|
| 1 | +#!/usr/bin/env python2.6 |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | + |
| 5 | +__author__ = 'Justin S Bayer, [email protected]' |
| 6 | + |
| 7 | + |
| 8 | +import optparse |
| 9 | +import sys |
| 10 | +import time |
| 11 | + |
| 12 | +import scipy |
| 13 | + |
| 14 | +from rnn import RecurrentNetwork, LstmNetwork |
| 15 | +from pybrain.tools.shortcuts import buildNetwork |
| 16 | +from pybrain.structure import LSTMLayer, TanhLayer |
| 17 | + |
| 18 | + |
| 19 | +def make_optparse(): |
| 20 | + parser = optparse.OptionParser() |
| 21 | + parser.add_option('--lstm', dest='lstm', action='store_true') |
| 22 | + return parser |
| 23 | + |
| 24 | + |
| 25 | +def theano(num_inpt, num_hidden, num_output, inpts, lstm=False): |
| 26 | + klass = LstmNetwork if lstm else RecurrentNetwork |
| 27 | + rnn = klass(num_inpt, num_hidden, num_output) |
| 28 | + |
| 29 | + start = time.time() |
| 30 | + for inpt in inpts: |
| 31 | + rnn(inpt) |
| 32 | + return time.time() - start |
| 33 | + |
| 34 | + |
| 35 | +def pybrain(num_inpt, num_hidden, num_output, inpts, lstm=False): |
| 36 | + net = buildNetwork(num_inpt, num_hidden, num_output, recurrent=True, |
| 37 | + hiddenclass=LSTMLayer if lstm else TanhLayer, |
| 38 | + fast=False) |
| 39 | + start = time.time() |
| 40 | + for seq in inpts: |
| 41 | + net.reset() |
| 42 | + for inpt in seq: |
| 43 | + net.activate(inpt) |
| 44 | + return time.time() - start |
| 45 | + |
| 46 | + |
| 47 | +def pybrainarac(num_inpt, num_hidden, num_output, inpts, lstm=False): |
| 48 | + net = buildNetwork(num_inpt, num_hidden, num_output, recurrent=True, |
| 49 | + hiddenclass=LSTMLayer if lstm else TanhLayer, |
| 50 | + fast=True) |
| 51 | + start = time.time() |
| 52 | + for seq in inpts: |
| 53 | + net.reset() |
| 54 | + for inpt in seq: |
| 55 | + net.activate(inpt) |
| 56 | + return time.time() - start |
| 57 | + |
| 58 | + |
| 59 | +def main(): |
| 60 | + options, args = make_optparse().parse_args() |
| 61 | + num_inpt = int(args[0]) |
| 62 | + num_hidden = int(args[1]) |
| 63 | + num_output = int(args[2]) |
| 64 | + |
| 65 | + print "Network stats" |
| 66 | + print "-" * 20 |
| 67 | + print "Number of inputs: %i" % num_inpt |
| 68 | + print "Number of hidden: %i" % num_hidden |
| 69 | + print "Number of outputs: %i" % num_output |
| 70 | + |
| 71 | + inpts = scipy.random.random((500, 100, num_inpt)) |
| 72 | + |
| 73 | + print |
| 74 | + print "Durations" |
| 75 | + print "-" * 20 |
| 76 | + pybrain_dur = pybrain(num_inpt, num_hidden, num_output, inpts, |
| 77 | + lstm=options.lstm) |
| 78 | + print "Pybrain: %.2f" % pybrain_dur |
| 79 | + |
| 80 | + pybrainarac_dur = pybrainarac(num_inpt, num_hidden, num_output, inpts, |
| 81 | + lstm=options.lstm) |
| 82 | + print "Pybrain \w arac: %.2f" % pybrainarac_dur |
| 83 | + |
| 84 | + theano_dur = theano(num_inpt, num_hidden, num_output, inpts, lstm=options.lstm) |
| 85 | + print "Theano: %.2f" % theano_dur |
| 86 | + |
| 87 | + print |
| 88 | + print "Ratios" |
| 89 | + print "-" * 20 |
| 90 | + |
| 91 | + print "Theano / PyBrain: %.2f" % (theano_dur / pybrain_dur) |
| 92 | + print "Theano / PyBrain+arac: %.2f" % (theano_dur / pybrainarac_dur) |
| 93 | + print "PyBrain+arac / PyBrain: %.2f" % (pybrainarac_dur / pybrain_dur) |
| 94 | + |
| 95 | + return 0 |
| 96 | + |
| 97 | + |
| 98 | +if __name__ == '__main__': |
| 99 | + sys.exit(main()) |
| 100 | + |
0 commit comments