-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.py
290 lines (232 loc) · 11.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import json
import numpy as np
import torch.nn.functional as F
import torch.nn as nn
import torch
import argparse
import os
from utils import cache_transformed_train_data, cache_transformed_test_data
from utils import transform_label_CT_MRI, train_transforms, adjust_learning_rate, set_requires_grad, MI_loss, plot_fn, set_up_logger, deactivate_batchnorm
import monai
from efficientunet import *
from model.GIN import GIN
import tqdm
import itertools
from model.cut_model import ResnetGenerator, PatchSampleF
import torch.backends.cudnn as cudnn
cudnn.enabled = True
cudnn.benchmark = True
parser = argparse.ArgumentParser(description="Train the model")
parser.add_argument("--debug", dest="debug", action="store_true", help="activate debugging mode")
parser.add_argument("--train_dataset", type=str, default="Abdominal_CT", help='name of training dataset')
parser.add_argument("--test_dataset", type=str, default="CHAOS_MRI", help='name of training dataset')
parser.add_argument("--train_batch_size", type=int, default=1, help="batch size of the forward pass")
parser.add_argument("--epochs", type=int, default=1000, help="num of epochs")
parser.add_argument("--img_size", type=int, default=192, help="image size")
parser.add_argument("--num_classes", type=int, default=5, help="num of classes")
parser.add_argument("--lr", type=float, default=0.0003, help="batch size of the forward pass")
parser.add_argument(
"--GIN", action='store_true', help='global intensity non-linear augmentation'
)
########## MI parameters
parser.add_argument('--nce_layers', type=str, default='0,4,8,12,16', help='compute NCE loss on which layers')
parser.add_argument('--num_patches', type=int, default=256, help='number of patches per layer')
parser.add_argument('--lambda_NCE', type=float, default=1.0, help='weight for NCE loss: NCE(G(X), X)')
parser.add_argument(
"--MSP", action='store_true', help='global intensity non-linear augmentation'
)
parser.add_argument(
"--adv", action='store_true', help='global intensity non-linear augmentation'
)
parser.add_argument("--num_workers", type=int, default=12, help="num of data loading workers")
parser.add_argument("--cache_rate", type=float, default=1.0, help="batch size of the forward pass")
parser.set_defaults(hardness=True)
parser.add_argument(
"--results_folder_name", type=str, default="../results", help="name of results folder"
)
parser.add_argument(
"--data_root", type=str, default= '', help="name of results folder"
)
parser.add_argument('--world_size', type=int, default=4, help='world size of distrbuted learning')
parser.add_argument('--rank', type=int, default=0, help='rank of distrbuted learning')
parser.add_argument('--master_port', type=str, default='69280', help='rank of distrbuted learning')
args = parser.parse_args()
args.results_folder_name = os.path.join(args.results_folder_name, ('EMP_' if not args.GIN else 'GIN_')
+ ('MSP' if args.MSP else '') + ('adv' if args.adv else ''))
if not os.path.exists(args.results_folder_name):
os.mkdir(args.results_folder_name)
logger = set_up_logger(args.results_folder_name, 'log.txt')
args.nce_layers = [int(i) for i in args.nce_layers.split(',')]
#######training loader
train_file = open(args.train_dataset, 'r')
train_lists = json.load(train_file)
l = len(train_lists)
train_split = []
eval_split = []
