From d425a959197164180047f34742ed2c2e960cc743 Mon Sep 17 00:00:00 2001 From: fruce-ki <jack_ohara_097@hotmail.com> Date: Thu, 8 Mar 2018 11:46:27 +0000 Subject: [PATCH 1/5] fixes #51 and closes #48 - 51: fixed the bug where accidentally the same isoform must exceed noise in both conditions. - 48: The noise threshold is applied to the total gene abundance as well, preventing genes that are switched off in one condition from creating wild proportions and exaggerated effect sizes. --- DESCRIPTION | 4 +- NAMESPACE | 1 - R/data_simulators.R | 138 ++++----------------------- R/func.R | 13 ++- R/rats.R | 2 +- inst/doc/input.R | 2 +- inst/doc/input.Rmd | 32 ++++--- inst/doc/input.html | 69 +++++++------- inst/doc/output.html | 80 +++++++++------- inst/doc/plots.html | 20 ++-- man/calculate_DTU.Rd | 2 +- man/call_DTU.Rd | 2 +- man/sim_sleuth_data.Rd | 39 -------- tests/testthat/test_2_data-munging.R | 74 -------------- tests/testthat/test_4_steps.R | 2 +- tests/testthat/test_5_output.R | 31 +++--- tests/testthat/test_6_reports.R | 34 +++---- vignettes/input.Rmd | 32 ++++--- 18 files changed, 190 insertions(+), 387 deletions(-) delete mode 100644 man/sim_sleuth_data.Rd diff --git a/DESCRIPTION b/DESCRIPTION index 6b8130e..aeb2231 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: rats -Version: 0.6.2 -Date: 2018-02-16 +Version: 0.6.2-1 +Date: 2018-03-07 Title: Relative Abundance of Transcripts Encoding: UTF-8 Authors: c(person("Kimon Froussios", role=c("aut"), email="k.froussios@dundee.ac.uk"), diff --git a/NAMESPACE b/NAMESPACE index f87589a..a460217 100644 --- a/NAMESPACE +++ b/NAMESPACE @@ -20,7 +20,6 @@ export(plot_overview) export(plot_shiny_volcano) export(sim_boot_data) export(sim_count_data) -export(sim_sleuth_data) export(tidy_annot) import(data.table) import(ggplot2) diff --git a/R/data_simulators.R b/R/data_simulators.R index 798ea73..d7d8a8a 100644 --- a/R/data_simulators.R +++ b/R/data_simulators.R @@ -1,109 +1,3 @@ -#============================================================================== -#' Generate an artificial minimal sleuth-like structure, for code-testing or examples. -#' -#' The default values here should match the default values expected by calculate_DTU(). -#' -#' @param varname Name for the variables by which to compare. -#' @param COUNTS_COL Name for the bootdtraps column containing counts. -#' @param TARGET_COL Name for annotation column containing transcript identification. -#' @param PARENT_COL Name for annotation column containing respective gene identification. -#' @param BS_TARGET_COL Name for bootstraps column containing transcript identification. -#' @param cnames A vector of (two) name values for the comparison variable. -#' @param errannot_inconsistent Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE) -#' @param cv_dt Logical. Whether covariates table should be a data.table (FALSE). -#' @return A list with \code{slo} a minimal sleuth-like object, \code{annot} a corresponding annotation data.frame, -#' \code{isx} a vector of trancripts common between generated annotation and bootstraps (useful for code testing). -#' -#' The simulated data will have non-uniform number of bootstraps per sample and non-uniform order of -#' transcript id's among samples and bootstraps. These conditions are unlikely to occur in real data, -#' but this allows testing that the code can handle it. -#' -#' @import data.table -#' -#' @export -sim_sleuth_data <- function(varname="condition", COUNTS_COL="est_counts", TARGET_COL="target_id", - PARENT_COL="parent_id", BS_TARGET_COL="target_id", cnames=c("A","B"), - errannot_inconsistent=FALSE, cv_dt=FALSE) -{ - # !!! Some of the tests of the package are tightly connected to the specifics of the object returned by this function. - # !!! Entry additions might be tolerated. Changes or removals of entries or structure will certainly cause failures. - - tx <- data.frame(target_id= c("NIB.1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.1", "1B1C.2", "CC_a", "CC_b", "1NN", "2NN", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "LC1", "LC2", "ALLA1", "ALLB1", "ALLB2"), - parent_id= c("NIB", "1A1N", "1D1C", "1D1C", "1B1C", "1B1C", "CC", "CC", "NN", "NN", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "LC", "LC", "ALLA", "ALLB", "ALLB"), - stringsAsFactors=FALSE) - names(tx) <- c(TARGET_COL, PARENT_COL) - - sl <- list() - sl[["sample_to_covariates"]] <- NaN - if (cv_dt) { - sl[["sample_to_covariates"]] <- data.table("foo"=c(cnames[1], cnames[2], cnames[1], cnames[2]), - "bar"=c("ba", "ba", "bb", "bb")) - } else { - sl[["sample_to_covariates"]] <- data.frame("foo"=c(cnames[1], cnames[2], cnames[1], cnames[2]), - "bar"=c("ba", "ba", "bb", "bb")) - } - names(sl[["sample_to_covariates"]]) <- c(varname, "batch") - - sl[["kal"]] <- list() - sl$kal[[1]] <- list() - sl$kal[[1]]["bootstrap"] <- list() - sl$kal[[1]]$bootstrap[[1]] <- data.frame("target"= c("LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(3, 333, 666, 10, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0), - stringsAsFactors=FALSE) - sl$kal[[1]]$bootstrap[[2]] <- data.frame("target"= c("LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(2, 310, 680, 11, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0), - stringsAsFactors=FALSE) - sl$kal[[1]]$bootstrap[[3]] <- data.frame("target"= c("LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(0, 340, 610, 7, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0), - stringsAsFactors=FALSE) - - sl$kal[[2]] <- list() - sl$kal[[2]]["bootstrap"] <- list() - sl$kal[[2]]$bootstrap[[1]] <- data.frame("target"= c("NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(333, 6, 666, 12, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200), - stringsAsFactors=FALSE) - sl$kal[[2]]$bootstrap[[2]] <- data.frame("target"= c("NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(323, 1, 606, 15, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250), - stringsAsFactors=FALSE) - - sl$kal[[3]] <- list() - sl$kal[[3]]$bootstrap[[1]] <- data.frame("target"= c("NIA1", "1A1N-2", "LC1", "NIA2", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "1A1N-1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(333, 20, 3, 666, 0, 76, 52, 100, 10, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0), - stringsAsFactors=FALSE) - sl$kal[[3]]$bootstrap[[2]] <- data.frame("target"= c("MIX6.c4", "NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1B1C.2", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.nc", "1D1C:two", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(80, 330, 4, 560, 11, 21, 0, 55, 90, 380, 0, 240, 80, 0, 55, 23, 10, 31, 2, 55, 0, 0), - stringsAsFactors=FALSE) - - sl$kal[[4]] <- list() - sl$kal[[4]]["bootstrap"] <- list() - sl$kal[[4]]$bootstrap[[1]] <- data.frame("target"= c("NIA2", "1A1N-1", "NIA1", "1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(666, 12, 333, 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210), - stringsAsFactors=FALSE) - sl$kal[[4]]$bootstrap[[2]] <- data.frame("target"= c("NIA1", "MIX6.d", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "LC1", "1D1C:two", "MIX6.c1", "1B1C.2", "MIX6.c3", "MIX6.c2", "MIX6.c4", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(323, 0, 656, 15, 22, 0, 2, 23, 280, 160, 35, 120, 0, 95, 18, 119, 19, 58, 7, 0, 150, 220), - stringsAsFactors=FALSE) - sl$kal[[4]]$bootstrap[[3]] <- data.frame("target"= c("NIA1", "NIA2", "1A1N-1", "1A1N-2", "MIX6.nc", "1B1C.2", "LC1", "MIX6.c1", "MIX6.c2", "MIX6.c3", "1D1C:one", "1D1C:two", "MIX6.c4", "MIX6.d", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "my_counts"= c(343, 676, 13, 21, 55, 145, 3, 270, 133, 30, 0, 20, 0, 0, 23, 80, 17, 50, 14, 0, 130, 200), - stringsAsFactors=FALSE) - - names(sl$kal[[1]]$bootstrap[[1]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[1]]$bootstrap[[2]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[1]]$bootstrap[[3]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[2]]$bootstrap[[1]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[2]]$bootstrap[[2]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[3]]$bootstrap[[1]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[3]]$bootstrap[[2]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[4]]$bootstrap[[1]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[4]]$bootstrap[[2]]) <- c(BS_TARGET_COL, COUNTS_COL) - names(sl$kal[[4]]$bootstrap[[3]]) <- c(BS_TARGET_COL, COUNTS_COL) - - if (errannot_inconsistent) { - sl$kal[[3]]$bootstrap[[1]][10, BS_TARGET_COL] <- "Unexpected-name" - } - - return(list("annot" = tx, "slo" = sl, "isx" = intersect(tx[[TARGET_COL]], sl$kal[[1]]$bootstrap[[1]][[BS_TARGET_COL]]) )) -} - #============================================================================== #' Generate an artificial dataset of bootstrapped abundance estimates, for code-testing or examples. #' @@ -118,33 +12,33 @@ sim_sleuth_data <- function(varname="condition", COUNTS_COL="est_counts", TARGET #' @export #' sim_boot_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", TARGET_COL="target_id") { - tx <- data.frame(target_id= c("NIB.1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.1", "1B1C.2", "CC_a", "CC_b", "1NN", "2NN", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "LC1", "LC2", "ALLA1", "ALLB1", "ALLB2"), - parent_id= c("NIB", "1A1N", "1D1C", "1D1C", "1B1C", "1B1C", "CC", "CC", "NN", "NN", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "LC", "LC", "ALLA", "ALLB", "ALLB"), + tx <- data.frame(target_id= c("1A1B.a", "1A1B.b", "NIB.1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.1", "1B1C.2", "CC_a", "CC_b", "1NN", "2NN", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "LC1", "LC2", "ALLA1", "ALLB1", "ALLB2"), + parent_id= c("1A1B", "1A1B", "NIB", "1A1N", "1D1C", "1D1C", "1B1C", "1B1C", "CC", "CC", "NN", "NN", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "LC", "LC", "ALLA", "ALLB", "ALLB"), stringsAsFactors=FALSE) names(tx) <- c(TARGET_COL, PARENT_COL) a <- list() - a[[1]] <- data.table("target"= c("LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 3, 333, 666, 10, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0), - "V2"= c( 2, 310, 680, 11, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0), - "V3"= c( 0, 340, 610, 7, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0), + a[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 69, 0, 3, 333, 666, 10, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0), + "V2"= c( 96, 0, 2, 310, 680, 11, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0), + "V3"= c( 88, 0, 0, 340, 610, 7, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0), stringsAsFactors=FALSE) - a[[2]] <- data.table("target"= c("NIA1", "1A1N-2", "LC1", "NIA2", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "1A1N-1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 333, 20, 3, 666, 0, 76, 52, 100, 10, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0), - "V2"= c( 330, 11, 4, 560, 0, 80, 55, 90, 11, 380, 0, 80, 0, 240, 23, 55, 10, 31, 2, 55, 0, 0), + a[[2]] <- data.table("target"= c("NIA1", "1A1B.a", "1A1B.b", "1A1N-2", "LC1", "NIA2", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "1A1N-1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 333, 121, 0, 20, 3, 666, 0, 76, 52, 100, 10, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0), + "V2"= c( 330, 144, 0, 11, 4, 560, 0, 80, 55, 90, 11, 380, 0, 80, 0, 240, 23, 55, 10, 31, 2, 55, 0, 0), stringsAsFactors=FALSE) b <- list() - b[[1]] <- data.table("target"= c("NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 333, 6, 666, 12, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200), - "V2"= c( 323, 1, 606, 15, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250), + b[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 0, 91, 333, 6, 666, 12, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200), + "V2"= c( 0, 100, 323, 1, 606, 15, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250), stringsAsFactors=FALSE) - b[[2]] <- data.table("target"= c("NIA2", "1A1N-1", "NIA1", "1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 666, 12, 333, 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210), - "V2"= c( 656, 15, 323, 22, 0, 23, 2, 160, 120, 35, 280, 0, 95, 0, 119, 18, 19, 58, 7, 0, 150, 220), - "V3"= c( 676, 13, 343, 21, 0, 20, 3, 145, 133, 30, 270, 0, 55, 0, 80, 23, 17, 50, 14, 0, 130, 200), + b[[2]] <- data.table("target"= c("NIA2", "1A1N-1", "NIA1", "1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1A1B.b", "1A1B.a"), + "V1"= c( 666, 12, 333, 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210, 76, 0), + "V2"= c( 656, 15, 323, 22, 0, 23, 2, 160, 120, 35, 280, 0, 95, 0, 119, 18, 19, 58, 7, 0, 150, 220, 69, 0), + "V3"= c( 676, 13, 343, 21, 0, 20, 3, 145, 133, 30, 270, 0, 55, 0, 80, 23, 17, 50, 14, 0, 130, 200, 36, 0), stringsAsFactors=FALSE) if (errannot_inconsistent) diff --git a/R/func.R b/R/func.R index 3ee9031..a674b27 100644 --- a/R/func.R +++ b/R/func.R @@ -64,8 +64,8 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, return(list("error"=TRUE, "message"="Invalid p-value threshold!")) if ((!is.numeric(dprop_thresh)) || dprop_thresh < 0 || dprop_thresh > 1) return(list("error"=TRUE, "message"="Invalid proportion difference threshold! Must be between 0 and 1.")) - if ((!is.numeric(abund_thresh)) || abund_thresh < 0) - return(list("error"=TRUE, "message"="Invalid abundance threshold! Must be between 0 and 1.")) + if ((!is.numeric(abund_thresh)) || abund_thresh < 1) + return(list("error"=TRUE, "message"="Invalid abundance threshold! Must be a count >= 1.")) if ((!is.numeric(qbootnum)) || qbootnum < 0) return(list("error"=TRUE, "message"="Invalid number of bootstraps! Must be a positive integer number.")) if (!is.logical(qboot)) @@ -256,7 +256,7 @@ alloc_out <- function(annot, full, n=1){ #' @param test_transc Whether to do transcript-level test. #' @param test_genes Whether to do gene-level test. #' @param full Either "full" (for complete output structure) or "short" (for bootstrapping). -#' @param count_thresh Minimum number of counts per replicate. +#' @param count_thresh Minimum average count across replicates. #' @param p_thresh The p-value threshold. #' @param dprop_thresh Minimum difference in proportions. #' @param correction Multiple testing correction type. @@ -303,8 +303,11 @@ calculate_DTU <- function(counts_A, counts_B, tx_filter, test_transc, test_genes ctA <- count_thresh * resobj$Parameters[["num_replic_A"]] # Adjust count threshold for number of replicates. ctB <- count_thresh * resobj$Parameters[["num_replic_B"]] Transcripts[, elig_xp := (sumA >= ctA | sumB >= ctB)] - Transcripts[, elig := (elig_xp & totalA != 0 & totalB != 0 & (sumA != totalA | sumB != totalB))] # If the entire gene is shut off in one condition, changes in proportion cannot be defined. - # If sum and total are equal in both conditions the gene has only one expressed isoform, or one isoform altogether. + Transcripts[, elig := (elig_xp & # isoform expressed above the noise threshold in EITHER condition + totalA >= ctA & totalB >= ctB & # at least one eligibly expressed isoform exists in EACH condition (prevent gene-on/off from creating wild proportions from low counts) + totalA != 0 & totalB != 0 & # gene expressed in BOTH conditions (failsafe, in case user sets noise threshold to 0) + (propA != 1 | propB != 1) )] # not the only isoform expressed. + # If sum and total are equal in both conditions, it has no detected siblings and thus cannot change in proportion. Genes[, elig_transc := Transcripts[, as.integer(sum(elig, na.rm=TRUE)), by=parent_id][, V1] ] Genes[, elig := elig_transc >= 2] diff --git a/R/rats.R b/R/rats.R index 3e5d2bc..eb5d327 100644 --- a/R/rats.R +++ b/R/rats.R @@ -19,8 +19,8 @@ #' @param name_B The name for the other condition. (Default "Condition-B") #' @param varname The