forked from sfbrigade/data-covid19-sfbayarea
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscraper_faq_sheet.py
86 lines (76 loc) · 3.56 KB
/
scraper_faq_sheet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""
Grabs data from the 'FAQ Content' CSV and turns it into nice JSON: a main faq object containing an array of Section objects, each Section Object in turn holding an array of Question objects consisting of question, answer and related link/s, as so:
[
{
'q': 'What are the symptoms of COVID-19?',
'a': 'Symptoms of COVID-19 include coughing and shortness of breath. Additionally, a person showing two or more of the following symptoms may have the virus: fever, repeated shaking with chills, muscle pain, headache, sore throat, new loss of taste or smell.',
'url': 'https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html'
},
.
.
.
]
etc
In addition to an array of Question objects, each Section incorporates its title and a 'last updated' date value. For the Python intermediary stage (between CSV stream and JSON) we will create a hierarchy of nested dictionaries and lists equivalent to the JSON objects and arrays.
Execute with: $ python3 scraper_faq_sheet.py > path/to/where/I/want/faq.json
"""
#!/usr/bin/env python3
import requests
import json
import csv
import datetime
import sys
from typing import Iterable, Dict, List, Any
# function to grab data from a google sheet + return as reader object
def google_sheet_csv_data(sheet: str, gid: str) -> Iterable[List[str]]:
url = f'https://docs.google.com/spreadsheets/d/{sheet}/export'
response = requests.get(url, params={
'format': 'csv',
'id': sheet,
'gid': gid
})
response.raise_for_status()
return csv.reader(response.iter_lines(decode_unicode=True))
# Pass faq Content sheet id and gid to function
_reader = google_sheet_csv_data(
'1_wBXS62S5oBQrwetGc8_-dFvDjEmNqzqHwUeP-DzkYs',
'1318925039'
)
# Date, to be updated each time the program runs, in UTC
date = datetime.datetime.utcnow().strftime('%Y-%m-%d')
# Create the main FAQ dictionary
# Create a list to contain our Section objects
# Place the Sections list inside the main FAQ dictionary
faq_dict = {}
sections_list: List[Dict] = []
faq_dict['faqItems'] = sections_list
# Ensure only first two columns in each row are used
# Now arrange the Sections and Questions in a JSON-friendly way
for index, row in enumerate(_reader):
rowtype, rowval, *_rest = row
if rowtype == 'Category': # We don't need this row
pass
elif rowtype == 'Section Head':
section: Dict[str, Any] = {} # Create a dictionary for a Section
sections_list.append(section) # Add new Section to Sections list
section['title'] = rowval # Give the Section its title
section['lastUpdatedAt'] = date # a 'last updated' value
questions_list: List[Dict] = [] # Create list to contain questions
section['qa'] = questions_list # add new Questions list to its Section
elif rowtype == 'Q':
question = {} # Create new Question dictionary
question['q'] = rowval # the Question's title
questions_list.append(question) # Append Question to given Section
elif rowtype == 'A': # Now the same for Answers & Links
question['a'] = rowval
elif rowtype == 'link':
question['url'] = rowval
elif rowtype == '': # Some safeguards
pass
elif rowval and not rowtype:
raise ValueError(f'row {index} has a value but no description!')
else:
raise ValueError(f'Unknown row header: "{rowtype}"')
# Create formatted json file; write to file object ready to be assigned destination at execution
faq_json = json.dumps(faq_dict, indent=2)
sys.stdout.write(faq_json)