test = np.random.choice(l, int(l*0.3), replace=False)
for i in range(l):
if i in test:
eval_split.append(train_lists[i])
else:
train_split.append(train_lists[i])
train_transform = train_transforms[args.train_dataset]
train_eval_transform = train_transforms[args.train_dataset+'_eval']
train_loader = cache_transformed_train_data(args, train_split, train_transform)
train_eval_loader = cache_transformed_test_data(args, eval_split, train_eval_transform)
######testing loader
testing_file = open(args.test_dataset, 'r')
test_lists = json.load(testing_file)
print(len(test_lists))
test_transform = train_transforms[args.test_dataset]
test_loader = cache_transformed_test_data(args, test_lists, test_transform)
model = get_efficientunet_b2(out_channels=args.num_classes, concat_input=True, pretrained=True).cuda()
# model.apply(deactivate_batchnorm)
# for m in model.modules():
# if isinstance(m, nn.BatchNorm2d):
# m.affine = False
GIN = GIN(args).cuda()
opt = torch.optim.Adam(model.parameters(), lr=args.lr, betas=(0.5, 0.999))
# opt = torch.optim.SGD(model.parameters(), lr=args.lr, betas=(0.5, 0.999), momentum=0.9, weight_decay=5e-6)
if args.adv:
netG = ResnetGenerator(input_nc=3, output_nc=3, ngf=8, norm_layer=nn.InstanceNorm2d,
use_dropout=False, no_antialias=False, no_antialias_up=False, n_blocks=6, ).cuda()
netF = PatchSampleF(use_mlp=True, init_gain=0.02).cuda()
opt_gin = torch.optim.Adam(GIN.parameters(), lr=args.lr, betas=(0.5, 0.999))
flag_MI = True
else:
set_requires_grad(GIN, False)
Loss_Fn = monai.losses.DiceCELoss(softmax=True, to_onehot_y=True)#monai.losses.DiceLoss(softmax=True, to_onehot_y=True)#
eval_Fn = monai.losses.DiceLoss(softmax=True, to_onehot_y=True)
eval_metric = monai.metrics.DiceMetric(reduction="mean_batch")
best_eval = -1
best_epoch = -1
best_test = 0
best_test_score = []
pbar = tqdm.tqdm(range(args.epochs))
for epoch in pbar:
adjust_learning_rate(opt,epoch,args.lr,args.epochs)
if args.GIN and args.adv:
adjust_learning_rate(opt_gin,epoch,args.lr,args.epochs)
if not flag_MI:
adjust_learning_rate(opt_MI,epoch,args.lr,args.epochs)
model.train()
epoch = epoch+1
pbar_b = tqdm.tqdm(enumerate(train_loader))
for i, batch_data in pbar_b:
img, label = batch_data['image'], batch_data['label']
img = img.float().cuda().permute(4, 0, 1, 2, 3).reshape(-1,1,192,192)
label = label.long().cuda().permute(4, 0, 1, 2, 3).reshape(-1,1,192,192)
label = transform_label_CT_MRI(label)
img = torch.cat([img] * 3, dim=1)
loss = torch.zeros(1).cuda()
loss_aug1 = torch.zeros(1).cuda()
loss_aug2 = torch.zeros(1).cuda()
loss_kl = torch.zeros(1).cuda()
loss_MI = torch.zeros(1).cuda()
opt.zero_grad()
if args.GIN and args.adv:
opt_gin.zero_grad()
if not flag_MI:
opt_MI.zero_grad()
if not args.GIN:
predict = model(img)
loss = Loss_Fn(predict, label)
loss.backward()
else:
if args.adv:
aug_img1, aug_img2 = GIN(img)
if np.random.choice(2,1) == 1:
loss_MI = MI_loss(aug_img1, aug_img2, [netG, netF], args)
else:
loss_MI = MI_loss(aug_img2, aug_img1, [netG, netF], args)
if flag_MI:
print('init F')
netF = netF.cuda()
opt_MI = torch.optim.Adam(itertools.chain(netG.parameters(), netF.parameters()), lr=args.lr, betas=(0.5, 0.999))
opt_MI.zero_grad()
flag_MI = False
loss_MI = MI_loss(aug_img1, aug_img2, [netG, netF], args)
else:
with torch.no_grad():
aug_img1, aug_img2 = GIN(img)
predict1 = model(aug_img1.detach())
predict2 = model(aug_img2.detach())
loss_aug1 = Loss_Fn(predict1, label)
# loss_aug1.backward()
loss_aug2 = Loss_Fn(predict2, label)