name of the covariate to which the two conditions belong. (Default \code{"condition"}). #' @param p_thresh The p-value threshold. (Default 0.05) -#' @param abund_thresh Noise threshold. Minimum mean abundance for transcripts to be eligible for testing. (Default 5) #' @param dprop_thresh Effect size threshold. Minimum change in proportion of a transcript for it to be considered meaningful. (Default 0.20) +#' @param abund_thresh Noise threshold. Minimum mean (across replicates) abundance for transcripts (and genes) to be eligible for testing. (Default 5) #' @param correction The p-value correction to apply, as defined in \code{\link[stats]{p.adjust.methods}}. (Default \code{"BH"}) #' @param scaling A scaling factor or vector of scaling factors, to be applied to the abundances *prior* to any thresholding and testing. Useful for scaling TPMs (transcripts per 1 million reads) to the actual library sizes of the samples. If a vector is supplied, the order should correspond to the samples in group A followed by the samples in group B. WARNING: Improper use of the scaling factor will artificially inflate/deflate the significances obtained. #' @param testmode One of \itemize{\item{"genes"}, \item{"transc"}, \item{"both" (default)}}. diff --git a/inst/doc/input.R b/inst/doc/input.R index 1bd5e38..1c840cb 100644 --- a/inst/doc/input.R +++ b/inst/doc/input.R @@ -83,7 +83,7 @@ myannot <- simdat[[1]] # Transcript and gene IDs for the above data. # # Calling DTU with custom thresholds. # mydtu <- call_DTU(annot= myannot, # boot_data_A= mycond_A, boot_data_B= mycond_B, -# p_thresh= 0.01, abund_thresh= 10, dprop_thres = 0.25) +# p_thresh= 0.01, dprop_thres = 0.15, abund_thresh= 10) ## ---- eval=FALSE--------------------------------------------------------- # # Bootstrap (default). Do 100 iterations. diff --git a/inst/doc/input.Rmd b/inst/doc/input.Rmd index 3a383a5..8bbba78 100644 --- a/inst/doc/input.Rmd +++ b/inst/doc/input.Rmd @@ -1,7 +1,7 @@ --- title: 'RATs: Input and Settings' author: "Kimon Froussios" -date: "19 SEP 2017" +date: "08 MAR 2018" output: html_document: keep_md: yes @@ -273,14 +273,16 @@ The following three main thresholds are used in RATs: # Calling DTU with custom thresholds. mydtu <- call_DTU(annot= myannot, boot_data_A= mycond_A, boot_data_B= mycond_B, - p_thresh= 0.01, abund_thresh= 10, dprop_thres = 0.25) + p_thresh= 0.01, dprop_thres = 0.15, abund_thresh= 10) ``` -1. `p_thresh` - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter. (Default 0.05) -2. `abund_thresh` - Noise threshold. Transcripts with abundance below that value in both conditions are ignored. Higher threshold values are stricter. (Default 5, assumes abundances scaled to library size) -3. `dprop_thresh` - Effect size threshold. Transcripts whose proportion changes between conditions by less than the threshold are considered non-DTU, regardless of their statistical significance. Higher threshold values are stricter. (Default 0.20) +1. `p_thresh` - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter, and help reduce low-count low-confidence calls. (Default 0.05, very permissive) +2. `dprop_thresh` - Effect size threshold. Transcripts whose proportion changes between conditions by less than this threshold are considered uninteresting, regardless of their statistical significance. (Default 0.20, quite strict) +3. `abund_thresh` - Noise threshold. Minimum mean (across replicates) abundance for a transcript to be considered expressed. Transcripts with mean abundances below this will be ignored. Mean total gene count must also meet this value in both conditions, a.k.a. at least one expressed isoform must exist in each condition. (Default 5, very permissive) + +The default values for these thresholds have been chosen such that they achieve a *median* FDR <5% for a high quality dataset from *Arabidopsis thaliana*, even with only 3 replicates per condition. +Your mileage may vary and you should give some consideration to selecting appropriate values. -The default values for these thresholds have been chosen such that they achieve a *median* FDR <5% for a high quality dataset from *Arabidopsis thaliana*, even with only 3 replicates per condition. Your mileage may vary and you should give some consideration to selecting appropriate values. Depending on the settings, *additional thresholds* are available and will be discussed in their respective sections below. @@ -378,7 +380,7 @@ mydtu <- call_DTU(annot = myannot, 1. `threads` - The number of threads to use. (Default 1) -Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems. +Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems (Linux, Mac, not Windows). Refer to the `parallel` package for details. @@ -447,14 +449,14 @@ such as those employed by RATs, and reduces the statistical power of the method. To counter this, RATs provides the option to scale abundaces either equally by a single factor (such as average library size among samples) or by a vector of factors (one per sample). The former maintains any pre-existing library-size normalisation among samples. This is necessary for fold-change based methods, but RATs does not require it. Instead, using the respective actual library sizes of the samples allows the -higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have dissimilar +higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have very dissimilar library sizes. For flexibility with different types of input, these scaling options can be applied in either of two stages: The data import step by `fish4rodents()`, or the actual testing step by `call_DTU()`. In the example examined previously, `fish4rodents()` was instructed to create TPM abundances, -by normalising to 10000000 reads. Such values are useful with certain other tools that a user may also intend to use. +by normalising to `1000000` reads. Such values are useful with certain other tools that a user may also intend to use. Subsequently, these TPMs were re-scaled to meet the library size of each sample, thus providing RATs with count-like abundance values that retain -the TPM's normalisation by isoform length. However, it is not necessary to scale in two separate steps. +the normalisation by isoform length. However, it is not necessary to scale in two separate steps. Both `fish4rodents()` and `call_DTU()` support scaling by a single value or a vector of values. If you don't need the TPMs, you can scale directly to the desired library size(s), as in the examples below: @@ -495,7 +497,7 @@ mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, ``` You can mix and match scaling options as per your needs, so take care to ensure that the scaling you apply is appropriate. -It is important to note, that if you simply run both methods with their respective defaults, you'll effectively run RATs +*It is important to note*, that if you simply run both methods with their respective defaults, you'll effectively run RATs on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data. @@ -510,10 +512,10 @@ in a meaningful way. All internal operations and the output of RATs are based on the annotation provided: -* Any transcripts present in the data but missing from the annotation will be ignored completely and -will not show up in the output, as there is no reliable way to match them to gene IDs. -* Any transcript/gene present in the annotation but missing from the data will be included in the output as zero expression. -* If the samples appear to use different annotations from one another, RATs will abort. +* Any transcript IDs present in the data but missing from the annotation will be silently ignored and +will not show up in the output, as they cannot be matched to the gene IDs. +* Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression. +* If the samples appear to have been quantified with different annotations from one another, RATs will abort. *** diff --git a/inst/doc/input.html b/inst/doc/input.html index 8078e6c..6d5aa38 100644 --- a/inst/doc/input.html +++ b/inst/doc/input.html @@ -11,7 +11,7 @@ <meta name="author" content="Kimon Froussios" /> -<meta name="date" content="2017-09-19" /> +<meta name="date" content="2018-03-08" /> <title>RATs: Input and Settings</title> @@ -25,8 +25,8 @@ <link href="data:text/css;charset=utf-8,%0A%0A%2Etocify%20%7B%0Awidth%3A%2020%25%3B%0Amax%2Dheight%3A%2090%25%3B%0Aoverflow%3A%20auto%3B%0Amargin%2Dleft%3A%202%25%3B%0Aposition%3A%20fixed%3B%0Aborder%3A%201px%20solid%20%23ccc%3B%0Awebkit%2Dborder%2Dradius%3A%206px%3B%0Amoz%2Dborder%2Dradius%3A%206px%3B%0Aborder%2Dradius%3A%206px%3B%0A%7D%0A%0A%2Etocify%20ul%2C%20%2Etocify%20li%20%7B%0Alist%2Dstyle%3A%20none%3B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aborder%3A%20none%3B%0Aline%2Dheight%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dheader%20%7B%0Atext%2Dindent%3A%2010px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2020px%3B%0Adisplay%3A%20none%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20li%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2040px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20%3E%20a%2C%20%2Etocify%20%2Enav%2Dlist%20%2Enav%2Dheader%20%7B%0Amargin%3A%200px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20a%2C%20%2Etocify%20%2Elist%2Dgroup%2Ditem%20%7B%0Apadding%3A%205px%3B%0A%7D%0A%2Etocify%20%2Enav%2Dpills%20%3E%20li%20%7B%0Afloat%3A%20none%3B%0A%7D%0A%0A%0A" rel="stylesheet" /> <script src="data:application/x-javascript;base64,LyoganF1ZXJ5IFRvY2lmeSAtIHYxLjkuMSAtIDIwMTMtMTAtMjIKICogaHR0cDovL3d3dy5ncmVnZnJhbmtvLmNvbS9qcXVlcnkudG9jaWZ5LmpzLwogKiBDb3B5cmlnaHQgKGMpIDIwMTMgR3JlZyBGcmFua287IExpY2Vuc2VkIE1JVCAqLwoKLy8gSW1tZWRpYXRlbHktSW52b2tlZCBGdW5jdGlvbiBFeHByZXNzaW9uIChJSUZFKSBbQmVuIEFsbWFuIEJsb2cgUG9zdF0oaHR0cDovL2JlbmFsbWFuLmNvbS9uZXdzLzIwMTAvMTEvaW1tZWRpYXRlbHktaW52b2tlZC1mdW5jdGlvbi1leHByZXNzaW9uLykgdGhhdCBjYWxscyBhbm90aGVyIElJRkUgdGhhdCBjb250YWlucyBhbGwgb2YgdGhlIHBsdWdpbiBsb2dpYy4gIEkgdXNlZCB0aGlzIHBhdHRlcm4gc28gdGhhdCBhbnlvbmUgdmlld2luZyB0aGlzIGNvZGUgd291bGQgbm90IGhhdmUgdG8gc2Nyb2xsIHRvIHRoZSBib3R0b20gb2YgdGhlIHBhZ2UgdG8gdmlldyB0aGUgbG9jYWwgcGFyYW1ldGVycyB0aGF0IHdlcmUgcGFzc2VkIHRvIHRoZSBtYWluIElJRkUuCihmdW5jdGlvbih0b2NpZnkpIHsKCiAgICAvLyBFQ01BU2NyaXB0IDUgU3RyaWN0IE1vZGU6IFtKb2huIFJlc2lnIEJsb2cgUG9zdF0oaHR0cDovL2Vqb2huLm9yZy9ibG9nL2VjbWFzY3JpcHQtNS1zdHJpY3QtbW9kZS1qc29uLWFuZC1tb3JlLykKICAgICJ1c2Ugc3RyaWN0IjsKCiAgICAvLyBDYWxscyB0aGUgc2Vjb25kIElJRkUgYW5kIGxvY2FsbHkgcGFzc2VzIGluIHRoZSBnbG9iYWwgalF1ZXJ5LCB3aW5kb3csIGFuZCBkb2N1bWVudCBvYmplY3RzCiAgICB0b2NpZnkod2luZG93LmpRdWVyeSwgd2luZG93LCBkb2N1bWVudCk7CgogIH0KCiAgLy8gTG9jYWxseSBwYXNzZXMgaW4gYGpRdWVyeWAsIHRoZSBgd2luZG93YCBvYmplY3QsIHRoZSBgZG9jdW1lbnRgIG9iamVjdCwgYW5kIGFuIGB1bmRlZmluZWRgIHZhcmlhYmxlLiAgVGhlIGBqUXVlcnlgLCBgd2luZG93YCBhbmQgYGRvY3VtZW50YCBvYmplY3RzIGFyZSBwYXNzZWQgaW4gbG9jYWxseSwgdG8gaW1wcm92ZSBwZXJmb3JtYW5jZSwgc2luY2UgamF2YXNjcmlwdCBmaXJzdCBzZWFyY2hlcyBmb3IgYSB2YXJpYWJsZSBtYXRjaCB3aXRoaW4gdGhlIGxvY2FsIHZhcmlhYmxlcyBzZXQgYmVmb3JlIHNlYXJjaGluZyB0aGUgZ2xvYmFsIHZhcmlhYmxlcyBzZXQuICBBbGwgb2YgdGhlIGdsb2JhbCB2YXJpYWJsZXMgYXJlIGFsc28gcGFzc2VkIGluIGxvY2FsbHkgdG8gYmUgbWluaWZpZXIgZnJpZW5kbHkuIGB1bmRlZmluZWRgIGNhbiBiZSBwYXNzZWQgaW4gbG9jYWxseSwgYmVjYXVzZSBpdCBpcyBub3QgYSByZXNlcnZlZCB3b3JkIGluIEphdmFTY3JpcHQuCiAgKGZ1bmN0aW9uKCQsIHdpbmRvdywgZG9jdW1lbnQsIHVuZGVmaW5lZCkgewoKICAgIC8vIEVDTUFTY3JpcHQgNSBTdHJpY3QgTW9kZTogW0pvaG4gUmVzaWcgQmxvZyBQb3N0XShodHRwOi8vZWpvaG4ub3JnL2Jsb2cvZWNtYXNjcmlwdC01LXN0cmljdC1tb2RlLWpzb24tYW5kLW1vcmUvKQogICAgInVzZSBzdHJpY3QiOwoKICAgIHZhciB0b2NDbGFzc05hbWUgPSAidG9jaWZ5IiwKICAgICAgdG9jQ2xhc3MgPSAiLiIgKyB0b2NDbGFzc05hbWUsCiAgICAgIHRvY0ZvY3VzQ2xhc3NOYW1lID0gInRvY2lmeS1mb2N1cyIsCiAgICAgIHRvY0hvdmVyQ2xhc3NOYW1lID0gInRvY2lmeS1ob3ZlciIsCiAgICAgIGhpZGVUb2NDbGFzc05hbWUgPSAidG9jaWZ5LWhpZGUiLAogICAgICBoaWRlVG9jQ2xhc3MgPSAiLiIgKyBoaWRlVG9jQ2xhc3NOYW1lLAogICAgICBoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LWhlYWRlciIsCiAgICAgIGhlYWRlckNsYXNzID0gIi4iICsgaGVhZGVyQ2xhc3NOYW1lLAogICAgICBzdWJoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LXN1YmhlYWRlciIsCiAgICAgIHN1YmhlYWRlckNsYXNzID0gIi4iICsgc3ViaGVhZGVyQ2xhc3NOYW1lLAogICAgICBpdGVtQ2xhc3NOYW1lID0gInRvY2lmeS1pdGVtIiwKICAgICAgaXRlbUNsYXNzID0gIi4iICsgaXRlbUNsYXNzTmFtZSwKICAgICAgZXh0ZW5kUGFnZUNsYXNzTmFtZSA9ICJ0b2NpZnktZXh0ZW5kLXBhZ2UiLAogICAgICBleHRlbmRQYWdlQ2xhc3MgPSAiLiIgKyBleHRlbmRQYWdlQ2xhc3NOYW1lOwoKICAgIC8vIENhbGxpbmcgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IE1ldGhvZAogICAgJC53aWRnZXQoInRvYy50b2NpZnkiLCB7CgogICAgICAvL1BsdWdpbiB2ZXJzaW9uCiAgICAgIHZlcnNpb246ICIxLjkuMSIsCgogICAgICAvLyBUaGVzZSBvcHRpb25zIHdpbGwgYmUgdXNlZCBhcyBkZWZhdWx0cwogICAgICBvcHRpb25zOiB7CgogICAgICAgIC8vICoqY29udGV4dCoqOiBBY2NlcHRzIFN0cmluZzogQW55IGpRdWVyeSBzZWxlY3RvcgogICAgICAgIC8vIFRoZSBjb250YWluZXIgZWxlbWVudCB0aGF0IGhvbGRzIGFsbCBvZiB0aGUgZWxlbWVudHMgdXNlZCB0byBnZW5lcmF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMKICAgICAgICBjb250ZXh0OiAiYm9keSIsCgogICAgICAgIC8vICoqaWdub3JlU2VsZWN0b3IqKjogQWNjZXB0cyBTdHJpbmc6IEFueSBqUXVlcnkgc2VsZWN0b3IKICAgICAgICAvLyBBIHNlbGVjdG9yIHRvIGFueSBlbGVtZW50IHRoYXQgd291bGQgYmUgbWF0Y2hlZCBieSBzZWxlY3RvcnMgdGhhdCB5b3Ugd2lzaCB0byBiZSBpZ25vcmVkCiAgICAgICAgaWdub3JlU2VsZWN0b3I6IG51bGwsCgogICAgICAgIC8vICoqc2VsZWN0b3JzKio6IEFjY2VwdHMgYW4gQXJyYXkgb2YgU3RyaW5nczogQW55IGpRdWVyeSBzZWxlY3RvcnMKICAgICAgICAvLyBUaGUgZWxlbWVudCdzIHVzZWQgdG8gZ2VuZXJhdGUgdGhlIHRhYmxlIG9mIGNvbnRlbnRzLiAgVGhlIG9yZGVyIGlzIHZlcnkgaW1wb3J0YW50IHNpbmNlIGl0IHdpbGwgZGV0ZXJtaW5lIHRoZSB0YWJsZSBvZiBjb250ZW50J3MgbmVzdGluZyBzdHJ1Y3R1cmUKICAgICAgICBzZWxlY3RvcnM6ICJoMSwgaDIsIGgzIiwKCiAgICAgICAgLy8gKipzaG93QW5kSGlkZSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIFVzZWQgdG8gZGV0ZXJtaW5lIGlmIGVsZW1lbnRzIHNob3VsZCBiZSBzaG93biBhbmQgaGlkZGVuCiAgICAgICAgc2hvd0FuZEhpZGU6IHRydWUsCgogICAgICAgIC8vICoqc2hvd0VmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZUluIiwgInNob3ciLCBvciAic2xpZGVEb3duIgogICAgICAgIC8vIFVzZWQgdG8gZGlzcGxheSBhbnkgb2YgdGhlIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcwogICAgICAgIHNob3dFZmZlY3Q6ICJzbGlkZURvd24iLAoKICAgICAgICAvLyAqKnNob3dFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBzaG93IGFuaW1hdGlvbgogICAgICAgIHNob3dFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqaGlkZUVmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZU91dCIsICJoaWRlIiwgb3IgInNsaWRlVXAiCiAgICAgICAgLy8gVXNlZCB0byBoaWRlIGFueSBvZiB0aGUgdGFibGUgb2YgY29udGVudHMgbmVzdGVkIGl0ZW1zCiAgICAgICAgaGlkZUVmZmVjdDogInNsaWRlVXAiLAoKICAgICAgICAvLyAqKmhpZGVFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBoaWRlIGFuaW1hdGlvbgogICAgICAgIGhpZGVFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc21vb3RoU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiBhIGpRdWVyeSBhbmltYXRpb24gc2hvdWxkIGJlIHVzZWQgdG8gc2Nyb2xsIHRvIHNwZWNpZmljIHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW1zIG9uIHRoZSBwYWdlCiAgICAgICAgc21vb3RoU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKnNtb290aFNjcm9sbFNwZWVkKio6IEFjY2VwdHMgTnVtYmVyIChtaWxsaXNlY29uZHMpIG9yIFN0cmluZzogInNsb3ciLCAibWVkaXVtIiwgb3IgImZhc3QiCiAgICAgICAgLy8gVGhlIHRpbWUgZHVyYXRpb24gb2YgdGhlIHNtb290aFNjcm9sbCBhbmltYXRpb24KICAgICAgICBzbW9vdGhTY3JvbGxTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc2Nyb2xsVG8qKjogQWNjZXB0cyBOdW1iZXIgKHBpeGVscykKICAgICAgICAvLyBUaGUgYW1vdW50IG9mIHNwYWNlIGJldHdlZW4gdGhlIHRvcCBvZiBwYWdlIGFuZCB0aGUgc2VsZWN0ZWQgdGFibGUgb2YgY29udGVudHMgaXRlbSBhZnRlciB0aGUgcGFnZSBoYXMgYmVlbiBzY3JvbGxlZAogICAgICAgIHNjcm9sbFRvOiAwLAoKICAgICAgICAvLyAqKnNob3dBbmRIaWRlT25TY3JvbGwqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBEZXRlcm1pbmVzIGlmIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcyBzaG91bGQgYmUgc2hvd24gYW5kIGhpZGRlbiB3aGlsZSBzY3JvbGxpbmcKICAgICAgICBzaG93QW5kSGlkZU9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9uU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiB0YWJsZSBvZiBjb250ZW50cyBuZXN0ZWQgaXRlbXMgc2hvdWxkIGJlIGhpZ2hsaWdodGVkIChzZXQgdG8gYSBkaWZmZXJlbnQgY29sb3IpIHdoaWxlIHNjcm9sbGluZwogICAgICAgIGhpZ2hsaWdodE9