Load models
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
# Create the output directory if it doesn't exist
os.makedirs(output_path, exist_ok=True)
# Get all files in the input directory
files = os.listdir(input_path)
# Iterate over all files
for file in files:
# Construct the full file path
full_path = os.path.join(input_path, file)
# Check if the file is an image
if os.path.isfile(full_path) and full_path.lower().endswith(
(".jpg", ".jpeg", ".png", ".webp")
):
# Define the path for the output mask
mask_path = os.path.join(output_path, file)
# Skip if the mask already exists
if os.path.exists(mask_path):
print(f"Mask already exists for {file}, skipping.")
continue
# Predict the mask
try:
image_input = Image.open(full_path)
# Convert to RGB
image_input = image_input.convert("RGB")
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image_input,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=text_input,
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image_input.size,
)
if len(detections) == 0:
print(f"No objects detected in {file}.")
continue
detections = run_sam_inference(SAM_IMAGE_MODEL, image_input, detections)
# Combine masks if multiple detections
combined_mask = np.any(detections.mask, axis=0)
# Apply mask padding if specified
if args.mask_padding > 0:
kernel = np.ones((3, 3), np.uint8)
combined_mask = cv2.dilate(
combined_mask.astype(np.uint8),
kernel,
iterations=args.mask_padding,
)
# Apply mask blurring if specified
if args.mask_blur > 0:
combined_mask = combined_mask.astype(np.float32)
ksize = args.mask_blur * 2 + 1 # Kernel size must be odd
combined_mask = cv2.GaussianBlur(combined_mask, (ksize, ksize), 0)
# Convert mask to image
if args.mask_blur > 0:
mask_image = Image.fromarray((combined_mask * 255).astype(np.uint8))
else:
mask_image = Image.fromarray(combined_mask.astype(np.uint8) * 255)
# Invert masks if necessary
if args.invert_mask:
mask_image = ImageOps.invert(mask_image)
mask_image.save(mask_path)
print(f"Saved mask to {mask_path}")
except Exception as e:
print(f"Failed to process {file}: {e}")
# Clean up
os.remove("checkpoints/sam2_hiera_large.pt")
os.rmdir("checkpoints")
if __name__ == "__main__":
main()