# loss_aug2.backward()
prob1 = torch.softmax(predict1, dim=1)
prob2 = torch.softmax(predict2, dim=1)
loss_kl = (nn.KLDivLoss()(prob1, prob2) + nn.KLDivLoss()(prob2, prob1))/2
(loss_kl * 10.0 + loss_aug1 + loss_aug2).backward()
opt.step()
if args.GIN and args.adv:
set_requires_grad(model, False)
predict1 = model(aug_img1)
predict2 = model(aug_img2)
prob1 = torch.softmax(predict1, dim=1)
prob2 = torch.softmax(predict2, dim=1)
loss_kl = (nn.KLDivLoss()(prob1, prob2) + nn.KLDivLoss()(prob2, prob1))/2
(-loss_kl * 10.0 + loss_MI*10).backward()
set_requires_grad(model, True)
opt.step()
if args.GIN and args.adv:
opt_gin.step()
opt_MI.step()
pbar_b.set_description('loss_{0:.2f}, lossaug1_{1:.2f}, lossaug2_{2:.2f}, losskl_{3:.2f}, lossMI_{4:.2f}'.format(loss.item(), loss_aug1.item(), loss_aug2.item(), loss_kl.item(), loss_MI.item()))
# plot_fn(img, label)
if epoch % 100 == 0 and epoch!= 0:
torch.save(model.state_dict(), os.path.join(args.results_folder_name, 'epoch_{:d}'.format(epoch)))
if epoch % 5 == 0 and epoch != 0:
with torch.no_grad():
model.eval()
eval_dice_score = []
eval_list = []
for i, batch_data in enumerate(train_eval_loader):
img, label = batch_data['image'], batch_data['label']
img = img.float().cuda().permute(4, 0, 1, 2, 3).squeeze(dim=1)
label = label.long().cuda().permute(4, 0, 1, 2, 3).squeeze(dim=1)
label = transform_label_CT_MRI(label)
img = torch.cat([img] * 3, dim=1)
predict = model(img)
loss = eval_Fn(predict, label)
eval_list.append(loss.item())
predict_label = torch.argmax(predict, dim=1).squeeze()
label_onehot = label.squeeze()
predict_label = F.one_hot(predict_label, num_classes=5).permute(3, 1, 2, 0).unsqueeze(dim=0)
label_onehot = F.one_hot(label_onehot, num_classes=5).permute(3, 1, 2, 0).unsqueeze(dim=0)
eval_dice_score.append(eval_metric(predict_label,
label_onehot).detach().cpu().numpy()) # DS_class(predict_label,label,metric=eval_metric,num_classes=args.num_classes)
eval_dice_score = np.asarray(eval_dice_score)
logger.info('Eval: ', )
logger.info(np.ndarray.tolist(eval_dice_score.mean(axis=0)))
test_dice_score = []
test_list = []
for i, batch_data in enumerate(test_loader):
img, label = batch_data['image'], batch_data['label']
img = img.float().cuda().permute(4, 0, 1, 2, 3).squeeze(dim=1)
label = label.long().cuda().permute(4, 0, 1, 2, 3).squeeze(dim=1)
img = torch.cat([img] * 3, dim=1)
predict = model(img)
loss = eval_Fn(predict, label)
test_list.append(loss.item())
predict_label = torch.argmax(predict, dim=1).squeeze()
label_onehot = label.squeeze()
predict_label = F.one_hot(predict_label, num_classes=5).permute(3, 1, 2, 0).unsqueeze(dim=0)
label_onehot = F.one_hot(label_onehot, num_classes=5).permute(3, 1, 2, 0).unsqueeze(dim=0)
test_dice_score.append(eval_metric(predict_label,
label_onehot).detach().cpu().numpy()) # DS_class(predict_label,label,metric=eval_metric,num_classes=args.num_classes)
test_dice_score = np.asarray(test_dice_score)
logger.info('Test: ')
logger.info(test_dice_score.mean(axis=0))
if best_eval < eval_dice_score.mean():
best_eval = eval_dice_score.mean()
best_epoch = epoch
best_test_score = test_dice_score.mean(axis=0)
torch.save(model.state_dict(), os.path.join(args.results_folder_name, 'best'))
torch.save(GIN.state_dict(), os.path.join(args.results_folder_name, 'GIN'))
logger.info('Best_Test: ')
logger.info(np.ndarray.tolist(best_test_score))
logger.info(' at epoch ')
logger.info( str(best_epoch))
# # plot_fn(img, label)