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyCiAgICAgICAgLy8gVGhlIG9mZnNldCBkaXN0YW5jZSBpbiBwaXhlbHMgdG8gdHJpZ2dlciB0aGUgbmV4dCBhY3RpdmUgdGFibGUgb2YgY29udGVudHMgaXRlbQogICAgICAgIGhpZ2hsaWdodE9mZnNldDogNDAsCgogICAgICAgIC8vICoqdGhlbWUqKjogQWNjZXB0cyBhIHN0cmluZzogImJvb3RzdHJhcCIsICJqcXVlcnl1aSIsIG9yICJub25lIgogICAgICAgIC8vIERldGVybWluZXMgaWYgVHdpdHRlciBCb290c3RyYXAsIGpRdWVyeVVJLCBvciBUb2NpZnkgY2xhc3NlcyBzaG91bGQgYmUgYWRkZWQgdG8gdGhlIHRhYmxlIG9mIGNvbnRlbnRzCiAgICAgICAgdGhlbWU6ICJib290c3RyYXAiLAoKICAgICAgICAvLyAqKmV4dGVuZFBhZ2UqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBJZiBhIHVzZXIgc2Nyb2xscyB0byB0aGUgYm90dG9tIG9mIHRoZSBwYWdlIGFuZCB0aGUgcGFnZSBpcyBub3QgdGFsbCBlbm91Z2ggdG8gc2Nyb2xsIHRvIHRoZSBsYXN0IHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW0sIHRoZW4gdGhlIHBhZ2UgaGVpZ2h0IGlzIGluY3JlYXNlZAogICAgICAgIGV4dGVuZFBhZ2U6IHRydWUsCgogICAgICAgIC8vICoqZXh0ZW5kUGFnZU9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyOiBwaXhlbHMKICAgICAgICAvLyBIb3cgY2xvc2UgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhIHVzZXIgbXVzdCBzY3JvbGwgYmVmb3JlIHRoZSBwYWdlIGlzIGV4dGVuZGVkCiAgICAgICAgZXh0ZW5kUGFnZU9mZnNldDogMTAwLAoKICAgICAgICAvLyAqKmhpc3RvcnkqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBBZGRzIGEgaGFzaCB0byB0aGUgcGFnZSB1cmwgdG8gbWFpbnRhaW4gaGlzdG9yeQogICAgICAgIGhpc3Rvcnk6IHRydWUsCgogICAgICAgIC8vICoqc2Nyb2xsSGlzdG9yeSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIEFkZHMgYSBoYXNoIHRvIHRoZSBwYWdlIHVybCwgdG8gbWFpbnRhaW4gaGlzdG9yeSwgd2hlbiBzY3JvbGxpbmcgdG8gYSBUT0MgaXRlbQogICAgICAgIHNjcm9sbEhpc3Rvcnk6IGZhbHNlLAoKICAgICAgICAvLyAqKmhhc2hHZW5lcmF0b3IqKjogSG93IHRoZSBoYXNoIHZhbHVlICh0aGUgYW5jaG9yIHNlZ21lbnQgb2YgdGhlIFVSTCwgZm9sbG93aW5nIHRoZQogICAgICAgIC8vICMgY2hhcmFjdGVyKSB3aWxsIGJlIGdlbmVyYXRlZC4KICAgICAgICAvLwogICAgICAgIC8vICJjb21wYWN0IiAoZGVmYXVsdCkgLSAjQ29tcHJlc3Nlc0V2ZXJ5dGhpbmdUb2dldGhlcgogICAgICAgIC8vICJwcmV0dHkiIC0gI2xvb2tzLWxpa2UtYS1uaWNlLXVybC1hbmQtaXMtZWFzaWx5LXJlYWRhYmxlCiAgICAgICAgLy8gZnVuY3Rpb24odGV4dCwgZWxlbWVudCl7fSAtIFlvdXIgb3duIGhhc2ggZ2VuZXJhdGlvbiBmdW5jdGlvbiB0aGF0IGFjY2VwdHMgdGhlIHRleHQgYXMgYW4KICAgICAgICAvLyBhcmd1bWVudCwgYW5kIHJldHVybnMgdGhlIGhhc2ggdmFsdWUuCiAgICAgICAgaGFzaEdlbmVyYXRvcjogImNvbXBhY3QiLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodERlZmF1bHQqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBTZXQncyB0aGUgZmlyc3QgVE9DIGl0ZW0gYXMgYWN0aXZlIGlmIG5vIG90aGVyIFRPQyBpdGVtIGlzIGFjdGl2ZS4KICAgICAgICBoaWdobGlnaHREZWZhdWx0OiB0cnVlCgogICAgICB9LAoKICAgICAgLy8gX0NyZWF0ZQogICAgICAvLyAtLS0tLS0tCiAgICAgIC8vICAgICAgQ29uc3RydWN0cyB0aGUgcGx1Z2luLiAgT25seSBjYWxsZWQgb25jZS4KICAgICAgX2NyZWF0ZTogZnVuY3Rpb24oKSB7CgogICAgICAgIHZhciBzZWxmID0gdGhpczsKCiAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gdHJ1ZTsKCiAgICAgICAgLy8gSW50ZXJuYWwgYXJyYXkgdGhhdCBrZWVwcyB0cmFjayBvZiBhbGwgVE9DIGl0ZW1zIChIZWxwcyB0byByZWNvZ25pemUgaWYgdGhlcmUgYXJlIGR1cGxpY2F0ZSBUT0MgaXRlbSBzdHJpbmdzKQogICAgICAgIHNlbGYuaXRlbXMgPSBbXTsKCiAgICAgICAgLy8gR2VuZXJhdGVzIHRoZSBIVE1MIGZvciB0aGUgZHluYW1pYyB0YWJsZSBvZiBjb250ZW50cwogICAgICAgIHNlbGYuX2dlbmVyYXRlVG9jKCk7CgogICAgICAgIC8vIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgICAgc2VsZi5fYWRkQ1NTQ2xhc3NlcygpOwoKICAgICAgICBzZWxmLndlYmtpdCA9IChmdW5jdGlvbigpIHsKCiAgICAgICAgICBmb3IgKHZhciBwcm9wIGluIHdpbmRvdykgewoKICAgICAgICAgICAgaWYgKHByb3ApIHsKCiAgICAgICAgICAgICAgaWYgKHByb3AudG9Mb3dlckNhc2UoKS5pbmRleE9mKCJ3ZWJraXQiKSAhPT0gLTEpIHsKCiAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0KCiAgICAgICAgICByZXR1cm4gZmFsc2U7CgogICAgICAgIH0oKSk7CgogICAgICAgIC8vIEFkZHMgalF1ZXJ5IGV2ZW50IGhhbmRsZXJzIHRvIHRoZSBuZXdseSBnZW5lcmF0ZWQgdGFibGUgb2YgY29udGVudHMKICAgICAgICBzZWxmLl9zZXRFdmVudEhhbmRsZXJzKCk7CgogICAgICAgIC8vIEJpbmRpbmcgdG8gdGhlIFdpbmRvdyBsb2FkIGV2ZW50IHRvIG1ha2Ugc3VyZSB0aGUgY29ycmVjdCBzY3JvbGxUb3AgaXMgY2FsY3VsYXRlZAogICAgICAgICQod2luZG93KS5sb2FkKGZ1bmN0aW9uKCkgewoKICAgICAgICAgIC8vIFNldHMgdGhlIGFjdGl2ZSBUT0MgaXRlbQogICAgICAgICAgc2VsZi5fc2V0QWN0aXZlRWxlbWVudCh0cnVlKTsKCiAgICAgICAgICAvLyBPbmNlIGFsbCBhbmltYXRpb25zIG9uIHRoZSBwYWdlIGFyZSBjb21wbGV0ZSwgdGhpcyBjYWxsYmFjayBmdW5jdGlvbiB3aWxsIGJlIGNhbGxlZAogICAgICAgICAgJCgiaHRtbCwgYm9keSIpLnByb21pc2UoKS5kb25lKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgc2V0VGltZW91dChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gZmFsc2U7CgogICAgICAgICAgICB9LCAwKTsKCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlVG9jCiAgICAgIC8vIC0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgSFRNTCBmb3IgdGhlIGR5bmFtaWMgdGFibGUgb2YgY29udGVudHMKICAgICAgX2dlbmVyYXRlVG9jOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gX0xvY2FsIHZhcmlhYmxlc18KCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgc2VsZiB2YXJpYWJsZQogICAgICAgIHZhciBzZWxmID0gdGhpcywKCiAgICAgICAgICAvLyBBbGwgb2YgdGhlIEhUTUwgdGFncyBmb3VuZCB3aXRoaW4gdGhlIGNvbnRleHQgcHJvdmlkZWQgKGkuZS4gYm9keSkgdGhhdCBtYXRjaCB0aGUgdG9wIGxldmVsIGpRdWVyeSBzZWxlY3RvciBhYm92ZQogICAgICAgICAgZmlyc3RFbGVtLAoKICAgICAgICAgIC8vIEluc3RhbnRpYXRlZCB2YXJpYWJsZSB0aGF0IHdpbGwgc3RvcmUgdGhlIHRvcCBsZXZlbCBuZXdseSBjcmVhdGVkIHVub3JkZXJlZCBsaXN0IERPTSBlbGVtZW50CiAgICAgICAgICB1bCwKICAgICAgICAgIGlnbm9yZVNlbGVjdG9yID0gc2VsZi5vcHRpb25zLmlnbm9yZVNlbGVjdG9yOwoKCiAgICAgICAgLy8gRGV0ZXJtaW5lIHRoZSBlbGVtZW50IHRvIHN0YXJ0IHRoZSB0b2Mgd2l0aAogICAgICAgIC8vIGdldCBhbGwgdGhlIHRvcCBsZXZlbCBzZWxlY3RvcnMKICAgICAgICBmaXJzdEVsZW0gPSBbXTsKICAgICAgICB2YXIgc2VsZWN0b3JzID0gdGhpcy5vcHRpb25zLnNlbGVjdG9ycy5yZXBsYWNlKC8gL2csICIiKS5zcGxpdCgiLCIpOwogICAgICAgIC8vIGZpbmQgdGhlIGZpcnN0IHNldCB0aGF0IGhhdmUgYXQgbGVhc3Qgb25lIG5vbi1pZ25vcmVkIGVsZW1lbnQKICAgICAgICBmb3IodmFyIGkgPSAwOyBpIDwgc2VsZWN0b3JzLmxlbmd0aDsgaSsrKSB7CiAgICAgICAgICB2YXIgZm91bmRTZWxlY3RvcnMgPSAkKHRoaXMub3B0aW9ucy5jb250ZXh0KS5maW5kKHNlbGVjdG9yc1tpXSk7CiAgICAgICAgICBmb3IgKHZhciBzID0gMDsgcyA8IGZvdW5kU2VsZWN0b3JzLmxlbmd0aDsgcysrKSB7CiAgICAgICAgICAgIGlmICghJChmb3VuZFNlbGVjdG9yc1tzXSkuaXMoaWdub3JlU2VsZWN0b3IpKSB7CiAgICAgICAgICAgICAgZmlyc3RFbGVtID0gZm91bmRTZWxlY3RvcnM7CiAgICAgICAgICAgICAgYnJlYWs7CiAgICAgICAgICAgIH0KICAgICAgICAgIH0KICAgICAgICAgIGlmIChmaXJzdEVsZW0ubGVuZ3RoPiAwKQogICAgICAgICAgICBicmVhazsKICAgICAgICB9CgogICAgICAgIGlmICghZmlyc3RFbGVtLmxlbmd0aCkgewoKICAgICAgICAgIHNlbGYuZWxlbWVudC5hZGRDbGFzcyhoaWRlVG9jQ2xhc3NOYW1lKTsKCiAgICAgICAgICByZXR1cm47CgogICAgICAgIH0KCiAgICAgICAgc2VsZi5lbGVtZW50LmFkZENsYXNzKHRvY0NsYXNzTmFtZSk7CgogICAgICAgIC8vIExvb3BzIHRocm91Z2ggZWFjaCB0b3AgbGV2ZWwgc2VsZWN0b3IKICAgICAgICBmaXJzdEVsZW0uZWFjaChmdW5jdGlvbihpbmRleCkgewoKICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgfQoKICAgICAgICAgIC8vIENyZWF0ZXMgYW4gdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGFuZCBhZGRzIGEgZHluYW1pYyBJRCBhbmQgc3RhbmRhcmQgY2xhc3MgbmFtZQogICAgICAgICAgdWwgPSAkKCI8dWwvPiIsIHsKICAgICAgICAgICAgImlkIjogaGVhZGVyQ2xhc3NOYW1lICsgaW5kZXgsCiAgICAgICAgICAgICJjbGFzcyI6IGhlYWRlckNsYXNzTmFtZQogICAgICAgICAgfSkuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIHRvcCBsZXZlbCBsaXN0IGl0ZW0gSFRNTCBlbGVtZW50IHRvIHRoZSBwcmV2aW91c2x5IGNyZWF0ZWQgSFRNTCBoZWFkZXIKICAgICAgICAgIGFwcGVuZChzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgICAvLyBBZGQgdGhlIGNyZWF0ZWQgdW5vcmRlcmVkIGxpc3QgZWxlbWVudCB0byB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgc2VsZi5lbGVtZW50LmFwcGVuZCh1bCk7CgogICAgICAgICAgLy8gRmluZHMgYWxsIG9mIHRoZSBIVE1MIHRhZ3MgYmV0d2VlbiB0aGUgaGVhZGVyIGFuZCBzdWJoZWFkZXIgZWxlbWVudHMKICAgICAgICAgICQodGhpcykubmV4dFVudGlsKHRoaXMubm9kZU5hbWUudG9Mb3dlckNhc2UoKSkuZWFjaChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIElmIHRoZXJlIGFyZSBubyBuZXN0ZWQgc3ViaGVhZGVyIGVsZW1lbWVudHMKICAgICAgICAgICAgaWYgKCQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5sZW5ndGggPT09IDApIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmlsdGVyKHNlbGYub3B0aW9ucy5zZWxlY3RvcnMpLmVhY2goZnVuY3Rpb24oKSB7CgogICAgICAgICAgICAgICAgLy9JZiB0aGUgZWxlbWVudCBtYXRjaGVzIHRoZSBpZ25vcmVTZWxlY3RvciB0aGVuIHdlIHNraXAgaXQKICAgICAgICAgICAgICAgIGlmICgkKHRoaXMpLmlzKGlnbm9yZVNlbGVjdG9yKSkgewogICAgICAgICAgICAgICAgICByZXR1cm47CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgc2VsZi5fYXBwZW5kU3ViaGVhZGVycy5jYWxsKHRoaXMsIHNlbGYsIHVsKTsKCiAgICAgICAgICAgICAgfSk7CgogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyBJZiB0aGVyZSBhcmUgbmVzdGVkIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICBlbHNlIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5lYWNoKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIHNlbGYuX2FwcGVuZFN1YmhlYWRlcnMuY2FsbCh0aGlzLCBzZWxmLCB1bCk7CgogICAgICAgICAgICAgIH0pOwoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0pOwoKICAgICAgICB9KTsKCiAgICAgIH0sCgogICAgICBfc2V0QWN0aXZlRWxlbWVudDogZnVuY3Rpb24ocGFnZWxvYWQpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAoKICAgICAgICAgIGhhc2ggPSB3aW5kb3cubG9jYXRpb24uaGFzaC5zdWJzdHJpbmcoMSksCgogICAgICAgICAgZWxlbSA9IHNlbGYuZWxlbWVudC5maW5kKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGhhc2ggKyAnIl0nKTsKCiAgICAgICAgaWYgKGhhc2gubGVuZ3RoKSB7CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgZWxlbS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIFRyaWdnZXJzIHRoZSBjbGljayBldmVudCBvbiB0aGUgY3VycmVudGx5IGZvY3VzZWQgVE9DIGl0ZW0KICAgICAgICAgIGVsZW0uY2xpY2soKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBSZW1vdmVzIGhpZ2hsaWdodGluZyBmcm9tIGFsbCBvZiB0aGUgbGlzdCBpdGVtJ3MKICAgICAgICAgIHNlbGYuZWxlbWVudC5maW5kKCIuIiArIHNlbGYuZm9jdXNDbGFzcykucmVtb3ZlQ2xhc3Moc2VsZi5mb2N1c0NsYXNzKTsKCiAgICAgICAgICBpZiAoIWhhc2gubGVuZ3RoICYmIHBhZ2Vsb2FkICYmIHNlbGYub3B0aW9ucy5oaWdobGlnaHREZWZhdWx0KSB7CgogICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBmaXJzdCBUT0MgaXRlbSBpZiBubyBvdGhlciBpdGVtcyBhcmUgaGlnaGxpZ2h0ZWQKICAgICAgICAgICAgc2VsZi5lbGVtZW50LmZpbmQoaXRlbUNsYXNzKS5maXJzdCgpLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgfQoKICAgICAgICB9CgogICAgICAgIHJldHVybiBzZWxmOwoKICAgICAgfSwKCiAgICAgIC8vIF9uZXN0RWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEhlbHBzIGNyZWF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMgbGlzdCBieSBhcHBlbmRpbmcgbmVzdGVkIGxpc3QgaXRlbXMKICAgICAgX25lc3RFbGVtZW50czogZnVuY3Rpb24oc2VsZiwgaW5kZXgpIHsKCiAgICAgICAgdmFyIGFyciwgaXRlbSwgaGFzaFZhbHVlOwoKICAgICAgICBhcnIgPSAkLmdyZXAodGhpcy5pdGVtcywgZnVuY3Rpb24oaXRlbSkgewoKICAgICAgICAgIHJldHVybiBpdGVtID09PSBzZWxmLnRleHQoKTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIElmIHRoZXJlIGlzIGFscmVhZHkgYSBkdXBsaWNhdGUgVE9DIGl0ZW0KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewoKICAgICAgICAgIC8vIEFkZHMgdGhlIGN1cnJlbnQgVE9DIGl0ZW0gdGV4dCBhbmQgaW5kZXggKGZvciBzbGlnaHQgcmFuZG9taXphdGlvbikgdG8gdGhlIGludGVybmFsIGFycmF5CiAgICAgICAgICB0aGlzLml0ZW1zLnB1c2goc2VsZi50ZXh0KCkgKyBpbmRleCk7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlcmUgbm90IGEgZHVwbGljYXRlIFRPQyBpdGVtCiAgICAgICAgZWxzZSB7CgogICAgICAgICAgLy8gQWRkcyB0aGUgY3VycmVudCBUT0MgaXRlbSB0ZXh0IHRvIHRoZSBpbnRlcm5hbCBhcnJheQogICAgICAgICAgdGhpcy5pdGVtcy5wdXNoKHNlbGYudGV4dCgpKTsKCiAgICAgICAgfQoKICAgICAgICBoYXNoVmFsdWUgPSB0aGlzLl9nZW5lcmF0ZUhhc2hWYWx1ZShhcnIsIHNlbGYsIGluZGV4KTsKCiAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIGl0ZW0gPSAkKCI8bGkvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUgdG8gdGhlIGxpc3QgaXRlbQogICAgICAgICAgImNsYXNzIjogaXRlbUNsYXNzTmFtZSwKCiAgICAgICAgICAiZGF0YS11bmlxdWUiOiBoYXNoVmFsdWUKCiAgICAgICAgfSk7CgogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAzIikgewoKICAgICAgICAgIGl0ZW0uYXBwZW5kKCQoIjxhLz4iLCB7CgogICAgICAgICAgICAidGV4dCI6IHNlbGYudGV4dCgpCgogICAgICAgICAgfSkpOwoKICAgICAgICB9IGVsc2UgewoKICAgICAgICAgIGl0ZW0udGV4dChzZWxmLnRleHQoKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gQWRkcyBhbiBIVE1MIGFuY2hvciB0YWcgYmVmb3JlIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIEhUTUwgZWxlbWVudAogICAgICAgIHNlbGYuYmVmb3JlKCQoIjxkaXYvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgbmFtZSBhdHRyaWJ1dGUgb24gdGhlIGFuY2hvciB0YWcgdG8gdGhlIHRleHQgb2YgdGhlIGN1cnJlbnRseSB0cmF2ZXJzZWQgSFRNTCBlbGVtZW50IChhbHNvIG1ha2luZyBzdXJlIHRoYXQgYWxsIHdoaXRlc3BhY2UgaXMgcmVwbGFjZWQgd2l0aCBhbiB1bmRlcnNjb3JlKQogICAgICAgICAgIm5hbWUiOiBoYXNoVmFsdWUsCgogICAgICAgICAgImRhdGEtdW5pcXVlIjogaGFzaFZhbHVlCgogICAgICAgIH0pKTsKCiAgICAgICAgcmV0dXJuIGl0ZW07CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlSGFzaFZhbHVlCiAgICAgIC8vIC0tLS0tLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgaGFzaCB2YWx1ZSB0aGF0IHdpbGwgYmUgdXNlZCB0byByZWZlciB0byBlYWNoIGl0ZW0uCiAgICAgIF9nZW5lcmF0ZUhhc2hWYWx1ZTogZnVuY3Rpb24oYXJyLCBzZWxmLCBpbmRleCkgewoKICAgICAgICB2YXIgaGFzaFZhbHVlID0gIiIsCiAgICAgICAgICBoYXNoR2VuZXJhdG9yT3B0aW9uID0gdGhpcy5vcHRpb25zLmhhc2hHZW5lcmF0b3I7CgogICAgICAgIGlmIChoYXNoR2VuZXJhdG9yT3B0aW9uID09PSAicHJldHR5IikgewoKICAgICAgICAgIC8vIHByZXR0aWZ5IHRoZSB0ZXh0CiAgICAgICAgICBoYXNoVmFsdWUgPSBzZWxmLnRleHQoKS50b0xvd2VyQ2FzZSgpLnJlcGxhY2UoL1xzL2csICItIik7CgogICAgICAgICAgLy8gZml4IGRvdWJsZSBoeXBoZW5zCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIi0tIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvLS0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgICAvLyBmaXggY29sb24tc3BhY2UgaW5zdGFuY2VzCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIjotIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvOi0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgfSBlbHNlIGlmICh0eXBlb2YgaGFzaEdlbmVyYXRvck9wdGlvbiA9PT0gImZ1bmN0aW9uIikgewoKICAgICAgICAgIC8vIGNhbGwgdGhlIGZ1bmN0aW9uCiAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoR2VuZXJhdG9yT3B0aW9uKHNlbGYudGV4dCgpLCBzZWxmKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBjb21wYWN0IC0gdGhlIGRlZmF1bHQKICAgICAgICAgIGhhc2hWYWx1ZSA9IHNlbGYudGV4dCgpLnJlcGxhY2UoL1xzL2csICIiKTsKCiAgICAgICAgfQoKICAgICAgICAvLyBhZGQgdGhlIGluZGV4IGlmIHdlIG5lZWQgdG8KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewogICAgICAgICAgaGFzaFZhbHVlICs9ICIiICsgaW5kZXg7CiAgICAgICAgfQoKICAgICAgICAvLyByZXR1cm4gdGhlIHZhbHVlCiAgICAgICAgcmV0dXJuIGhhc2hWYWx1ZTsKCiAgICAgIH0sCgogICAgICAvLyBfYXBwZW5kRWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgSGVscHMgY3JlYXRlIHRoZSB0YWJsZSBvZiBjb250ZW50cyBsaXN0IGJ5IGFwcGVuZGluZyBzdWJoZWFkZXIgZWxlbWVudHMKCiAgICAgIF9hcHBlbmRTdWJoZWFkZXJzOiBmdW5jdGlvbihzZWxmLCB1bCkgewoKICAgICAgICAvLyBUaGUgY3VycmVudCBlbGVtZW50IGluZGV4CiAgICAgICAgdmFyIGluZGV4ID0gJCh0aGlzKS5pbmRleChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKSwKCiAgICAgICAgICAvLyBGaW5kcyB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50CiAgICAgICAgICBwcmV2aW91c0hlYWRlciA9ICQoc2VsZi5vcHRpb25zLnNlbGVjdG9ycykuZXEoaW5kZXggLSAxKSwKCiAgICAgICAgICBjdXJyZW50VGFnTmFtZSA9ICskKHRoaXMpLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgcHJldmlvdXNUYWdOYW1lID0gK3ByZXZpb3VzSGVhZGVyLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgbGFzdFN1YmhlYWRlcjsKCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgaGVhZGVyIERPTSBlbGVtZW50IGlzIHNtYWxsZXIgdGhhbiB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50IG9yIHRoZSBmaXJzdCBzdWJoZWFkZXIKICAgICAgICBpZiAoY3VycmVudFRhZ05hbWUgPCBwcmV2aW91c1RhZ05hbWUpIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZChzdWJoZWFkZXJDbGFzcyArICJbZGF0YS10YWc9IiArIGN1cnJlbnRUYWdOYW1lICsgIl0iKS5sYXN0KCkuYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGhlYWRlciBET00gZWxlbWVudCBpcyB0aGUgc2FtZSB0eXBlIG9mIGhlYWRlcihlZy4gaDQpIGFzIHRoZSBwcmV2aW91cyBoZWFkZXIgRE9NIGVsZW1lbnQKICAgICAgICBlbHNlIGlmIChjdXJyZW50VGFnTmFtZSA9PT0gcHJldmlvdXNUYWdOYW1lKSB7CgogICAgICAgICAgdWwuZmluZChpdGVtQ2xhc3MpLmxhc3QoKS5hZnRlcihzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICB1bC5maW5kKGl0ZW1DbGFzcykubGFzdCgpLgoKICAgICAgICAgIC8vIEFwcGVuZHMgYW4gdW5vcmRlcmVkTGlzdCBIVE1MIGVsZW1lbnQgdG8gdGhlIGR5bmFtaWMgYHVub3JkZXJlZExpc3RgIHZhcmlhYmxlIGFuZCBzZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUKICAgICAgICAgIGFmdGVyKCQoIjx1bC8+IiwgewoKICAgICAgICAgICAgImNsYXNzIjogc3ViaGVhZGVyQ2xhc3NOYW1lLAoKICAgICAgICAgICAgImRhdGEtdGFnIjogY3VycmVudFRhZ05hbWUKCiAgICAgICAgICB9KSkubmV4dChzdWJoZWFkZXJDbGFzcykuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwogICAgICAgIH0KCiAgICAgIH0sCgogICAgICAvLyBfc2V0RXZlbnRIYW5kbGVycwogICAgICAvLyAtLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgQWRkcyBqUXVlcnkgZXZlbnQgaGFuZGxlcnMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cwogICAgICBfc2V0RXZlbnRIYW5kbGVyczogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgIC8vIFN0b3JlcyB0aGUgcGx1Z2luIGNvbnRleHQgaW4gdGhlIHNlbGYgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGhvbGQgYSBzcGVjaWZpYyBlbGVtZW50J3MgY29udGV4dAogICAgICAgICAgJHNlbGYsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGRldGVybWluZSB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uCiAgICAgICAgICBkdXJhdGlvbjsKCiAgICAgICAgLy8gRXZlbnQgZGVsZWdhdGlvbiB0aGF0IGxvb2tzIGZvciBhbnkgY2xpY2tzIG9uIGxpc3QgaXRlbSBlbGVtZW50cyBpbnNpZGUgb2YgdGhlIEhUTUwgZWxlbWVudCBjYWxsaW5nIHRoZSBwbHVnaW4KICAgICAgICB0aGlzLmVsZW1lbnQub24oImNsaWNrLnRvY2lmeSIsICJsaSIsIGZ1bmN0aW9uKGV2ZW50KSB7CgogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5oaXN0b3J5KSB7CgogICAgICAgICAgICB3aW5kb3cubG9jYXRpb24uaGFzaCA9ICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIElmIHRoZSBzaG93QW5kSGlkZSBvcHRpb24gaXMgdHJ1ZQogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5zaG93QW5kSGlkZSkgewoKICAgICAgICAgICAgdmFyIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICAgICAgc2VsZi5fdHJpZ2dlclNob3coZWxlbSk7CgogICAgICAgICAgfQoKICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQodGhpcykpOwoKICAgICAgICB9KTsKCiAgICAgICAgLy8gTW91c2VlbnRlciBhbmQgTW91c2VsZWF2ZSBldmVudCBoYW5kbGVycyBmb3IgdGhlIGxpc3QgaXRlbSdzIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIHRoaXMuZWxlbWVudC5maW5kKCJsaSIpLm9uKHsKCiAgICAgICAgICAvLyBNb3VzZWVudGVyIGV2ZW50IGhhbmRsZXIKICAgICAgICAgICJtb3VzZWVudGVyLnRvY2lmeSI6IGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgLy8gQWRkcyBhIGhvdmVyIENTUyBjbGFzcyB0byB0aGUgY3VycmVudCBsaXN0IGl0ZW0KICAgICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmhvdmVyQ2xhc3MpOwoKICAgICAgICAgICAgLy8gTWFrZXMgc3VyZSB0aGUgY3Vyc29yIGlzIHNldCB0byB0aGUgcG9pbnRlciBpY29uCiAgICAgICAgICAgICQodGhpcykuY3NzKCJjdXJzb3IiLCAicG9pbnRlciIpOwoKICAgICAgICAgIH0sCgogICAgICAgICAgLy8gTW91c2VsZWF2ZSBldmVudCBoYW5kbGVyCiAgICAgICAgICAibW91c2VsZWF2ZS50b2NpZnkiOiBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAiKSB7CgogICAgICAgICAgICAgIC8vIFJlbW92ZXMgdGhlIGhvdmVyIENTUyBjbGFzcyBmcm9tIHRoZSBjdXJyZW50IGxpc3QgaXRlbQogICAgICAgICAgICAgICQodGhpcykucmVtb3ZlQ2xhc3Moc2VsZi5ob3ZlckNsYXNzKTsKCiAgICAgICAgICAgIH0KCiAgICAgICAgICB9CiAgICAgICAgfSk7CgogICAgICAgIC8vIG9ubHkgYXR0YWNoIGhhbmRsZXIgaWYgbmVlZGVkIChleHBlbnNpdmUgaW4gSUUpCiAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5leHRlbmRQYWdlIHx8IHNlbGYub3B0aW9ucy5oaWdobGlnaHRPblNjcm9sbCB8fCBzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSB8fCBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCkgewogICAgICAgICAgLy8gV2luZG93IHNjcm9sbCBldmVudCBoYW5kbGVyCiAgICAgICAgICAkKHdpbmRvdykub24oInNjcm9sbC50b2NpZnkiLCBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIE9uY2UgYWxsIGFuaW1hdGlvbnMgb24gdGhlIHBhZ2UgYXJlIGNvbXBsZXRlLCB0aGlzIGNhbGxiYWNrIGZ1bmN0aW9uIHdpbGwgYmUgY2FsbGVkCiAgICAgICAgICAgICQoImh0bWwsIGJvZHkiKS5wcm9taXNlKCkuZG9uZShmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgLy8gTG9jYWwgdmFyaWFibGVzCgogICAgICAgICAgICAgIC8vIFN0b3JlcyBob3cgZmFyIHRoZSB1c2VyIGhhcyBzY3JvbGxlZAogICAgICAgICAgICAgIHZhciB3aW5TY3JvbGxUb3AgPSAkKHdpbmRvdykuc2Nyb2xsVG9wKCksCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBoZWlnaHQgb2YgdGhlIHdpbmRvdwogICAgICAgICAgICAgICAgd2luSGVpZ2h0ID0gJCh3aW5kb3cpLmhlaWdodCgpLAoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgaGVpZ2h0IG9mIHRoZSBkb2N1bWVudAogICAgICAgICAgICAgICAgZG9jSGVpZ2h0ID0gJChkb2N1bWVudCkuaGVpZ2h0KCksCgogICAgICAgICAgICAgICAgc2Nyb2xsSGVpZ2h0ID0gJCgiYm9keSIpWzBdLnNjcm9sbEhlaWdodCwKCiAgICAgICAgICAgICAgICAvLyBJbnN0YW50aWF0ZXMgYSB2YXJpYWJsZSB0aGF0IHdpbGwgYmUgdXNlZCB0byBob2xkIGEgc2VsZWN0ZWQgSFRNTCBlbGVtZW50CiAgICAgICAgICAgICAgICBlbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtT2Zmc2V0LAoKICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtOwoKICAgICAgICAgICAgICBpZiAoc2VsZi5vcHRpb25zLmV4dGVuZFBhZ2UpIHsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgdXNlciBoYXMgc2Nyb2xsZWQgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgdGhlIGxhc3QgdG9jIGl0ZW0gaXMgbm90IGZvY3VzZWQKICAgICAgICAgICAgICAgIGlmICgoc2VsZi53ZWJraXQgJiYgd2luU2Nyb2xsVG9wID49IHNjcm9sbEhlaWdodCAtIHdpbkhlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSB8fCAoIXNlbGYud2Via2l0ICYmIHdpbkhlaWdodCArIHdpblNjcm9sbFRvcCA+IGRvY0hlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSkgewoKICAgICAgICAgICAgICAgICAgaWYgKCEkKGV4dGVuZFBhZ2VDbGFzcykubGVuZ3RoKSB7CgogICAgICAgICAgICAgICAgICAgIGxhc3RFbGVtID0gJCgnZGl2W2RhdGEtdW5pcXVlPSInICsgJChpdGVtQ2xhc3MpLmxhc3QoKS5hdHRyKCJkYXRhLXVuaXF1ZSIpICsgJyJdJyk7CgogICAgICAgICAgICAgICAgICAgIGlmICghbGFzdEVsZW0ubGVuZ3RoKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIC8vIEdldHMgdGhlIHRvcCBvZmZzZXQgb2YgdGhlIHBhZ2UgaGVhZGVyIHRoYXQgaXMgbGlua2VkIHRvIHRoZSBsYXN0IHRvYyBpdGVtCiAgICAgICAgICAgICAgICAgICAgbGFzdEVsZW1PZmZzZXQgPSBsYXN0RWxlbS5vZmZzZXQoKS50b3A7CgogICAgICAgICAgICAgICAgICAgIC8vIEFwcGVuZHMgYSBkaXYgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgc2V0cyB0aGUgaGVpZ2h0IHRvIHRoZSBkaWZmZXJlbmNlIG9mIHRoZSB3aW5kb3cgc2Nyb2xsVG9wIGFuZCB0aGUgbGFzdCBlbGVtZW50J3MgcG9zaXRpb24gdG9wIG9mZnNldAogICAgICAgICAgICAgICAgICAgICQoc2VsZi5vcHRpb25zLmNvbnRleHQpLmFwcGVuZCgkKCI8ZGl2Lz4iLCB7CgogICAgICAgICAgICAgICAgICAgICAgImNsYXNzIjogZXh0ZW5kUGFnZUNsYXNzTmFtZSwKCiAgICAgICAgICAgICAgICAgICAgICAiaGVpZ2h0IjogTWF0aC5hYnMobGFzdEVsZW1PZmZzZXQgLSB3aW5TY3JvbGxUb3ApICsgInB4IiwKCiAgICAgICAgICAgICAgICAgICAgICAiZGF0YS11bmlxdWUiOiBleHRlbmRQYWdlQ2xhc3NOYW1lCgogICAgICAgICAgICAgICAgICAgIH0pKTsKCiAgICAgICAgICAgICAgICAgICAgaWYgKHNlbGYuZXh0ZW5kUGFnZVNjcm9sbCkgewoKICAgICAgICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtID0gc2VsZi5lbGVtZW50LmZpbmQoJ2xpLicgKyBzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgICAgICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGN1cnJlbnRFbGVtLmF0dHIoImRhdGEtdW5pcXVlIikgKyAnIl0nKSk7CgogICAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgLy8gVGhlIHplcm8gdGltZW91dCBlbnN1cmVzIHRoZSBmb2xsb3dpbmcgY29kZSBpcyBydW4gYWZ0ZXIgdGhlIHNjcm9sbCBldmVudHMKICAgICAgICAgICAgICBzZXRUaW1lb3V0KGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBkaXN0YW5jZSB0byB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIHZhciBjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPSBudWxsLAoKICAgICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgICAgY2xvc2VzdEFuY2hvcklkeCA9IG51bGwsCgogICAgICAgICAgICAgICAgICAvLyBLZWVwcyBhIHJlZmVyZW5jZSB0byBhbGwgYW5jaG9ycwogICAgICAgICAgICAgICAgICBhbmNob3JzID0gJChzZWxmLm9wdGlvbnMuY29udGV4dCkuZmluZCgiZGl2W2RhdGEtdW5pcXVlXSIpLAoKICAgICAgICAgICAgICAgICAgYW5jaG9yVGV4dDsKCiAgICAgICAgICAgICAgICAvLyBEZXRlcm1pbmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIGFuY2hvcnMuZWFjaChmdW5jdGlvbihpZHgpIHsKICAgICAgICAgICAgICAgICAgdmFyIGRpc3RhbmNlID0gTWF0aC5hYnMoKCQodGhpcykubmV4dCgpLmxlbmd0aCA/ICQodGhpcykubmV4dCgpIDogJCh0aGlzKSkub2Zmc2V0KCkudG9wIC0gd2luU2Nyb2xsVG9wIC0gc2VsZi5vcHRpb25zLmhpZ2hsaWdodE9mZnNldCk7CiAgICAgICAgICAgICAgICAgIGlmIChjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPT0gbnVsbCB8fCBkaXN0YW5jZSA8IGNsb3Nlc3RBbmNob3JEaXN0YW5jZSkgewogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JEaXN0YW5jZSA9IGRpc3RhbmNlOwogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JJZHggPSBpZHg7CiAgICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICB9KTsKCiAgICAgICAgICAgICAgICBhbmNob3JUZXh0ID0gJChhbmNob3JzW2Nsb3Nlc3RBbmNob3JJZHhdKS5hdHRyKCJkYXRhLXVuaXF1ZSIpOwoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgbGlzdCBpdGVtIEhUTUwgZWxlbWVudCB0aGF0IGNvcnJlc3BvbmRzIHRvIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIGFuY2hvciB0YWcKICAgICAgICAgICAgICAgIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGFuY2hvclRleHQgKyAnIl0nKTsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgYGhpZ2hsaWdodE9uU2Nyb2xsYCBvcHRpb24gaXMgdHJ1ZSBhbmQgYSBuZXh0IGVsZW1lbnQgaXMgZm91bmQKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuaGlnaGxpZ2h0T25TY3JvbGwgJiYgZWxlbS5sZW5ndGgpIHsKCiAgICAgICAgICAgICAgICAgIC8vIFJlbW92ZXMgaGlnaGxpZ2h0aW5nIGZyb20gYWxsIG9mIHRoZSBsaXN0IGl0ZW0ncwogICAgICAgICAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBjb3JyZXNwb25kaW5nIGxpc3QgaXRlbQogICAgICAgICAgICAgICAgICBlbGVtLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSkgewoKICAgICAgICAgICAgICAgICAgaWYgKHdpbmRvdy5sb2NhdGlvbi5oYXNoICE9PSAiIyIgKyBhbmNob3JUZXh0KSB7CgogICAgICAgICAgICAgICAgICAgIHdpbmRvdy5sb2NhdGlvbi5yZXBsYWNlKCIjIiArIGFuY2hvclRleHQpOwoKICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIC8vIElmIHRoZSBgc2hvd0FuZEhpZGVPblNjcm9sbGAgb3B0aW9uIGlzIHRydWUKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCAmJiBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGUpIHsKCiAgICAgICAgICAgICAgICAgIHNlbGYuX3RyaWdnZXJTaG93KGVsZW0sIHRydWUpOwoKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgfSwgMCk7CgogICAgICAgICAgICB9KTsKCiAgICAgICAgICB9KTsKICAgICAgICB9CgogICAgICB9LAoKICAgICAgLy8gU2hvdwogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgT3BlbnMgdGhlIGN1cnJlbnQgc3ViLWhlYWRlcgogICAgICBzaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgYHNlbGZgIHZhcmlhYmxlCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAogICAgICAgICAgZWxlbWVudCA9IGVsZW07CgogICAgICAgIC8vIElmIHRoZSBzdWItaGVhZGVyIGlzIG5vdCBhbHJlYWR5IHZpc2libGUKICAgICAgICBpZiAoIWVsZW0uaXMoIjp2aXNpYmxlIikpIHsKCiAgICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50IGRvZXMgbm90IGhhdmUgYW55IG5lc3RlZCBzdWJoZWFkZXJzLCBpcyBub3QgYSBoZWFkZXIsIGFuZCBpdHMgcGFyZW50IGlzIG5vdCB2aXNpYmxlCiAgICAgICAgICBpZiAoIWVsZW0uZmluZChzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSAmJiAhZWxlbS5wYXJlbnQoKS5pcygiOnZpc2libGUiKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIGFsbCBvZiB0aGUgc3ViaGVhZGVycyB3aXRoaW4gdGhlIGN1cnJlbnQgaGVhZGVyCiAgICAgICAgICAgIGVsZW0gPSBlbGVtLnBhcmVudHMoc3ViaGVhZGVyQ2xhc3MpLmFkZChlbGVtKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgZWxlbWVudCBkb2VzIG5vdCBoYXZlIGFueSBuZXN0ZWQgc3ViaGVhZGVycyBhbmQgaXMgbm90IGEgaGVhZGVyCiAgICAgICAgICBlbHNlIGlmICghZWxlbS5jaGlsZHJlbihzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIHRoZSBjbG9zZXN0IHN1YmhlYWRlcgogICAgICAgICAgICBlbGVtID0gZWxlbS5jbG9zZXN0KHN1YmhlYWRlckNsYXNzKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy9EZXRlcm1pbmVzIHdoYXQgalF1ZXJ5IGVmZmVjdCB0byB1c2UKICAgICAgICAgIHN3aXRjaCAoc2VsZi5vcHRpb25zLnNob3dFZmZlY3QpIHsKCiAgICAgICAgICAgIC8vVXNlcyBgbm8gZWZmZWN0YAogICAgICAgICAgICBjYXNlICJub25lIjoKCiAgICAgICAgICAgICAgZWxlbS5zaG93KCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL1VzZXMgdGhlIGpRdWVyeSBgc2hvd2Agc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAic2hvdyI6CgogICAgICAgICAgICAgIGVsZW0uc2hvdyhzZWxmLm9wdGlvbnMuc2hvd0VmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAgIC8vVXNlcyB0aGUgalF1ZXJ5IGBzbGlkZURvd25gIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICAgIGNhc2UgInNsaWRlRG93biI6CgogICAgICAgICAgICAgIGVsZW0uc2xpZGVEb3duKHNlbGYub3B0aW9ucy5zaG93RWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgICAgLy9Vc2VzIHRoZSBqUXVlcnkgYGZhZGVJbmAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAiZmFkZUluIjoKCiAgICAgICAgICAgICAgZWxlbS5mYWRlSW4oc2VsZi5vcHRpb25zLnNob3dFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL0lmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBgalF1ZXJ5VUkgc2hvdyBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICAgIGRlZmF1bHQ6CgogICAgICAgICAgICAgIGVsZW0uc2hvdygpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICB9CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgc3ViaGVhZGVyIHBhcmVudCBlbGVtZW50IGlzIGEgaGVhZGVyCiAgICAgICAgaWYgKGVsZW0ucGFyZW50KCkuaXMoaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gSGlkZXMgYWxsIG5vbi1hY3RpdmUgc3ViLWhlYWRlcnMKICAgICAgICAgIHNlbGYuaGlkZSgkKHN1YmhlYWRlckNsYXNzKS5ub3QoZWxlbSkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IHN1YmhlYWRlciBwYXJlbnQgZWxlbWVudCBpcyBub3QgYSBoZWFkZXIKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBIaWRlcyBhbGwgbm9uLWFjdGl2ZSBzdWItaGVhZGVycwogICAgICAgICAgc2VsZi5oaWRlKCQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLmNsb3Nlc3QoaGVhZGVyQ2xhc3MpLmZpbmQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLnNpYmxpbmdzKCkpKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gTWFpbnRhaW5zIGNoYWluYWJsaXR5CiAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICB9LAoKICAgICAgLy8gSGlkZQogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgQ2xvc2VzIHRoZSBjdXJyZW50IHN1Yi1oZWFkZXIKICAgICAgaGlkZTogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICAvLyBTdG9yZXMgdGhlIHBsdWdpbiBjb250ZXh0IGluIHRoZSBgc2VsZmAgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXM7CgogICAgICAgIC8vRGV0ZXJtaW5lcyB3aGF0IGpRdWVyeSBlZmZlY3QgdG8gdXNlCiAgICAgICAgc3dpdGNoIChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdCkgewoKICAgICAgICAgIC8vIFVzZXMgYG5vIGVmZmVjdGAKICAgICAgICAgIGNhc2UgIm5vbmUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIFVzZXMgdGhlIGpRdWVyeSBgaGlkZWAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgIGNhc2UgImhpZGUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKHNlbGYub3B0aW9ucy5oaWRlRWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAvLyBVc2VzIHRoZSBqUXVlcnkgYHNsaWRlVXBgIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICBjYXNlICJzbGlkZVVwIjoKCiAgICAgICAgICAgIGVsZW0uc2xpZGVVcChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgLy8gVXNlcyB0aGUgalF1ZXJ5IGBmYWRlT3V0YCBzcGVjaWFsIGVmZmVjdAogICAgICAgICAgY2FzZSAiZmFkZU91dCI6CgogICAgICAgICAgICBlbGVtLmZhZGVPdXQoc2VsZi5vcHRpb25zLmhpZGVFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIElmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBganF1ZXJ5VUkgaGlkZSBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICBkZWZhdWx0OgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgfQoKICAgICAgICAvLyBNYWludGFpbnMgY2hhaW5hYmxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKICAgICAgfSwKCiAgICAgIC8vIF90cmlnZ2VyU2hvdwogICAgICAvLyAtLS0tLS0tLS0tLS0KICAgICAgLy8gICAgICBEZXRlcm1pbmVzIHdoYXQgZWxlbWVudHMgZ2V0IHNob3duIG9uIHNjcm9sbCBhbmQgY2xpY2sKICAgICAgX3RyaWdnZXJTaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzOwoKICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50J3MgcGFyZW50IGlzIGEgaGVhZGVyIGVsZW1lbnQgb3IgdGhlIG5leHQgZWxlbWVudCBpcyBhIG5lc3RlZCBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGlmIChlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSB8fCBlbGVtLm5leHQoKS5pcyhzdWJoZWFkZXJDbGFzcykpIHsKCiAgICAgICAgICAvLyBTaG93cyB0aGUgbmV4dCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLm5leHQoc3ViaGVhZGVyQ2xhc3MpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGVsZW1lbnQncyBwYXJlbnQgaXMgYSBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGVsc2UgaWYgKGVsZW0ucGFyZW50KCkuaXMoc3ViaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gU2hvd3MgdGhlIHBhcmVudCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLnBhcmVudCgpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0sCgogICAgICAvLyBfYWRkQ1NTQ2xhc3NlcwogICAgICAvLyAtLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgIF9hZGRDU1NDbGFzc2VzOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSBqcXVlcnlVSSB0aGVtZQogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgPT09ICJqcXVlcnl1aSIpIHsKCiAgICAgICAgICB0aGlzLmZvY3VzQ2xhc3MgPSAidWktc3RhdGUtZGVmYXVsdCI7CgogICAgICAgICAgdGhpcy5ob3ZlckNsYXNzID0gInVpLXN0YXRlLWhvdmVyIjsKCiAgICAgICAgICAvL0FkZHMgdGhlIGRlZmF1bHQgc3R5bGluZyB0byB0aGUgZHJvcGRvd24gbGlzdAogICAgICAgICAgdGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS13aWRnZXQiKS5maW5kKCIudG9jLXRpdGxlIikuYWRkQ2xhc3MoInVpLXdpZGdldC1oZWFkZXIiKS5lbmQoKS5maW5kKCJsaSIpLmFkZENsYXNzKCJ1aS13aWRnZXQtY29udGVudCIpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSB1c2VyIHdhbnRzIGEgdHdpdHRlckJvb3RzdHJhcCB0aGVtZQogICAgICAgIGVsc2UgaWYgKHRoaXMub3B0aW9ucy50aGVtZSA9PT0gImJvb3RzdHJhcCIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibmF2IG5hdi1saXN0Iik7CgogICAgICAgICAgdGhpcy5mb2N1c0NsYXNzID0gImFjdGl2ZSI7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSB0d2l0dGVyQm9vdHN0cmFwIHRoZW1lCiAgICAgICAgZWxzZSBpZiAodGhpcy5vcHRpb25zLnRoZW1lID09PSAiYm9vdHN0cmFwMyIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibGlzdC1ncm91cCIpOwoKICAgICAgICAgIHRoaXMuZWxlbWVudC5maW5kKGl0ZW1DbGFzcykuYWRkQ2xhc3MoImxpc3QtZ3JvdXAtaXRlbSIpOwoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9ICJhY3RpdmUiOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIGEgdXNlciBkb2VzIG5vdCB3YW50IGEgcHJlYnVpbHQgdGhlbWUKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBBZGRzIG1vcmUgbmV1dHJhbCBjbGFzc2VzIChpbnN0ZWFkIG9mIGpxdWVyeXVpKQoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9IHRvY0ZvY3VzQ2xhc3NOYW1lOwoKICAgICAgICAgIHRoaXMuaG92ZXJDbGFzcyA9IHRvY0hvdmVyQ2xhc3NOYW1lOwoKICAgICAgICB9CgogICAgICAgIC8vTWFpbnRhaW5zIGNoYWluYWJpbGl0eQogICAgICAgIHJldHVybiB0aGlzOwoKICAgICAgfSwKCiAgICAgIC8vIHNldE9wdGlvbgogICAgICAvLyAtLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIFRvY2lmeSBvcHRpb24gYWZ0ZXIgdGhlIHBsdWdpbiBpcyBpbnZva2VkCiAgICAgIHNldE9wdGlvbjogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIENhbGxzIHRoZSBqUXVlcnlVSSBXaWRnZXQgRmFjdG9yeSBzZXRPcHRpb24gbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb24uYXBwbHkodGhpcywgYXJndW1lbnRzKTsKCiAgICAgIH0sCgogICAgICAvLyBzZXRPcHRpb25zCiAgICAgIC8vIC0tLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIG9yIG11bHRpcGxlIFRvY2lmeSBvcHRpb25zIGFmdGVyIHRoZSBwbHVnaW4gaXMgaW52b2tlZAogICAgICBzZXRPcHRpb25zOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gQ2FsbHMgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IHNldE9wdGlvbnMgbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb25zLmFwcGx5KHRoaXMsIGFyZ3VtZW50cyk7CgogICAgICB9LAoKICAgICAgLy8gX3Njcm9sbFRvCiAgICAgIC8vIC0tLS0tLS0tLQogICAgICAvLyAgICAgIFNjcm9sbHMgdG8gYSBzcGVjaWZpYyBlbGVtZW50CiAgICAgIF9zY3JvbGxUbzogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCiAgICAgICAgICBkdXJhdGlvbiA9IHNlbGYub3B0aW9ucy5zbW9vdGhTY3JvbGwgfHwgMCwKICAgICAgICAgIHNjcm9sbFRvID0gc2VsZi5vcHRpb25zLnNjcm9sbFRvLAogICAgICAgICAgY3VycmVudERpdiA9ICQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGVsZW0uYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICBpZiAoIWN1cnJlbnREaXYubGVuZ3RoKSB7CgogICAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICAgIH0KCiAgICAgICAgLy8gT25jZSBhbGwgYW5pbWF0aW9ucyBvbiB0aGUgcGFnZSBhcmUgY29tcGxldGUsIHRoaXMgY2FsbGJhY2sgZnVuY3Rpb24gd2lsbCBiZSBjYWxsZWQKICAgICAgICAkKCJodG1sLCBib2R5IikucHJvbWlzZSgpLmRvbmUoZnVuY3Rpb24oKSB7CgogICAgICAgICAgLy8gQW5pbWF0ZXMgdGhlIGh0bWwgYW5kIGJvZHkgZWxlbWVudCBzY3JvbGx0b3BzCiAgICAgICAgICAkKCJodG1sLCBib2R5IikuYW5pbWF0ZSh7CgogICAgICAgICAgICAvLyBTZXRzIHRoZSBqUXVlcnkgYHNjcm9sbFRvcGAgdG8gdGhlIHRvcCBvZmZzZXQgb2YgdGhlIEhUTUwgZGl2IHRhZyB0aGF0IG1hdGNoZXMgdGhlIGN1cnJlbnQgbGlzdCBpdGVtJ3MgYGRhdGEtdW5pcXVlYCB0YWcKICAgICAgICAgICAgInNjcm9sbFRvcCI6IGN1cnJlbnREaXYub2Zmc2V0KCkudG9wIC0gKCQuaXNGdW5jdGlvbihzY3JvbGxUbykgPyBzY3JvbGxUby5jYWxsKCkgOiBzY3JvbGxUbykgKyAicHgiCgogICAgICAgICAgfSwgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uIHRvIHRoZSBzbW9vdGhTY3JvbGxTcGVlZCBvcHRpb24KICAgICAgICAgICAgImR1cmF0aW9uIjogZHVyYXRpb24KCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0KCiAgICB9KTsKCiAgfSkpOyAvL2VuZCBvZiBwbHVnaW4K"></script> <script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ18nKTsKICAgICAgdGFiLmF0dHIoJ2lkJywgaWQpOwoKICAgICAgLy8gZ2V0IHRoZSBoZWFkaW5nIGVsZW1lbnQgd2l0aGluIGl0LCBncmFiIGl0J3MgdGV4dCwgdGhlbiByZW1vdmUgaXQKICAgICAgdmFyIGhlYWRpbmcgPSB0YWIuZmluZCgnaCcgKyB0YWJMZXZlbCArICc6Zmlyc3QnKTsKICAgICAgdmFyIGhlYWRpbmdUZXh0ID0gaGVhZGluZy5odG1sKCk7CiAgICAgIGhlYWRpbmcucmVtb3ZlKCk7CgogICAgICAvLyBidWlsZCBhbmQgYXBwZW5kIHRoZSB0YWIgbGlzdCBpdGVtCiAgICAgIHZhciBhID0gJCgnPGEgcm9sZT0idGFiIiBkYXRhLXRvZ2dsZT0idGFiIj4nICsgaGVhZGluZ1RleHQgKyAnPC9hPicpOwogICAgICBhLmF0dHIoJ2hyZWYnLCAnIycgKyBpZCk7CiAgICAgIGEuYXR0cignYXJpYS1jb250cm9scycsIGlkKTsKICAgICAgdmFyIGxpID0gJCgnPGxpIHJvbGU9InByZXNlbnRhdGlvbiI+PC9saT4nKTsKICAgICAgbGkuYXBwZW5kKGEpOwogICAgICB0YWJMaXN0LmFwcGVuZChsaSk7CgogICAgICAvLyBzZXQgaXQncyBhdHRyaWJ1dGVzCiAgICAgIHRhYi5hdHRyKCdyb2xlJywgJ3RhYnBhbmVsJyk7CiAgICAgIHRhYi5hZGRDbGFzcygndGFiLXBhbmUnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWJiZWQtcGFuZScpOwogICAgICBpZiAoZmFkZSkKICAgICAgICB0YWIuYWRkQ2xhc3MoJ2ZhZGUnKTsKCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwoKICAgIC8vIHNldCBhY3RpdmUgdGFiCiAgICAkKHRhYkxpc3QuY2hpbGRyZW4oJ2xpJylbYWN0aXZlVGFiXSkuYWRkQ2xhc3MoJ2FjdGl2ZScpOwogICAgdmFyIGFjdGl2ZSA9ICQodGFiQ29udGVudC5jaGlsZHJlbignZGl2LnNlY3Rpb24nKVthY3RpdmVUYWJdKTsKICAgIGFjdGl2ZS5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICBpZiAoZmFkZSkKICAgICAgYWN0aXZlLmFkZENsYXNzKCdpbicpOwoKICAgIGlmICh0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1zdGlja3kiKSkKICAgICAgdGFic2V0LnJtYXJrZG93blN0aWNreVRhYnMoKTsKICB9CgogIC8vIGNvbnZlcnQgc2VjdGlvbiBkaXZzIHdpdGggdGhlIC50YWJzZXQgY2xhc3MgdG8gdGFic2V0cwogIHZhciB0YWJzZXRzID0gJCgiZGl2LnNlY3Rpb24udGFic2V0Iik7CiAgdGFic2V0cy5lYWNoKGZ1bmN0aW9uKGkpIHsKICAgIGJ1aWxkVGFic2V0KCQodGFic2V0c1tpXSkpOwogIH0pOwp9OwoK"></script> -<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script> +<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> +<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> @@ -35,10 +35,12 @@ } </style> <script type="text/javascript"> -if (window.hljs && document.readyState && document.readyState === "complete") { - window.setTimeout(function() { - hljs.initHighlighting(); - }, 0); +if (window.hljs) { + hljs.configure({languages: []}); + hljs.initHighlightingOnLoad(); + if (document.readyState && document.readyState === "complete") { + window.setTimeout(function() { hljs.initHighlighting(); }, 0); + } } </script> @@ -217,7 +219,7 @@ <h1 class="title toc-ignore">RATs: Input and Settings</h1> <h4 class="author"><em>Kimon Froussios</em></h4> -<h4 class="date"><em>19 SEP 2017</em></h4> +<h4 class="date"><em>08 MAR 2018</em></h4> </div> @@ -238,13 +240,13 @@ <h2>Data</h2> <p>As of <code>v0.6.0</code>, input from a <code>sleuth</code> object is no longer supported by RATs. This is due to changes in Sleuth <code>v0.29</code> that made the bootstrap data no longer available. Instead, RATs already supports input directly from the Kallisto/Salmon quantifications.</p> <p>For option 1, the function <code>fish4rodents()</code> will load the data into tables suitable for option 2. Details in the respective section below.</p> <p>For options 2 and 3, the format of the tables is as in the example below. The first column contains the transcript identifiers. Subsequent columns contain the abundances.</p> -<pre><code>## target V1 V2 V3 -## 1: LC1 3 2 0 -## 2: NIA1 333 310 340 -## 3: NIA2 666 680 610 -## 4: 1A1N-1 10 11 7 -## 5: 1A1N-2 20 21 18 -## 6: 1D1C:one 0 0 0</code></pre> +<pre><code>## target V1 V2 V3 +## 1: 1A1B.a 69 96 88 +## 2: 1A1B.b 0 0 0 +## 3: LC1 3 2 0 +## 4: NIA1 333 310 340 +## 5: NIA2 666 680 610 +## 6: 1A1N-1 10 11 7</code></pre> <ul> <li>In the case of option 3, each column represents a sample. Therefore, each condition is represented by a single table containing the relevant samples.</li> <li>In the case of option 2, each column represents a bootstrap iteration and each table represents a sample. Therefore, each condition is represented by a list of tables.</li> @@ -259,12 +261,12 @@ <h3>Read counts, TPMs, etc</h3> <h2>Annotation</h2> <p>Regardless of data format, RATs also needs an annotation <code>data.frame</code> or <code>data.table</code> that matches transcript identifiers to gene identifiers. By default the column labels are <code>target_id</code> for the transcript IDs and <code>parent_id</code> for the gene IDs. These label values can be overridden (see Additional Settings later in this vignette). The annotation table looks like this:</p> <pre><code>## target_id parent_id -## 1 NIB.1 NIB -## 2 1A1N-2 1A1N -## 3 1D1C:one 1D1C -## 4 1D1C:two 1D1C -## 5 1B1C.1 1B1C -## 6 1B1C.2 1B1C</code></pre> +## 1 1A1B.a 1A1B +## 2 1A1B.b 1A1B +## 3 NIB.1 NIB +## 4 1A1N-2 1A1N +## 5 1D1C:one 1D1C +## 6 1D1C:two 1D1C</code></pre> <p>Such a table can be compiled with a variety of methods and from a variety of resources. RATs provides functionality to create this table from a GTF file. (<strong>Note:</strong> GFF3 is not supported for this)</p> <pre class="r"><code># Extract transcript ID to gene ID index from a GTF annotation. myannot <- annot2ids("my_annotation_file.gtf")</code></pre> @@ -408,13 +410,14 @@ <h2>Thresholds</h2> <pre class="r"><code># Calling DTU with custom thresholds. mydtu <- call_DTU(annot= myannot, boot_data_A= mycond_A, boot_data_B= mycond_B, - p_thresh= 0.01, abund_thresh= 10, dprop_thres = 0.25)</code></pre> + p_thresh= 0.01, dprop_thres = 0.15, abund_thresh= 10)</code></pre> <ol style="list-style-type: decimal"> -<li><code>p_thresh</code> - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter. (Default 0.05)</li> -<li><code>abund_thresh</code> - Noise threshold. Transcripts with abundance below that value in both conditions are ignored. Higher threshold values are stricter. (Default 5, assumes abundances scaled to library size)</li> -<li><code>dprop_thresh</code> - Effect size threshold. Transcripts whose proportion changes between conditions by less than the threshold are considered non-DTU, regardless of their statistical significance. Higher threshold values are stricter. (Default 0.20)</li> +<li><code>p_thresh</code> - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter, and help reduce low-count low-confidence calls. (Default 0.05, very permissive)</li> +<li><code>dprop_thresh</code> - Effect size threshold. Transcripts whose proportion changes between conditions by less than this threshold are considered uninteresting, regardless of their statistical significance. (Default 0.20, quite strict)</li> +<li><code>abund_thresh</code> - Noise threshold. Minimum mean (across replicates) abundance for a transcript to be considered expressed. Transcripts with mean abundances below this will be ignored. Mean total gene count must also meet this value in both conditions, a.k.a. at least one expressed isoform must exist in each condition. (Default 5, very permissive)</li> </ol> -<p>The default values for these thresholds have been chosen such that they achieve a <em>median</em> FDR <5% for a high quality dataset from <em>Arabidopsis thaliana</em>, even with only 3 replicates per condition. Your mileage may vary and you should give some consideration to selecting appropriate values. Depending on the settings, <em>additional thresholds</em> are available and will be discussed in their respective sections below.</p> +<p>The default values for these thresholds have been chosen such that they achieve a <em>median</em> FDR <5% for a high quality dataset from <em>Arabidopsis thaliana</em>, even with only 3 replicates per condition. Your mileage may vary and you should give some consideration to selecting appropriate values.</p> +<p>Depending on the settings, <em>additional thresholds</em> are available and will be discussed in their respective sections below.</p> </div> <div id="bootstrapping" class="section level2"> <h2>Bootstrapping</h2> @@ -477,7 +480,7 @@ <h2>Multi-threading</h2> <ol style="list-style-type: decimal"> <li><code>threads</code> - The number of threads to use. (Default 1)</li> </ol> -<p>Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems. Refer to the <code>parallel</code> package for details.</p> +<p>Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems (Linux, Mac, not Windows). Refer to the <code>parallel</code> package for details.</p> </div> <div id="test-selection" class="section level2"> <h2>Test selection</h2> @@ -525,8 +528,8 @@ <h3>Annotation field names</h3> <div id="abundance-scaling" class="section level2"> <h2>Abundance scaling</h2> <p>As mentioned previously, various commonly-used normalised abundance units (like TPM) are scaled to an arbitrary and usually smaller-than-actual sample size (often 1 million reads or fragments). This artificially deflates the significances from count-based tests, such as those employed by RATs, and reduces the statistical power of the method.</p> -<p>To counter this, RATs provides the option to scale abundaces either equally by a single factor (such as average library size among samples) or by a vector of factors (one per sample). The former maintains any pre-existing library-size normalisation among samples. This is necessary for fold-change based methods, but RATs does not require it. Instead, using the respective actual library sizes of the samples allows the higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have dissimilar library sizes.</p> -<p>For flexibility with different types of input, these scaling options can be applied in either of two stages: The data import step by <code>fish4rodents()</code>, or the actual testing step by <code>call_DTU()</code>. In the example examined previously, <code>fish4rodents()</code> was instructed to create TPM abundances, by normalising to 10000000 reads. Such values are useful with certain other tools that a user may also intend to use. Subsequently, these TPMs were re-scaled to meet the library size of each sample, thus providing RATs with count-like abundance values that retain the TPM’s normalisation by isoform length. However, it is not necessary to scale in two separate steps.</p> +<p>To counter this, RATs provides the option to scale abundaces either equally by a single factor (such as average library size among samples) or by a vector of factors (one per sample). The former maintains any pre-existing library-size normalisation among samples. This is necessary for fold-change based methods, but RATs does not require it. Instead, using the respective actual library sizes of the samples allows the higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have very dissimilar library sizes.</p> +<p>For flexibility with different types of input, these scaling options can be applied in either of two stages: The data import step by <code>fish4rodents()</code>, or the actual testing step by <code>call_DTU()</code>. In the example examined previously, <code>fish4rodents()</code> was instructed to create TPM abundances, by normalising to <code>1000000</code> reads. Such values are useful with certain other tools that a user may also intend to use. Subsequently, these TPMs were re-scaled to meet the library size of each sample, thus providing RATs with count-like abundance values that retain the normalisation by isoform length. However, it is not necessary to scale in two separate steps.</p> <p>Both <code>fish4rodents()</code> and <code>call_DTU()</code> support scaling by a single value or a vector of values. If you don’t need the TPMs, you can scale directly to the desired library size(s), as in the examples below:</p> <pre class="r"><code># 1: # Scale directly to library sizes at the import step. @@ -560,7 +563,7 @@ <h2>Abundance scaling</h2> mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, boot_data_B= mydata$boot_data_B, scaling=c(25, 26.7, 23, 50.0, 45, 48.46, 52.36))</code></pre> -<p>You can mix and match scaling options as per your needs, so take care to ensure that the scaling you apply is appropriate. It is important to note, that if you simply run both methods with their respective defaults, you’ll effectively run RATs on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data.</p> +<p>You can mix and match scaling options as per your needs, so take care to ensure that the scaling you apply is appropriate. <em>It is important to note</em>, that if you simply run both methods with their respective defaults, you’ll effectively run RATs on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data.</p> <hr /> </div> </div> @@ -569,9 +572,9 @@ <h1>Annotation discrepancies</h1> <p>Different annotation versions often preserve transcript IDs, despite altering the details of the transcript model. It is important to use the same annotation throughout the workflow, otherwise the abundances will not be comparable in a meaningful way.</p> <p>All internal operations and the output of RATs are based on the annotation provided:</p> <ul> -<li>Any transcripts present in the data but missing from the annotation will be ignored completely and will not show up in the output, as there is no reliable way to match them to gene IDs.</li> -<li>Any transcript/gene present in the annotation but missing from the data will be included in the output as zero expression.</li> -<li>If the samples appear to use different annotations from one another, RATs will abort.</li> +<li>Any transcript IDs present in the data but missing from the annotation will be silently ignored and will not show up in the output, as they cannot be matched to the gene IDs.</li> +<li>Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression.</li> +<li>If the samples appear to have been quantified with different annotations from one another, RATs will abort.</li> </ul> <hr /> </div> diff --git a/inst/doc/output.html b/inst/doc/output.html index 7d2df92..e2ad2cb 100644 --- a/inst/doc/output.html +++ b/inst/doc/output.html @@ -25,8 +25,8 @@ <link href="data:text/css;charset=utf-8,%0A%0A%2Etocify%20%7B%0Awidth%3A%2020%25%3B%0Amax%2Dheight%3A%2090%25%3B%0Aoverflow%3A%20auto%3B%0Amargin%2Dleft%3A%202%25%3B%0Aposition%3A%20fixed%3B%0Aborder%3A%201px%20solid%20%23ccc%3B%0Awebkit%2Dborder%2Dradius%3A%206px%3B%0Amoz%2Dborder%2Dradius%3A%206px%3B%0Aborder%2Dradius%3A%206px%3B%0A%7D%0A%0A%2Etocify%20ul%2C%20%2Etocify%20li%20%7B%0Alist%2Dstyle%3A%20none%3B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aborder%3A%20none%3B%0Aline%2Dheight%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dheader%20%7B%0Atext%2Dindent%3A%2010px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2020px%3B%0Adisplay%3A%20none%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20li%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2040px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20%3E%20a%2C%20%2Etocify%20%2Enav%2Dlist%20%2Enav%2Dheader%20%7B%0Amargin%3A%200px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20a%2C%20%2Etocify%20%2Elist%2Dgroup%2Ditem%20%7B%0Apadding%3A%205px%3B%0A%7D%0A%2Etocify%20%2Enav%2Dpills%20%3E%20li%20%7B%0Afloat%3A%20none%3B%0A%7D%0A%0A%0A" rel="stylesheet" /> <script src="data:application/x-javascript;base64,LyoganF1ZXJ5IFRvY2lmeSAtIHYxLjkuMSAtIDIwMTMtMTAtMjIKICogaHR0cDovL3d3dy5ncmVnZnJhbmtvLmNvbS9qcXVlcnkudG9jaWZ5LmpzLwogKiBDb3B5cmlnaHQgKGMpIDIwMTMgR3JlZyBGcmFua287IExpY2Vuc2VkIE1JVCAqLwoKLy8gSW1tZWRpYXRlbHktSW52b2tlZCBGdW5jdGlvbiBFeHByZXNzaW9uIChJSUZFKSBbQmVuIEFsbWFuIEJsb2cgUG9zdF0oaHR0cDovL2JlbmFsbWFuLmNvbS9uZXdzLzIwMTAvMTEvaW1tZWRpYXRlbHktaW52b2tlZC1mdW5jdGlvbi1leHByZXNzaW9uLykgdGhhdCBjYWxscyBhbm90aGVyIElJRkUgdGhhdCBjb250YWlucyBhbGwgb2YgdGhlIHBsdWdpbiBsb2dpYy4gIEkgdXNlZCB0aGlzIHBhdHRlcm4gc28gdGhhdCBhbnlvbmUgdmlld2luZyB0aGlzIGNvZGUgd291bGQgbm90IGhhdmUgdG8gc2Nyb2xsIHRvIHRoZSBib3R0b20gb2YgdGhlIHBhZ2UgdG8gdmlldyB0aGUgbG9jYWwgcGFyYW1ldGVycyB0aGF0IHdlcmUgcGFzc2VkIHRvIHRoZSBtYWluIElJRkUuCihmdW5jdGlvbih0b2NpZnkpIHsKCiAgICAvLyBFQ01BU2NyaXB0IDUgU3RyaWN0IE1vZGU6IFtKb2huIFJlc2lnIEJsb2cgUG9zdF0oaHR0cDovL2Vqb2huLm9yZy9ibG9nL2VjbWFzY3JpcHQtNS1zdHJpY3QtbW9kZS1qc29uLWFuZC1tb3JlLykKICAgICJ1c2Ugc3RyaWN0IjsKCiAgICAvLyBDYWxscyB0aGUgc2Vjb25kIElJRkUgYW5kIGxvY2FsbHkgcGFzc2VzIGluIHRoZSBnbG9iYWwgalF1ZXJ5LCB3aW5kb3csIGFuZCBkb2N1bWVudCBvYmplY3RzCiAgICB0b2NpZnkod2luZG93LmpRdWVyeSwgd2luZG93LCBkb2N1bWVudCk7CgogIH0KCiAgLy8gTG9jYWxseSBwYXNzZXMgaW4gYGpRdWVyeWAsIHRoZSBgd2luZG93YCBvYmplY3QsIHRoZSBgZG9jdW1lbnRgIG9iamVjdCwgYW5kIGFuIGB1bmRlZmluZWRgIHZhcmlhYmxlLiAgVGhlIGBqUXVlcnlgLCBgd2luZG93YCBhbmQgYGRvY3VtZW50YCBvYmplY3RzIGFyZSBwYXNzZWQgaW4gbG9jYWxseSwgdG8gaW1wcm92ZSBwZXJmb3JtYW5jZSwgc2luY2UgamF2YXNjcmlwdCBmaXJzdCBzZWFyY2hlcyBmb3IgYSB2YXJpYWJsZSBtYXRjaCB3aXRoaW4gdGhlIGxvY2FsIHZhcmlhYmxlcyBzZXQgYmVmb3JlIHNlYXJjaGluZyB0aGUgZ2xvYmFsIHZhcmlhYmxlcyBzZXQuICBBbGwgb2YgdGhlIGdsb2JhbCB2YXJpYWJsZXMgYXJlIGFsc28gcGFzc2VkIGluIGxvY2FsbHkgdG8gYmUgbWluaWZpZXIgZnJpZW5kbHkuIGB1bmRlZmluZWRgIGNhbiBiZSBwYXNzZWQgaW4gbG9jYWxseSwgYmVjYXVzZSBpdCBpcyBub3QgYSByZXNlcnZlZCB3b3JkIGluIEphdmFTY3JpcHQuCiAgKGZ1bmN0aW9uKCQsIHdpbmRvdywgZG9jdW1lbnQsIHVuZGVmaW5lZCkgewoKICAgIC8vIEVDTUFTY3JpcHQgNSBTdHJpY3QgTW9kZTogW0pvaG4gUmVzaWcgQmxvZyBQb3N0XShodHRwOi8vZWpvaG4ub3JnL2Jsb2cvZWNtYXNjcmlwdC01LXN0cmljdC1tb2RlLWpzb24tYW5kLW1vcmUvKQogICAgInVzZSBzdHJpY3QiOwoKICAgIHZhciB0b2NDbGFzc05hbWUgPSAidG9jaWZ5IiwKICAgICAgdG9jQ2xhc3MgPSAiLiIgKyB0b2NDbGFzc05hbWUsCiAgICAgIHRvY0ZvY3VzQ2xhc3NOYW1lID0gInRvY2lmeS1mb2N1cyIsCiAgICAgIHRvY0hvdmVyQ2xhc3NOYW1lID0gInRvY2lmeS1ob3ZlciIsCiAgICAgIGhpZGVUb2NDbGFzc05hbWUgPSAidG9jaWZ5LWhpZGUiLAogICAgICBoaWRlVG9jQ2xhc3MgPSAiLiIgKyBoaWRlVG9jQ2xhc3NOYW1lLAogICAgICBoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LWhlYWRlciIsCiAgICAgIGhlYWRlckNsYXNzID0gIi4iICsgaGVhZGVyQ2xhc3NOYW1lLAogICAgICBzdWJoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LXN1YmhlYWRlciIsCiAgICAgIHN1YmhlYWRlckNsYXNzID0gIi4iICsgc3ViaGVhZGVyQ2xhc3NOYW1lLAogICAgICBpdGVtQ2xhc3NOYW1lID0gInRvY2lmeS1pdGVtIiwKICAgICAgaXRlbUNsYXNzID0gIi4iICsgaXRlbUNsYXNzTmFtZSwKICAgICAgZXh0ZW5kUGFnZUNsYXNzTmFtZSA9ICJ0b2NpZnktZXh0ZW5kLXBhZ2UiLAogICAgICBleHRlbmRQYWdlQ2xhc3MgPSAiLiIgKyBleHRlbmRQYWdlQ2xhc3NOYW1lOwoKICAgIC8vIENhbGxpbmcgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IE1ldGhvZAogICAgJC53aWRnZXQoInRvYy50b2NpZnkiLCB7CgogICAgICAvL1BsdWdpbiB2ZXJzaW9uCiAgICAgIHZlcnNpb246ICIxLjkuMSIsCgogICAgICAvLyBUaGVzZSBvcHRpb25zIHdpbGwgYmUgdXNlZCBhcyBkZWZhdWx0cwogICAgICBvcHRpb25zOiB7CgogICAgICAgIC8vICoqY29udGV4dCoqOiBBY2NlcHRzIFN0cmluZzogQW55IGpRdWVyeSBzZWxlY3RvcgogICAgICAgIC8vIFRoZSBjb250YWluZXIgZWxlbWVudCB0aGF0IGhvbGRzIGFsbCBvZiB0aGUgZWxlbWVudHMgdXNlZCB0byBnZW5lcmF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMKICAgICAgICBjb250ZXh0OiAiYm9keSIsCgogICAgICAgIC8vICoqaWdub3JlU2VsZWN0b3IqKjogQWNjZXB0cyBTdHJpbmc6IEFueSBqUXVlcnkgc2VsZWN0b3IKICAgICAgICAvLyBBIHNlbGVjdG9yIHRvIGFueSBlbGVtZW50IHRoYXQgd291bGQgYmUgbWF0Y2hlZCBieSBzZWxlY3RvcnMgdGhhdCB5b3Ugd2lzaCB0byBiZSBpZ25vcmVkCiAgICAgICAgaWdub3JlU2VsZWN0b3I6IG51bGwsCgogICAgICAgIC8vICoqc2VsZWN0b3JzKio6IEFjY2VwdHMgYW4gQXJyYXkgb2YgU3RyaW5nczogQW55IGpRdWVyeSBzZWxlY3RvcnMKICAgICAgICAvLyBUaGUgZWxlbWVudCdzIHVzZWQgdG8gZ2VuZXJhdGUgdGhlIHRhYmxlIG9mIGNvbnRlbnRzLiAgVGhlIG9yZGVyIGlzIHZlcnkgaW1wb3J0YW50IHNpbmNlIGl0IHdpbGwgZGV0ZXJtaW5lIHRoZSB0YWJsZSBvZiBjb250ZW50J3MgbmVzdGluZyBzdHJ1Y3R1cmUKICAgICAgICBzZWxlY3RvcnM6ICJoMSwgaDIsIGgzIiwKCiAgICAgICAgLy8gKipzaG93QW5kSGlkZSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIFVzZWQgdG8gZGV0ZXJtaW5lIGlmIGVsZW1lbnRzIHNob3VsZCBiZSBzaG93biBhbmQgaGlkZGVuCiAgICAgICAgc2hvd0FuZEhpZGU6IHRydWUsCgogICAgICAgIC8vICoqc2hvd0VmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZUluIiwgInNob3ciLCBvciAic2xpZGVEb3duIgogICAgICAgIC8vIFVzZWQgdG8gZGlzcGxheSBhbnkgb2YgdGhlIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcwogICAgICAgIHNob3dFZmZlY3Q6ICJzbGlkZURvd24iLAoKICAgICAgICAvLyAqKnNob3dFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBzaG93IGFuaW1hdGlvbgogICAgICAgIHNob3dFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqaGlkZUVmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZU91dCIsICJoaWRlIiwgb3IgInNsaWRlVXAiCiAgICAgICAgLy8gVXNlZCB0byBoaWRlIGFueSBvZiB0aGUgdGFibGUgb2YgY29udGVudHMgbmVzdGVkIGl0ZW1zCiAgICAgICAgaGlkZUVmZmVjdDogInNsaWRlVXAiLAoKICAgICAgICAvLyAqKmhpZGVFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBoaWRlIGFuaW1hdGlvbgogICAgICAgIGhpZGVFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc21vb3RoU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiBhIGpRdWVyeSBhbmltYXRpb24gc2hvdWxkIGJlIHVzZWQgdG8gc2Nyb2xsIHRvIHNwZWNpZmljIHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW1zIG9uIHRoZSBwYWdlCiAgICAgICAgc21vb3RoU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKnNtb290aFNjcm9sbFNwZWVkKio6IEFjY2VwdHMgTnVtYmVyIChtaWxsaXNlY29uZHMpIG9yIFN0cmluZzogInNsb3ciLCAibWVkaXVtIiwgb3IgImZhc3QiCiAgICAgICAgLy8gVGhlIHRpbWUgZHVyYXRpb24gb2YgdGhlIHNtb290aFNjcm9sbCBhbmltYXRpb24KICAgICAgICBzbW9vdGhTY3JvbGxTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc2Nyb2xsVG8qKjogQWNjZXB0cyBOdW1iZXIgKHBpeGVscykKICAgICAgICAvLyBUaGUgYW1vdW50IG9mIHNwYWNlIGJldHdlZW4gdGhlIHRvcCBvZiBwYWdlIGFuZCB0aGUgc2VsZWN0ZWQgdGFibGUgb2YgY29udGVudHMgaXRlbSBhZnRlciB0aGUgcGFnZSBoYXMgYmVlbiBzY3JvbGxlZAogICAgICAgIHNjcm9sbFRvOiAwLAoKICAgICAgICAvLyAqKnNob3dBbmRIaWRlT25TY3JvbGwqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBEZXRlcm1pbmVzIGlmIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcyBzaG91bGQgYmUgc2hvd24gYW5kIGhpZGRlbiB3aGlsZSBzY3JvbGxpbmcKICAgICAgICBzaG93QW5kSGlkZU9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9uU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiB0YWJsZSBvZiBjb250ZW50cyBuZXN0ZWQgaXRlbXMgc2hvdWxkIGJlIGhpZ2hsaWdodGVkIChzZXQgdG8gYSBkaWZmZXJlbnQgY29sb3IpIHdoaWxlIHNjcm9sbGluZwogICAgICAgIGhpZ2hsaWdodE9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyCiAgICAgICAgLy8gVGhlIG9mZnNldCBkaXN0YW5jZSBpbiBwaXhlbHMgdG8gdHJpZ2dlciB0aGUgbmV4dCBhY3RpdmUgdGFibGUgb2YgY29udGVudHMgaXRlbQogICAgICAgIGhpZ2hsaWdodE9mZnNldDogNDAsCgogICAgICAgIC8vICoqdGhlbWUqKjogQWNjZXB0cyBhIHN0cmluZzogImJvb3RzdHJhcCIsICJqcXVlcnl1aSIsIG9yICJub25lIgogICAgICAgIC8vIERldGVybWluZXMgaWYgVHdpdHRlciBCb290c3RyYXAsIGpRdWVyeVVJLCBvciBUb2NpZnkgY2xhc3NlcyBzaG91bGQgYmUgYWRkZWQgdG8gdGhlIHRhYmxlIG9mIGNvbnRlbnRzCiAgICAgICAgdGhlbWU6ICJib290c3RyYXAiLAoKICAgICAgICAvLyAqKmV4dGVuZFBhZ2UqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBJZiBhIHVzZXIgc2Nyb2xscyB0byB0aGUgYm90dG9tIG9mIHRoZSBwYWdlIGFuZCB0aGUgcGFnZSBpcyBub3QgdGFsbCBlbm91Z2ggdG8gc2Nyb2xsIHRvIHRoZSBsYXN0IHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW0sIHRoZW4gdGhlIHBhZ2UgaGVpZ2h0IGlzIGluY3JlYXNlZAogICAgICAgIGV4dGVuZFBhZ2U6IHRydWUsCgogICAgICAgIC8vICoqZXh0ZW5kUGFnZU9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyOiBwaXhlbHMKICAgICAgICAvLyBIb3cgY2xvc2UgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhIHVzZXIgbXVzdCBzY3JvbGwgYmVmb3JlIHRoZSBwYWdlIGlzIGV4dGVuZGVkCiAgICAgICAgZXh0ZW5kUGFnZU9mZnNldDogMTAwLAoKICAgICAgICAvLyAqKmhpc3RvcnkqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBBZGRzIGEgaGFzaCB0byB0aGUgcGFnZSB1cmwgdG8gbWFpbnRhaW4gaGlzdG9yeQogICAgICAgIGhpc3Rvcnk6IHRydWUsCgogICAgICAgIC8vICoqc2Nyb2xsSGlzdG9yeSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIEFkZHMgYSBoYXNoIHRvIHRoZSBwYWdlIHVybCwgdG8gbWFpbnRhaW4gaGlzdG9yeSwgd2hlbiBzY3JvbGxpbmcgdG8gYSBUT0MgaXRlbQogICAgICAgIHNjcm9sbEhpc3Rvcnk6IGZhbHNlLAoKICAgICAgICAvLyAqKmhhc2hHZW5lcmF0b3IqKjogSG93IHRoZSBoYXNoIHZhbHVlICh0aGUgYW5jaG9yIHNlZ21lbnQgb2YgdGhlIFVSTCwgZm9sbG93aW5nIHRoZQogICAgICAgIC8vICMgY2hhcmFjdGVyKSB3aWxsIGJlIGdlbmVyYXRlZC4KICAgICAgICAvLwogICAgICAgIC8vICJjb21wYWN0IiAoZGVmYXVsdCkgLSAjQ29tcHJlc3Nlc0V2ZXJ5dGhpbmdUb2dldGhlcgogICAgICAgIC8vICJwcmV0dHkiIC0gI2xvb2tzLWxpa2UtYS1uaWNlLXVybC1hbmQtaXMtZWFzaWx5LXJlYWRhYmxlCiAgICAgICAgLy8gZnVuY3Rpb24odGV4dCwgZWxlbWVudCl7fSAtIFlvdXIgb3duIGhhc2ggZ2VuZXJhdGlvbiBmdW5jdGlvbiB0aGF0IGFjY2VwdHMgdGhlIHRleHQgYXMgYW4KICAgICAgICAvLyBhcmd1bWVudCwgYW5kIHJldHVybnMgdGhlIGhhc2ggdmFsdWUuCiAgICAgICAgaGFzaEdlbmVyYXRvcjogImNvbXBhY3QiLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodERlZmF1bHQqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBTZXQncyB0aGUgZmlyc3QgVE9DIGl0ZW0gYXMgYWN0aXZlIGlmIG5vIG90aGVyIFRPQyBpdGVtIGlzIGFjdGl2ZS4KICAgICAgICBoaWdobGlnaHREZWZhdWx0OiB0cnVlCgogICAgICB9LAoKICAgICAgLy8gX0NyZWF0ZQogICAgICAvLyAtLS0tLS0tCiAgICAgIC8vICAgICAgQ29uc3RydWN0cyB0aGUgcGx1Z2luLiAgT25seSBjYWxsZWQgb25jZS4KICAgICAgX2NyZWF0ZTogZnVuY3Rpb24oKSB7CgogICAgICAgIHZhciBzZWxmID0gdGhpczsKCiAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gdHJ1ZTsKCiAgICAgICAgLy8gSW50ZXJuYWwgYXJyYXkgdGhhdCBrZWVwcyB0cmFjayBvZiBhbGwgVE9DIGl0ZW1zIChIZWxwcyB0byByZWNvZ25pemUgaWYgdGhlcmUgYXJlIGR1cGxpY2F0ZSBUT0MgaXRlbSBzdHJpbmdzKQogICAgICAgIHNlbGYuaXRlbXMgPSBbXTsKCiAgICAgICAgLy8gR2VuZXJhdGVzIHRoZSBIVE1MIGZvciB0aGUgZHluYW1pYyB0YWJsZSBvZiBjb250ZW50cwogICAgICAgIHNlbGYuX2dlbmVyYXRlVG9jKCk7CgogICAgICAgIC8vIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgICAgc2VsZi5fYWRkQ1NTQ2xhc3NlcygpOwoKICAgICAgICBzZWxmLndlYmtpdCA9IChmdW5jdGlvbigpIHsKCiAgICAgICAgICBmb3IgKHZhciBwcm9wIGluIHdpbmRvdykgewoKICAgICAgICAgICAgaWYgKHByb3ApIHsKCiAgICAgICAgICAgICAgaWYgKHByb3AudG9Mb3dlckNhc2UoKS5pbmRleE9mKCJ3ZWJraXQiKSAhPT0gLTEpIHsKCiAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0KCiAgICAgICAgICByZXR1cm4gZmFsc2U7CgogICAgICAgIH0oKSk7CgogICAgICAgIC8vIEFkZHMgalF1ZXJ5IGV2ZW50IGhhbmRsZXJzIHRvIHRoZSBuZXdseSBnZW5lcmF0ZWQgdGFibGUgb2YgY29udGVudHMKICAgICAgICBzZWxmLl9zZXRFdmVudEhhbmRsZXJzKCk7CgogICAgICAgIC8vIEJpbmRpbmcgdG8gdGhlIFdpbmRvdyBsb2FkIGV2ZW50IHRvIG1ha2Ugc3VyZSB0aGUgY29ycmVjdCBzY3JvbGxUb3AgaXMgY2FsY3VsYXRlZAogICAgICAgICQod2luZG93KS5sb2FkKGZ1bmN0aW9uKCkgewoKICAgICAgICAgIC8vIFNldHMgdGhlIGFjdGl2ZSBUT0MgaXRlbQogICAgICAgICAgc2VsZi5fc2V0QWN0aXZlRWxlbWVudCh0cnVlKTsKCiAgICAgICAgICAvLyBPbmNlIGFsbCBhbmltYXRpb25zIG9uIHRoZSBwYWdlIGFyZSBjb21wbGV0ZSwgdGhpcyBjYWxsYmFjayBmdW5jdGlvbiB3aWxsIGJlIGNhbGxlZAogICAgICAgICAgJCgiaHRtbCwgYm9keSIpLnByb21pc2UoKS5kb25lKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgc2V0VGltZW91dChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gZmFsc2U7CgogICAgICAgICAgICB9LCAwKTsKCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlVG9jCiAgICAgIC8vIC0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgSFRNTCBmb3IgdGhlIGR5bmFtaWMgdGFibGUgb2YgY29udGVudHMKICAgICAgX2dlbmVyYXRlVG9jOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gX0xvY2FsIHZhcmlhYmxlc18KCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgc2VsZiB2YXJpYWJsZQogICAgICAgIHZhciBzZWxmID0gdGhpcywKCiAgICAgICAgICAvLyBBbGwgb2YgdGhlIEhUTUwgdGFncyBmb3VuZCB3aXRoaW4gdGhlIGNvbnRleHQgcHJvdmlkZWQgKGkuZS4gYm9keSkgdGhhdCBtYXRjaCB0aGUgdG9wIGxldmVsIGpRdWVyeSBzZWxlY3RvciBhYm92ZQogICAgICAgICAgZmlyc3RFbGVtLAoKICAgICAgICAgIC8vIEluc3RhbnRpYXRlZCB2YXJpYWJsZSB0aGF0IHdpbGwgc3RvcmUgdGhlIHRvcCBsZXZlbCBuZXdseSBjcmVhdGVkIHVub3JkZXJlZCBsaXN0IERPTSBlbGVtZW50CiAgICAgICAgICB1bCwKICAgICAgICAgIGlnbm9yZVNlbGVjdG9yID0gc2VsZi5vcHRpb25zLmlnbm9yZVNlbGVjdG9yOwoKCiAgICAgICAgLy8gRGV0ZXJtaW5lIHRoZSBlbGVtZW50IHRvIHN0YXJ0IHRoZSB0b2Mgd2l0aAogICAgICAgIC8vIGdldCBhbGwgdGhlIHRvcCBsZXZlbCBzZWxlY3RvcnMKICAgICAgICBmaXJzdEVsZW0gPSBbXTsKICAgICAgICB2YXIgc2VsZWN0b3JzID0gdGhpcy5vcHRpb25zLnNlbGVjdG9ycy5yZXBsYWNlKC8gL2csICIiKS5zcGxpdCgiLCIpOwogICAgICAgIC8vIGZpbmQgdGhlIGZpcnN0IHNldCB0aGF0IGhhdmUgYXQgbGVhc3Qgb25lIG5vbi1pZ25vcmVkIGVsZW1lbnQKICAgICAgICBmb3IodmFyIGkgPSAwOyBpIDwgc2VsZWN0b3JzLmxlbmd0aDsgaSsrKSB7CiAgICAgICAgICB2YXIgZm91bmRTZWxlY3RvcnMgPSAkKHRoaXMub3B0aW9ucy5jb250ZXh0KS5maW5kKHNlbGVjdG9yc1tpXSk7CiAgICAgICAgICBmb3IgKHZhciBzID0gMDsgcyA8IGZvdW5kU2VsZWN0b3JzLmxlbmd0aDsgcysrKSB7CiAgICAgICAgICAgIGlmICghJChmb3VuZFNlbGVjdG9yc1tzXSkuaXMoaWdub3JlU2VsZWN0b3IpKSB7CiAgICAgICAgICAgICAgZmlyc3RFbGVtID0gZm91bmRTZWxlY3RvcnM7CiAgICAgICAgICAgICAgYnJlYWs7CiAgICAgICAgICAgIH0KICAgICAgICAgIH0KICAgICAgICAgIGlmIChmaXJzdEVsZW0ubGVuZ3RoPiAwKQogICAgICAgICAgICBicmVhazsKICAgICAgICB9CgogICAgICAgIGlmICghZmlyc3RFbGVtLmxlbmd0aCkgewoKICAgICAgICAgIHNlbGYuZWxlbWVudC5hZGRDbGFzcyhoaWRlVG9jQ2xhc3NOYW1lKTsKCiAgICAgICAgICByZXR1cm47CgogICAgICAgIH0KCiAgICAgICAgc2VsZi5lbGVtZW50LmFkZENsYXNzKHRvY0NsYXNzTmFtZSk7CgogICAgICAgIC8vIExvb3BzIHRocm91Z2ggZWFjaCB0b3AgbGV2ZWwgc2VsZWN0b3IKICAgICAgICBmaXJzdEVsZW0uZWFjaChmdW5jdGlvbihpbmRleCkgewoKICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgfQoKICAgICAgICAgIC8vIENyZWF0ZXMgYW4gdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGFuZCBhZGRzIGEgZHluYW1pYyBJRCBhbmQgc3RhbmRhcmQgY2xhc3MgbmFtZQogICAgICAgICAgdWwgPSAkKCI8dWwvPiIsIHsKICAgICAgICAgICAgImlkIjogaGVhZGVyQ2xhc3NOYW1lICsgaW5kZXgsCiAgICAgICAgICAgICJjbGFzcyI6IGhlYWRlckNsYXNzTmFtZQogICAgICAgICAgfSkuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIHRvcCBsZXZlbCBsaXN0IGl0ZW0gSFRNTCBlbGVtZW50IHRvIHRoZSBwcmV2aW91c2x5IGNyZWF0ZWQgSFRNTCBoZWFkZXIKICAgICAgICAgIGFwcGVuZChzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgICAvLyBBZGQgdGhlIGNyZWF0ZWQgdW5vcmRlcmVkIGxpc3QgZWxlbWVudCB0byB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgc2VsZi5lbGVtZW50LmFwcGVuZCh1bCk7CgogICAgICAgICAgLy8gRmluZHMgYWxsIG9mIHRoZSBIVE1MIHRhZ3MgYmV0d2VlbiB0aGUgaGVhZGVyIGFuZCBzdWJoZWFkZXIgZWxlbWVudHMKICAgICAgICAgICQodGhpcykubmV4dFVudGlsKHRoaXMubm9kZU5hbWUudG9Mb3dlckNhc2UoKSkuZWFjaChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIElmIHRoZXJlIGFyZSBubyBuZXN0ZWQgc3ViaGVhZGVyIGVsZW1lbWVudHMKICAgICAgICAgICAgaWYgKCQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5sZW5ndGggPT09IDApIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmlsdGVyKHNlbGYub3B0aW9ucy5zZWxlY3RvcnMpLmVhY2goZnVuY3Rpb24oKSB7CgogICAgICAgICAgICAgICAgLy9JZiB0aGUgZWxlbWVudCBtYXRjaGVzIHRoZSBpZ25vcmVTZWxlY3RvciB0aGVuIHdlIHNraXAgaXQKICAgICAgICAgICAgICAgIGlmICgkKHRoaXMpLmlzKGlnbm9yZVNlbGVjdG9yKSkgewogICAgICAgICAgICAgICAgICByZXR1cm47CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgc2VsZi5fYXBwZW5kU3ViaGVhZGVycy5jYWxsKHRoaXMsIHNlbGYsIHVsKTsKCiAgICAgICAgICAgICAgfSk7CgogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyBJZiB0aGVyZSBhcmUgbmVzdGVkIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICBlbHNlIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5lYWNoKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIHNlbGYuX2FwcGVuZFN1YmhlYWRlcnMuY2FsbCh0aGlzLCBzZWxmLCB1bCk7CgogICAgICAgICAgICAgIH0pOwoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0pOwoKICAgICAgICB9KTsKCiAgICAgIH0sCgogICAgICBfc2V0QWN0aXZlRWxlbWVudDogZnVuY3Rpb24ocGFnZWxvYWQpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAoKICAgICAgICAgIGhhc2ggPSB3aW5kb3cubG9jYXRpb24uaGFzaC5zdWJzdHJpbmcoMSksCgogICAgICAgICAgZWxlbSA9IHNlbGYuZWxlbWVudC5maW5kKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGhhc2ggKyAnIl0nKTsKCiAgICAgICAgaWYgKGhhc2gubGVuZ3RoKSB7CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgZWxlbS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIFRyaWdnZXJzIHRoZSBjbGljayBldmVudCBvbiB0aGUgY3VycmVudGx5IGZvY3VzZWQgVE9DIGl0ZW0KICAgICAgICAgIGVsZW0uY2xpY2soKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBSZW1vdmVzIGhpZ2hsaWdodGluZyBmcm9tIGFsbCBvZiB0aGUgbGlzdCBpdGVtJ3MKICAgICAgICAgIHNlbGYuZWxlbWVudC5maW5kKCIuIiArIHNlbGYuZm9jdXNDbGFzcykucmVtb3ZlQ2xhc3Moc2VsZi5mb2N1c0NsYXNzKTsKCiAgICAgICAgICBpZiAoIWhhc2gubGVuZ3RoICYmIHBhZ2Vsb2FkICYmIHNlbGYub3B0aW9ucy5oaWdobGlnaHREZWZhdWx0KSB7CgogICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBmaXJzdCBUT0MgaXRlbSBpZiBubyBvdGhlciBpdGVtcyBhcmUgaGlnaGxpZ2h0ZWQKICAgICAgICAgICAgc2VsZi5lbGVtZW50LmZpbmQoaXRlbUNsYXNzKS5maXJzdCgpLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgfQoKICAgICAgICB9CgogICAgICAgIHJldHVybiBzZWxmOwoKICAgICAgfSwKCiAgICAgIC8vIF9uZXN0RWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEhlbHBzIGNyZWF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMgbGlzdCBieSBhcHBlbmRpbmcgbmVzdGVkIGxpc3QgaXRlbXMKICAgICAgX25lc3RFbGVtZW50czogZnVuY3Rpb24oc2VsZiwgaW5kZXgpIHsKCiAgICAgICAgdmFyIGFyciwgaXRlbSwgaGFzaFZhbHVlOwoKICAgICAgICBhcnIgPSAkLmdyZXAodGhpcy5pdGVtcywgZnVuY3Rpb24oaXRlbSkgewoKICAgICAgICAgIHJldHVybiBpdGVtID09PSBzZWxmLnRleHQoKTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIElmIHRoZXJlIGlzIGFscmVhZHkgYSBkdXBsaWNhdGUgVE9DIGl0ZW0KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewoKICAgICAgICAgIC8vIEFkZHMgdGhlIGN1cnJlbnQgVE9DIGl0ZW0gdGV4dCBhbmQgaW5kZXggKGZvciBzbGlnaHQgcmFuZG9taXphdGlvbikgdG8gdGhlIGludGVybmFsIGFycmF5CiAgICAgICAgICB0aGlzLml0ZW1zLnB1c2goc2VsZi50ZXh0KCkgKyBpbmRleCk7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlcmUgbm90IGEgZHVwbGljYXRlIFRPQyBpdGVtCiAgICAgICAgZWxzZSB7CgogICAgICAgICAgLy8gQWRkcyB0aGUgY3VycmVudCBUT0MgaXRlbSB0ZXh0IHRvIHRoZSBpbnRlcm5hbCBhcnJheQogICAgICAgICAgdGhpcy5pdGVtcy5wdXNoKHNlbGYudGV4dCgpKTsKCiAgICAgICAgfQoKICAgICAgICBoYXNoVmFsdWUgPSB0aGlzLl9nZW5lcmF0ZUhhc2hWYWx1ZShhcnIsIHNlbGYsIGluZGV4KTsKCiAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIGl0ZW0gPSAkKCI8bGkvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUgdG8gdGhlIGxpc3QgaXRlbQogICAgICAgICAgImNsYXNzIjogaXRlbUNsYXNzTmFtZSwKCiAgICAgICAgICAiZGF0YS11bmlxdWUiOiBoYXNoVmFsdWUKCiAgICAgICAgfSk7CgogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAzIikgewoKICAgICAgICAgIGl0ZW0uYXBwZW5kKCQoIjxhLz4iLCB7CgogICAgICAgICAgICAidGV4dCI6IHNlbGYudGV4dCgpCgogICAgICAgICAgfSkpOwoKICAgICAgICB9IGVsc2UgewoKICAgICAgICAgIGl0ZW0udGV4dChzZWxmLnRleHQoKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gQWRkcyBhbiBIVE1MIGFuY2hvciB0YWcgYmVmb3JlIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIEhUTUwgZWxlbWVudAogICAgICAgIHNlbGYuYmVmb3JlKCQoIjxkaXYvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgbmFtZSBhdHRyaWJ1dGUgb24gdGhlIGFuY2hvciB0YWcgdG8gdGhlIHRleHQgb2YgdGhlIGN1cnJlbnRseSB0cmF2ZXJzZWQgSFRNTCBlbGVtZW50IChhbHNvIG1ha2luZyBzdXJlIHRoYXQgYWxsIHdoaXRlc3BhY2UgaXMgcmVwbGFjZWQgd2l0aCBhbiB1bmRlcnNjb3JlKQogICAgICAgICAgIm5hbWUiOiBoYXNoVmFsdWUsCgogICAgICAgICAgImRhdGEtdW5pcXVlIjogaGFzaFZhbHVlCgogICAgICAgIH0pKTsKCiAgICAgICAgcmV0dXJuIGl0ZW07CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlSGFzaFZhbHVlCiAgICAgIC8vIC0tLS0tLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgaGFzaCB2YWx1ZSB0aGF0IHdpbGwgYmUgdXNlZCB0byByZWZlciB0byBlYWNoIGl0ZW0uCiAgICAgIF9nZW5lcmF0ZUhhc2hWYWx1ZTogZnVuY3Rpb24oYXJyLCBzZWxmLCBpbmRleCkgewoKICAgICAgICB2YXIgaGFzaFZhbHVlID0gIiIsCiAgICAgICAgICBoYXNoR2VuZXJhdG9yT3B0aW9uID0gdGhpcy5vcHRpb25zLmhhc2hHZW5lcmF0b3I7CgogICAgICAgIGlmIChoYXNoR2VuZXJhdG9yT3B0aW9uID09PSAicHJldHR5IikgewoKICAgICAgICAgIC8vIHByZXR0aWZ5IHRoZSB0ZXh0CiAgICAgICAgICBoYXNoVmFsdWUgPSBzZWxmLnRleHQoKS50b0xvd2VyQ2FzZSgpLnJlcGxhY2UoL1xzL2csICItIik7CgogICAgICAgICAgLy8gZml4IGRvdWJsZSBoeXBoZW5zCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIi0tIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvLS0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgICAvLyBmaXggY29sb24tc3BhY2UgaW5zdGFuY2VzCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIjotIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvOi0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgfSBlbHNlIGlmICh0eXBlb2YgaGFzaEdlbmVyYXRvck9wdGlvbiA9PT0gImZ1bmN0aW9uIikgewoKICAgICAgICAgIC8vIGNhbGwgdGhlIGZ1bmN0aW9uCiAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoR2VuZXJhdG9yT3B0aW9uKHNlbGYudGV4dCgpLCBzZWxmKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBjb21wYWN0IC0gdGhlIGRlZmF1bHQKICAgICAgICAgIGhhc2hWYWx1ZSA9IHNlbGYudGV4dCgpLnJlcGxhY2UoL1xzL2csICIiKTsKCiAgICAgICAgfQoKICAgICAgICAvLyBhZGQgdGhlIGluZGV4IGlmIHdlIG5lZWQgdG8KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewogICAgICAgICAgaGFzaFZhbHVlICs9ICIiICsgaW5kZXg7CiAgICAgICAgfQoKICAgICAgICAvLyByZXR1cm4gdGhlIHZhbHVlCiAgICAgICAgcmV0dXJuIGhhc2hWYWx1ZTsKCiAgICAgIH0sCgogICAgICAvLyBfYXBwZW5kRWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgSGVscHMgY3JlYXRlIHRoZSB0YWJsZSBvZiBjb250ZW50cyBsaXN0IGJ5IGFwcGVuZGluZyBzdWJoZWFkZXIgZWxlbWVudHMKCiAgICAgIF9hcHBlbmRTdWJoZWFkZXJzOiBmdW5jdGlvbihzZWxmLCB1bCkgewoKICAgICAgICAvLyBUaGUgY3VycmVudCBlbGVtZW50IGluZGV4CiAgICAgICAgdmFyIGluZGV4ID0gJCh0aGlzKS5pbmRleChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKSwKCiAgICAgICAgICAvLyBGaW5kcyB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50CiAgICAgICAgICBwcmV2aW91c0hlYWRlciA9ICQoc2VsZi5vcHRpb25zLnNlbGVjdG9ycykuZXEoaW5kZXggLSAxKSwKCiAgICAgICAgICBjdXJyZW50VGFnTmFtZSA9ICskKHRoaXMpLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgcHJldmlvdXNUYWdOYW1lID0gK3ByZXZpb3VzSGVhZGVyLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgbGFzdFN1YmhlYWRlcjsKCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgaGVhZGVyIERPTSBlbGVtZW50IGlzIHNtYWxsZXIgdGhhbiB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50IG9yIHRoZSBmaXJzdCBzdWJoZWFkZXIKICAgICAgICBpZiAoY3VycmVudFRhZ05hbWUgPCBwcmV2aW91c1RhZ05hbWUpIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZChzdWJoZWFkZXJDbGFzcyArICJbZGF0YS10YWc9IiArIGN1cnJlbnRUYWdOYW1lICsgIl0iKS5sYXN0KCkuYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGhlYWRlciBET00gZWxlbWVudCBpcyB0aGUgc2FtZSB0eXBlIG9mIGhlYWRlcihlZy4gaDQpIGFzIHRoZSBwcmV2aW91cyBoZWFkZXIgRE9NIGVsZW1lbnQKICAgICAgICBlbHNlIGlmIChjdXJyZW50VGFnTmFtZSA9PT0gcHJldmlvdXNUYWdOYW1lKSB7CgogICAgICAgICAgdWwuZmluZChpdGVtQ2xhc3MpLmxhc3QoKS5hZnRlcihzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICB1bC5maW5kKGl0ZW1DbGFzcykubGFzdCgpLgoKICAgICAgICAgIC8vIEFwcGVuZHMgYW4gdW5vcmRlcmVkTGlzdCBIVE1MIGVsZW1lbnQgdG8gdGhlIGR5bmFtaWMgYHVub3JkZXJlZExpc3RgIHZhcmlhYmxlIGFuZCBzZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUKICAgICAgICAgIGFmdGVyKCQoIjx1bC8+IiwgewoKICAgICAgICAgICAgImNsYXNzIjogc3ViaGVhZGVyQ2xhc3NOYW1lLAoKICAgICAgICAgICAgImRhdGEtdGFnIjogY3VycmVudFRhZ05hbWUKCiAgICAgICAgICB9KSkubmV4dChzdWJoZWFkZXJDbGFzcykuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwogICAgICAgIH0KCiAgICAgIH0sCgogICAgICAvLyBfc2V0RXZlbnRIYW5kbGVycwogICAgICAvLyAtLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgQWRkcyBqUXVlcnkgZXZlbnQgaGFuZGxlcnMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cwogICAgICBfc2V0RXZlbnRIYW5kbGVyczogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgIC8vIFN0b3JlcyB0aGUgcGx1Z2luIGNvbnRleHQgaW4gdGhlIHNlbGYgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGhvbGQgYSBzcGVjaWZpYyBlbGVtZW50J3MgY29udGV4dAogICAgICAgICAgJHNlbGYsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGRldGVybWluZSB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uCiAgICAgICAgICBkdXJhdGlvbjsKCiAgICAgICAgLy8gRXZlbnQgZGVsZWdhdGlvbiB0aGF0IGxvb2tzIGZvciBhbnkgY2xpY2tzIG9uIGxpc3QgaXRlbSBlbGVtZW50cyBpbnNpZGUgb2YgdGhlIEhUTUwgZWxlbWVudCBjYWxsaW5nIHRoZSBwbHVnaW4KICAgICAgICB0aGlzLmVsZW1lbnQub24oImNsaWNrLnRvY2lmeSIsICJsaSIsIGZ1bmN0aW9uKGV2ZW50KSB7CgogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5oaXN0b3J5KSB7CgogICAgICAgICAgICB3aW5kb3cubG9jYXRpb24uaGFzaCA9ICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIElmIHRoZSBzaG93QW5kSGlkZSBvcHRpb24gaXMgdHJ1ZQogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5zaG93QW5kSGlkZSkgewoKICAgICAgICAgICAgdmFyIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICAgICAgc2VsZi5fdHJpZ2dlclNob3coZWxlbSk7CgogICAgICAgICAgfQoKICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQodGhpcykpOwoKICAgICAgICB9KTsKCiAgICAgICAgLy8gTW91c2VlbnRlciBhbmQgTW91c2VsZWF2ZSBldmVudCBoYW5kbGVycyBmb3IgdGhlIGxpc3QgaXRlbSdzIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIHRoaXMuZWxlbWVudC5maW5kKCJsaSIpLm9uKHsKCiAgICAgICAgICAvLyBNb3VzZWVudGVyIGV2ZW50IGhhbmRsZXIKICAgICAgICAgICJtb3VzZWVudGVyLnRvY2lmeSI6IGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgLy8gQWRkcyBhIGhvdmVyIENTUyBjbGFzcyB0byB0aGUgY3VycmVudCBsaXN0IGl0ZW0KICAgICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmhvdmVyQ2xhc3MpOwoKICAgICAgICAgICAgLy8gTWFrZXMgc3VyZSB0aGUgY3Vyc29yIGlzIHNldCB0byB0aGUgcG9pbnRlciBpY29uCiAgICAgICAgICAgICQodGhpcykuY3NzKCJjdXJzb3IiLCAicG9pbnRlciIpOwoKICAgICAgICAgIH0sCgogICAgICAgICAgLy8gTW91c2VsZWF2ZSBldmVudCBoYW5kbGVyCiAgICAgICAgICAibW91c2VsZWF2ZS50b2NpZnkiOiBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAiKSB7CgogICAgICAgICAgICAgIC8vIFJlbW92ZXMgdGhlIGhvdmVyIENTUyBjbGFzcyBmcm9tIHRoZSBjdXJyZW50IGxpc3QgaXRlbQogICAgICAgICAgICAgICQodGhpcykucmVtb3ZlQ2xhc3Moc2VsZi5ob3ZlckNsYXNzKTsKCiAgICAgICAgICAgIH0KCiAgICAgICAgICB9CiAgICAgICAgfSk7CgogICAgICAgIC8vIG9ubHkgYXR0YWNoIGhhbmRsZXIgaWYgbmVlZGVkIChleHBlbnNpdmUgaW4gSUUpCiAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5leHRlbmRQYWdlIHx8IHNlbGYub3B0aW9ucy5oaWdobGlnaHRPblNjcm9sbCB8fCBzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSB8fCBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCkgewogICAgICAgICAgLy8gV2luZG93IHNjcm9sbCBldmVudCBoYW5kbGVyCiAgICAgICAgICAkKHdpbmRvdykub24oInNjcm9sbC50b2NpZnkiLCBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIE9uY2UgYWxsIGFuaW1hdGlvbnMgb24gdGhlIHBhZ2UgYXJlIGNvbXBsZXRlLCB0aGlzIGNhbGxiYWNrIGZ1bmN0aW9uIHdpbGwgYmUgY2FsbGVkCiAgICAgICAgICAgICQoImh0bWwsIGJvZHkiKS5wcm9taXNlKCkuZG9uZShmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgLy8gTG9jYWwgdmFyaWFibGVzCgogICAgICAgICAgICAgIC8vIFN0b3JlcyBob3cgZmFyIHRoZSB1c2VyIGhhcyBzY3JvbGxlZAogICAgICAgICAgICAgIHZhciB3aW5TY3JvbGxUb3AgPSAkKHdpbmRvdykuc2Nyb2xsVG9wKCksCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBoZWlnaHQgb2YgdGhlIHdpbmRvdwogICAgICAgICAgICAgICAgd2luSGVpZ2h0ID0gJCh3aW5kb3cpLmhlaWdodCgpLAoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgaGVpZ2h0IG9mIHRoZSBkb2N1bWVudAogICAgICAgICAgICAgICAgZG9jSGVpZ2h0ID0gJChkb2N1bWVudCkuaGVpZ2h0KCksCgogICAgICAgICAgICAgICAgc2Nyb2xsSGVpZ2h0ID0gJCgiYm9keSIpWzBdLnNjcm9sbEhlaWdodCwKCiAgICAgICAgICAgICAgICAvLyBJbnN0YW50aWF0ZXMgYSB2YXJpYWJsZSB0aGF0IHdpbGwgYmUgdXNlZCB0byBob2xkIGEgc2VsZWN0ZWQgSFRNTCBlbGVtZW50CiAgICAgICAgICAgICAgICBlbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtT2Zmc2V0LAoKICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtOwoKICAgICAgICAgICAgICBpZiAoc2VsZi5vcHRpb25zLmV4dGVuZFBhZ2UpIHsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgdXNlciBoYXMgc2Nyb2xsZWQgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgdGhlIGxhc3QgdG9jIGl0ZW0gaXMgbm90IGZvY3VzZWQKICAgICAgICAgICAgICAgIGlmICgoc2VsZi53ZWJraXQgJiYgd2luU2Nyb2xsVG9wID49IHNjcm9sbEhlaWdodCAtIHdpbkhlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSB8fCAoIXNlbGYud2Via2l0ICYmIHdpbkhlaWdodCArIHdpblNjcm9sbFRvcCA+IGRvY0hlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSkgewoKICAgICAgICAgICAgICAgICAgaWYgKCEkKGV4dGVuZFBhZ2VDbGFzcykubGVuZ3RoKSB7CgogICAgICAgICAgICAgICAgICAgIGxhc3RFbGVtID0gJCgnZGl2W2RhdGEtdW5pcXVlPSInICsgJChpdGVtQ2xhc3MpLmxhc3QoKS5hdHRyKCJkYXRhLXVuaXF1ZSIpICsgJyJdJyk7CgogICAgICAgICAgICAgICAgICAgIGlmICghbGFzdEVsZW0ubGVuZ3RoKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIC8vIEdldHMgdGhlIHRvcCBvZmZzZXQgb2YgdGhlIHBhZ2UgaGVhZGVyIHRoYXQgaXMgbGlua2VkIHRvIHRoZSBsYXN0IHRvYyBpdGVtCiAgICAgICAgICAgICAgICAgICAgbGFzdEVsZW1PZmZzZXQgPSBsYXN0RWxlbS5vZmZzZXQoKS50b3A7CgogICAgICAgICAgICAgICAgICAgIC8vIEFwcGVuZHMgYSBkaXYgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgc2V0cyB0aGUgaGVpZ2h0IHRvIHRoZSBkaWZmZXJlbmNlIG9mIHRoZSB3aW5kb3cgc2Nyb2xsVG9wIGFuZCB0aGUgbGFzdCBlbGVtZW50J3MgcG9zaXRpb24gdG9wIG9mZnNldAogICAgICAgICAgICAgICAgICAgICQoc2VsZi5vcHRpb25zLmNvbnRleHQpLmFwcGVuZCgkKCI8ZGl2Lz4iLCB7CgogICAgICAgICAgICAgICAgICAgICAgImNsYXNzIjogZXh0ZW5kUGFnZUNsYXNzTmFtZSwKCiAgICAgICAgICAgICAgICAgICAgICAiaGVpZ2h0IjogTWF0aC5hYnMobGFzdEVsZW1PZmZzZXQgLSB3aW5TY3JvbGxUb3ApICsgInB4IiwKCiAgICAgICAgICAgICAgICAgICAgICAiZGF0YS11bmlxdWUiOiBleHRlbmRQYWdlQ2xhc3NOYW1lCgogICAgICAgICAgICAgICAgICAgIH0pKTsKCiAgICAgICAgICAgICAgICAgICAgaWYgKHNlbGYuZXh0ZW5kUGFnZVNjcm9sbCkgewoKICAgICAgICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtID0gc2VsZi5lbGVtZW50LmZpbmQoJ2xpLicgKyBzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgICAgICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGN1cnJlbnRFbGVtLmF0dHIoImRhdGEtdW5pcXVlIikgKyAnIl0nKSk7CgogICAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgLy8gVGhlIHplcm8gdGltZW91dCBlbnN1cmVzIHRoZSBmb2xsb3dpbmcgY29kZSBpcyBydW4gYWZ0ZXIgdGhlIHNjcm9sbCBldmVudHMKICAgICAgICAgICAgICBzZXRUaW1lb3V0KGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBkaXN0YW5jZSB0byB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIHZhciBjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPSBudWxsLAoKICAgICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgICAgY2xvc2VzdEFuY2hvcklkeCA9IG51bGwsCgogICAgICAgICAgICAgICAgICAvLyBLZWVwcyBhIHJlZmVyZW5jZSB0byBhbGwgYW5jaG9ycwogICAgICAgICAgICAgICAgICBhbmNob3JzID0gJChzZWxmLm9wdGlvbnMuY29udGV4dCkuZmluZCgiZGl2W2RhdGEtdW5pcXVlXSIpLAoKICAgICAgICAgICAgICAgICAgYW5jaG9yVGV4dDsKCiAgICAgICAgICAgICAgICAvLyBEZXRlcm1pbmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIGFuY2hvcnMuZWFjaChmdW5jdGlvbihpZHgpIHsKICAgICAgICAgICAgICAgICAgdmFyIGRpc3RhbmNlID0gTWF0aC5hYnMoKCQodGhpcykubmV4dCgpLmxlbmd0aCA/ICQodGhpcykubmV4dCgpIDogJCh0aGlzKSkub2Zmc2V0KCkudG9wIC0gd2luU2Nyb2xsVG9wIC0gc2VsZi5vcHRpb25zLmhpZ2hsaWdodE9mZnNldCk7CiAgICAgICAgICAgICAgICAgIGlmIChjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPT0gbnVsbCB8fCBkaXN0YW5jZSA8IGNsb3Nlc3RBbmNob3JEaXN0YW5jZSkgewogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JEaXN0YW5jZSA9IGRpc3RhbmNlOwogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JJZHggPSBpZHg7CiAgICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICB9KTsKCiAgICAgICAgICAgICAgICBhbmNob3JUZXh0ID0gJChhbmNob3JzW2Nsb3Nlc3RBbmNob3JJZHhdKS5hdHRyKCJkYXRhLXVuaXF1ZSIpOwoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgbGlzdCBpdGVtIEhUTUwgZWxlbWVudCB0aGF0IGNvcnJlc3BvbmRzIHRvIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIGFuY2hvciB0YWcKICAgICAgICAgICAgICAgIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGFuY2hvclRleHQgKyAnIl0nKTsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgYGhpZ2hsaWdodE9uU2Nyb2xsYCBvcHRpb24gaXMgdHJ1ZSBhbmQgYSBuZXh0IGVsZW1lbnQgaXMgZm91bmQKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuaGlnaGxpZ2h0T25TY3JvbGwgJiYgZWxlbS5sZW5ndGgpIHsKCiAgICAgICAgICAgICAgICAgIC8vIFJlbW92ZXMgaGlnaGxpZ2h0aW5nIGZyb20gYWxsIG9mIHRoZSBsaXN0IGl0ZW0ncwogICAgICAgICAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBjb3JyZXNwb25kaW5nIGxpc3QgaXRlbQogICAgICAgICAgICAgICAgICBlbGVtLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSkgewoKICAgICAgICAgICAgICAgICAgaWYgKHdpbmRvdy5sb2NhdGlvbi5oYXNoICE9PSAiIyIgKyBhbmNob3JUZXh0KSB7CgogICAgICAgICAgICAgICAgICAgIHdpbmRvdy5sb2NhdGlvbi5yZXBsYWNlKCIjIiArIGFuY2hvclRleHQpOwoKICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIC8vIElmIHRoZSBgc2hvd0FuZEhpZGVPblNjcm9sbGAgb3B0aW9uIGlzIHRydWUKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCAmJiBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGUpIHsKCiAgICAgICAgICAgICAgICAgIHNlbGYuX3RyaWdnZXJTaG93KGVsZW0sIHRydWUpOwoKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgfSwgMCk7CgogICAgICAgICAgICB9KTsKCiAgICAgICAgICB9KTsKICAgICAgICB9CgogICAgICB9LAoKICAgICAgLy8gU2hvdwogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgT3BlbnMgdGhlIGN1cnJlbnQgc3ViLWhlYWRlcgogICAgICBzaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgYHNlbGZgIHZhcmlhYmxlCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAogICAgICAgICAgZWxlbWVudCA9IGVsZW07CgogICAgICAgIC8vIElmIHRoZSBzdWItaGVhZGVyIGlzIG5vdCBhbHJlYWR5IHZpc2libGUKICAgICAgICBpZiAoIWVsZW0uaXMoIjp2aXNpYmxlIikpIHsKCiAgICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50IGRvZXMgbm90IGhhdmUgYW55IG5lc3RlZCBzdWJoZWFkZXJzLCBpcyBub3QgYSBoZWFkZXIsIGFuZCBpdHMgcGFyZW50IGlzIG5vdCB2aXNpYmxlCiAgICAgICAgICBpZiAoIWVsZW0uZmluZChzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSAmJiAhZWxlbS5wYXJlbnQoKS5pcygiOnZpc2libGUiKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIGFsbCBvZiB0aGUgc3ViaGVhZGVycyB3aXRoaW4gdGhlIGN1cnJlbnQgaGVhZGVyCiAgICAgICAgICAgIGVsZW0gPSBlbGVtLnBhcmVudHMoc3ViaGVhZGVyQ2xhc3MpLmFkZChlbGVtKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgZWxlbWVudCBkb2VzIG5vdCBoYXZlIGFueSBuZXN0ZWQgc3ViaGVhZGVycyBhbmQgaXMgbm90IGEgaGVhZGVyCiAgICAgICAgICBlbHNlIGlmICghZWxlbS5jaGlsZHJlbihzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIHRoZSBjbG9zZXN0IHN1YmhlYWRlcgogICAgICAgICAgICBlbGVtID0gZWxlbS5jbG9zZXN0KHN1YmhlYWRlckNsYXNzKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy9EZXRlcm1pbmVzIHdoYXQgalF1ZXJ5IGVmZmVjdCB0byB1c2UKICAgICAgICAgIHN3aXRjaCAoc2VsZi5vcHRpb25zLnNob3dFZmZlY3QpIHsKCiAgICAgICAgICAgIC8vVXNlcyBgbm8gZWZmZWN0YAogICAgICAgICAgICBjYXNlICJub25lIjoKCiAgICAgICAgICAgICAgZWxlbS5zaG93KCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL1VzZXMgdGhlIGpRdWVyeSBgc2hvd2Agc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAic2hvdyI6CgogICAgICAgICAgICAgIGVsZW0uc2hvdyhzZWxmLm9wdGlvbnMuc2hvd0VmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAgIC8vVXNlcyB0aGUgalF1ZXJ5IGBzbGlkZURvd25gIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICAgIGNhc2UgInNsaWRlRG93biI6CgogICAgICAgICAgICAgIGVsZW0uc2xpZGVEb3duKHNlbGYub3B0aW9ucy5zaG93RWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgICAgLy9Vc2VzIHRoZSBqUXVlcnkgYGZhZGVJbmAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAiZmFkZUluIjoKCiAgICAgICAgICAgICAgZWxlbS5mYWRlSW4oc2VsZi5vcHRpb25zLnNob3dFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL0lmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBgalF1ZXJ5VUkgc2hvdyBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICAgIGRlZmF1bHQ6CgogICAgICAgICAgICAgIGVsZW0uc2hvdygpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICB9CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgc3ViaGVhZGVyIHBhcmVudCBlbGVtZW50IGlzIGEgaGVhZGVyCiAgICAgICAgaWYgKGVsZW0ucGFyZW50KCkuaXMoaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gSGlkZXMgYWxsIG5vbi1hY3RpdmUgc3ViLWhlYWRlcnMKICAgICAgICAgIHNlbGYuaGlkZSgkKHN1YmhlYWRlckNsYXNzKS5ub3QoZWxlbSkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IHN1YmhlYWRlciBwYXJlbnQgZWxlbWVudCBpcyBub3QgYSBoZWFkZXIKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBIaWRlcyBhbGwgbm9uLWFjdGl2ZSBzdWItaGVhZGVycwogICAgICAgICAgc2VsZi5oaWRlKCQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLmNsb3Nlc3QoaGVhZGVyQ2xhc3MpLmZpbmQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLnNpYmxpbmdzKCkpKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gTWFpbnRhaW5zIGNoYWluYWJsaXR5CiAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICB9LAoKICAgICAgLy8gSGlkZQogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgQ2xvc2VzIHRoZSBjdXJyZW50IHN1Yi1oZWFkZXIKICAgICAgaGlkZTogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICAvLyBTdG9yZXMgdGhlIHBsdWdpbiBjb250ZXh0IGluIHRoZSBgc2VsZmAgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXM7CgogICAgICAgIC8vRGV0ZXJtaW5lcyB3aGF0IGpRdWVyeSBlZmZlY3QgdG8gdXNlCiAgICAgICAgc3dpdGNoIChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdCkgewoKICAgICAgICAgIC8vIFVzZXMgYG5vIGVmZmVjdGAKICAgICAgICAgIGNhc2UgIm5vbmUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIFVzZXMgdGhlIGpRdWVyeSBgaGlkZWAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgIGNhc2UgImhpZGUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKHNlbGYub3B0aW9ucy5oaWRlRWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAvLyBVc2VzIHRoZSBqUXVlcnkgYHNsaWRlVXBgIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICBjYXNlICJzbGlkZVVwIjoKCiAgICAgICAgICAgIGVsZW0uc2xpZGVVcChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgLy8gVXNlcyB0aGUgalF1ZXJ5IGBmYWRlT3V0YCBzcGVjaWFsIGVmZmVjdAogICAgICAgICAgY2FzZSAiZmFkZU91dCI6CgogICAgICAgICAgICBlbGVtLmZhZGVPdXQoc2VsZi5vcHRpb25zLmhpZGVFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIElmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBganF1ZXJ5VUkgaGlkZSBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICBkZWZhdWx0OgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgfQoKICAgICAgICAvLyBNYWludGFpbnMgY2hhaW5hYmxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKICAgICAgfSwKCiAgICAgIC8vIF90cmlnZ2VyU2hvdwogICAgICAvLyAtLS0tLS0tLS0tLS0KICAgICAgLy8gICAgICBEZXRlcm1pbmVzIHdoYXQgZWxlbWVudHMgZ2V0IHNob3duIG9uIHNjcm9sbCBhbmQgY2xpY2sKICAgICAgX3RyaWdnZXJTaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzOwoKICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50J3MgcGFyZW50IGlzIGEgaGVhZGVyIGVsZW1lbnQgb3IgdGhlIG5leHQgZWxlbWVudCBpcyBhIG5lc3RlZCBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGlmIChlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSB8fCBlbGVtLm5leHQoKS5pcyhzdWJoZWFkZXJDbGFzcykpIHsKCiAgICAgICAgICAvLyBTaG93cyB0aGUgbmV4dCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLm5leHQoc3ViaGVhZGVyQ2xhc3MpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGVsZW1lbnQncyBwYXJlbnQgaXMgYSBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGVsc2UgaWYgKGVsZW0ucGFyZW50KCkuaXMoc3ViaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gU2hvd3MgdGhlIHBhcmVudCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLnBhcmVudCgpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0sCgogICAgICAvLyBfYWRkQ1NTQ2xhc3NlcwogICAgICAvLyAtLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgIF9hZGRDU1NDbGFzc2VzOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSBqcXVlcnlVSSB0aGVtZQogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgPT09ICJqcXVlcnl1aSIpIHsKCiAgICAgICAgICB0aGlzLmZvY3VzQ2xhc3MgPSAidWktc3RhdGUtZGVmYXVsdCI7CgogICAgICAgICAgdGhpcy5ob3ZlckNsYXNzID0gInVpLXN0YXRlLWhvdmVyIjsKCiAgICAgICAgICAvL0FkZHMgdGhlIGRlZmF1bHQgc3R5bGluZyB0byB0aGUgZHJvcGRvd24gbGlzdAogICAgICAgICAgdGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS13aWRnZXQiKS5maW5kKCIudG9jLXRpdGxlIikuYWRkQ2xhc3MoInVpLXdpZGdldC1oZWFkZXIiKS5lbmQoKS5maW5kKCJsaSIpLmFkZENsYXNzKCJ1aS13aWRnZXQtY29udGVudCIpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSB1c2VyIHdhbnRzIGEgdHdpdHRlckJvb3RzdHJhcCB0aGVtZQogICAgICAgIGVsc2UgaWYgKHRoaXMub3B0aW9ucy50aGVtZSA9PT0gImJvb3RzdHJhcCIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibmF2IG5hdi1saXN0Iik7CgogICAgICAgICAgdGhpcy5mb2N1c0NsYXNzID0gImFjdGl2ZSI7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSB0d2l0dGVyQm9vdHN0cmFwIHRoZW1lCiAgICAgICAgZWxzZSBpZiAodGhpcy5vcHRpb25zLnRoZW1lID09PSAiYm9vdHN0cmFwMyIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibGlzdC1ncm91cCIpOwoKICAgICAgICAgIHRoaXMuZWxlbWVudC5maW5kKGl0ZW1DbGFzcykuYWRkQ2xhc3MoImxpc3QtZ3JvdXAtaXRlbSIpOwoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9ICJhY3RpdmUiOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIGEgdXNlciBkb2VzIG5vdCB3YW50IGEgcHJlYnVpbHQgdGhlbWUKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBBZGRzIG1vcmUgbmV1dHJhbCBjbGFzc2VzIChpbnN0ZWFkIG9mIGpxdWVyeXVpKQoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9IHRvY0ZvY3VzQ2xhc3NOYW1lOwoKICAgICAgICAgIHRoaXMuaG92ZXJDbGFzcyA9IHRvY0hvdmVyQ2xhc3NOYW1lOwoKICAgICAgICB9CgogICAgICAgIC8vTWFpbnRhaW5zIGNoYWluYWJpbGl0eQogICAgICAgIHJldHVybiB0aGlzOwoKICAgICAgfSwKCiAgICAgIC8vIHNldE9wdGlvbgogICAgICAvLyAtLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIFRvY2lmeSBvcHRpb24gYWZ0ZXIgdGhlIHBsdWdpbiBpcyBpbnZva2VkCiAgICAgIHNldE9wdGlvbjogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIENhbGxzIHRoZSBqUXVlcnlVSSBXaWRnZXQgRmFjdG9yeSBzZXRPcHRpb24gbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb24uYXBwbHkodGhpcywgYXJndW1lbnRzKTsKCiAgICAgIH0sCgogICAgICAvLyBzZXRPcHRpb25zCiAgICAgIC8vIC0tLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIG9yIG11bHRpcGxlIFRvY2lmeSBvcHRpb25zIGFmdGVyIHRoZSBwbHVnaW4gaXMgaW52b2tlZAogICAgICBzZXRPcHRpb25zOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gQ2FsbHMgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IHNldE9wdGlvbnMgbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb25zLmFwcGx5KHRoaXMsIGFyZ3VtZW50cyk7CgogICAgICB9LAoKICAgICAgLy8gX3Njcm9sbFRvCiAgICAgIC8vIC0tLS0tLS0tLQogICAgICAvLyAgICAgIFNjcm9sbHMgdG8gYSBzcGVjaWZpYyBlbGVtZW50CiAgICAgIF9zY3JvbGxUbzogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCiAgICAgICAgICBkdXJhdGlvbiA9IHNlbGYub3B0aW9ucy5zbW9vdGhTY3JvbGwgfHwgMCwKICAgICAgICAgIHNjcm9sbFRvID0gc2VsZi5vcHRpb25zLnNjcm9sbFRvLAogICAgICAgICAgY3VycmVudERpdiA9ICQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGVsZW0uYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICBpZiAoIWN1cnJlbnREaXYubGVuZ3RoKSB7CgogICAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICAgIH0KCiAgICAgICAgLy8gT25jZSBhbGwgYW5pbWF0aW9ucyBvbiB0aGUgcGFnZSBhcmUgY29tcGxldGUsIHRoaXMgY2FsbGJhY2sgZnVuY3Rpb24gd2lsbCBiZSBjYWxsZWQKICAgICAgICAkKCJodG1sLCBib2R5IikucHJvbWlzZSgpLmRvbmUoZnVuY3Rpb24oKSB7CgogICAgICAgICAgLy8gQW5pbWF0ZXMgdGhlIGh0bWwgYW5kIGJvZHkgZWxlbWVudCBzY3JvbGx0b3BzCiAgICAgICAgICAkKCJodG1sLCBib2R5IikuYW5pbWF0ZSh7CgogICAgICAgICAgICAvLyBTZXRzIHRoZSBqUXVlcnkgYHNjcm9sbFRvcGAgdG8gdGhlIHRvcCBvZmZzZXQgb2YgdGhlIEhUTUwgZGl2IHRhZyB0aGF0IG1hdGNoZXMgdGhlIGN1cnJlbnQgbGlzdCBpdGVtJ3MgYGRhdGEtdW5pcXVlYCB0YWcKICAgICAgICAgICAgInNjcm9sbFRvcCI6IGN1cnJlbnREaXYub2Zmc2V0KCkudG9wIC0gKCQuaXNGdW5jdGlvbihzY3JvbGxUbykgPyBzY3JvbGxUby5jYWxsKCkgOiBzY3JvbGxUbykgKyAicHgiCgogICAgICAgICAgfSwgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uIHRvIHRoZSBzbW9vdGhTY3JvbGxTcGVlZCBvcHRpb24KICAgICAgICAgICAgImR1cmF0aW9uIjogZHVyYXRpb24KCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0KCiAgICB9KTsKCiAgfSkpOyAvL2VuZCBvZiBwbHVnaW4K"></script> <script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ18nKTsKICAgICAgdGFiLmF0dHIoJ2lkJywgaWQpOwoKICAgICAgLy8gZ2V0IHRoZSBoZWFkaW5nIGVsZW1lbnQgd2l0aGluIGl0LCBncmFiIGl0J3MgdGV4dCwgdGhlbiByZW1vdmUgaXQKICAgICAgdmFyIGhlYWRpbmcgPSB0YWIuZmluZCgnaCcgKyB0YWJMZXZlbCArICc6Zmlyc3QnKTsKICAgICAgdmFyIGhlYWRpbmdUZXh0ID0gaGVhZGluZy5odG1sKCk7CiAgICAgIGhlYWRpbmcucmVtb3ZlKCk7CgogICAgICAvLyBidWlsZCBhbmQgYXBwZW5kIHRoZSB0YWIgbGlzdCBpdGVtCiAgICAgIHZhciBhID0gJCgnPGEgcm9sZT0idGFiIiBkYXRhLXRvZ2dsZT0idGFiIj4nICsgaGVhZGluZ1RleHQgKyAnPC9hPicpOwogICAgICBhLmF0dHIoJ2hyZWYnLCAnIycgKyBpZCk7CiAgICAgIGEuYXR0cignYXJpYS1jb250cm9scycsIGlkKTsKICAgICAgdmFyIGxpID0gJCgnPGxpIHJvbGU9InByZXNlbnRhdGlvbiI+PC9saT4nKTsKICAgICAgbGkuYXBwZW5kKGEpOwogICAgICB0YWJMaXN0LmFwcGVuZChsaSk7CgogICAgICAvLyBzZXQgaXQncyBhdHRyaWJ1dGVzCiAgICAgIHRhYi5hdHRyKCdyb2xlJywgJ3RhYnBhbmVsJyk7CiAgICAgIHRhYi5hZGRDbGFzcygndGFiLXBhbmUnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWJiZWQtcGFuZScpOwogICAgICBpZiAoZmFkZSkKICAgICAgICB0YWIuYWRkQ2xhc3MoJ2ZhZGUnKTsKCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwoKICAgIC8vIHNldCBhY3RpdmUgdGFiCiAgICAkKHRhYkxpc3QuY2hpbGRyZW4oJ2xpJylbYWN0aXZlVGFiXSkuYWRkQ2xhc3MoJ2FjdGl2ZScpOwogICAgdmFyIGFjdGl2ZSA9ICQodGFiQ29udGVudC5jaGlsZHJlbignZGl2LnNlY3Rpb24nKVthY3RpdmVUYWJdKTsKICAgIGFjdGl2ZS5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICBpZiAoZmFkZSkKICAgICAgYWN0aXZlLmFkZENsYXNzKCdpbicpOwoKICAgIGlmICh0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1zdGlja3kiKSkKICAgICAgdGFic2V0LnJtYXJrZG93blN0aWNreVRhYnMoKTsKICB9CgogIC8vIGNvbnZlcnQgc2VjdGlvbiBkaXZzIHdpdGggdGhlIC50YWJzZXQgY2xhc3MgdG8gdGFic2V0cwogIHZhciB0YWJzZXRzID0gJCgiZGl2LnNlY3Rpb24udGFic2V0Iik7CiAgdGFic2V0cy5lYWNoKGZ1bmN0aW9uKGkpIHsKICAgIGJ1aWxkVGFic2V0KCQodGFic2V0c1tpXSkpOwogIH0pOwp9OwoK"></script> -<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script> +<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> +<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> @@ -35,10 +35,12 @@ } </style> <script type="text/javascript"> -if (window.hljs && document.readyState && document.readyState === "complete") { - window.setTimeout(function() { - hljs.initHighlighting(); - }, 0); +if (window.hljs) { + hljs.configure({languages: []}); + hljs.initHighlightingOnLoad(); + if (document.readyState && document.readyState === "complete") { + window.setTimeout(function() { hljs.initHighlighting(); }, 0); + } } </script> @@ -251,17 +253,17 @@ <h2>Summary of DTU</h2> <pre class="r"><code># A really simple tally of the outcome. print( dtu_summary(mydtu) )</code></pre> <pre><code>## category tally -## 1 DTU genes (gene test) 1 -## 2 non-DTU genes (gene test) 2 +## 1 DTU genes (gene test) 3 +## 2 non-DTU genes (gene test) 1 ## 3 ineligible genes (gene test) 7 -## 4 DTU genes (transc. test) 1 -## 5 non-DTU genes (transc. test) 3 +## 4 DTU genes (transc. test) 3 +## 5 non-DTU genes (transc. test) 2 ## 6 ineligible genes (transc. test) 6 -## 7 DTU genes (both tests) 1 -## 8 non-DTU genes (both tests) 2 +## 7 DTU genes (both tests) 3 +## 8 non-DTU genes (both tests) 1 ## 9 ineligible genes (both tests) 7 -## 10 DTU transcripts 3 -## 11 non-DTU transcripts 7 +## 10 DTU transcripts 7 +## 11 non-DTU transcripts 5 ## 12 ineligible transcripts 11</code></pre> <p>RATs tests for DTU at both the gene level and the transcript level. Therefore, as of v0.4.2, <code>dtu_summury()</code> will display the DTU genes according to either method as well as the intersection of the two.</p> <p>The <code>get_dtu_ids()</code> function lists the coresponding identifiers per category. As of <code>v0.4.2</code> it uses the same category names as <code>dtu_summury()</code> for consistency and clarity.</p> @@ -269,37 +271,37 @@ <h2>Summary of DTU</h2> ids <- get_dtu_ids(mydtu) print( ids )</code></pre> <pre><code>## $`DTU genes (gene test)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" "CC" ## ## $`non-DTU genes (gene test)` -## [1] "CC" "NN" +## [1] "NN" ## ## $`ineligible genes (gene test)` ## [1] "LC" "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU genes (transc. test)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" "CC" ## ## $`non-DTU genes (transc. test)` -## [1] "LC" "CC" "NN" +## [1] "LC" "NN" ## ## $`ineligible genes (transc. test)` ## [1] "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU genes (both tests)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" "CC" ## ## $`non-DTU genes (both tests)` -## [1] "CC" "NN" +## [1] "NN" ## ## $`ineligible genes (both tests)` ## [1] "LC" "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU transcripts` -## [1] "MIX6.c1" "MIX6.c2" "MIX6.c4" +## [1] "1A1B.a" "1A1B.b" "MIX6.c1" "MIX6.c2" "MIX6.c4" "CC_a" "CC_b" ## ## $`non-DTU transcripts` -## [1] "LC2" "CC_a" "CC_b" "MIX6.c3" "2NN" "1NN" "MIX6.nc" +## [1] "LC2" "MIX6.c3" "2NN" "1NN" "MIX6.nc" ## ## $`ineligible transcripts` ## [1] "LC1" "1A1N-2" "1B1C.1" "1B1C.2" "1D1C:one" "1D1C:two" @@ -312,29 +314,29 @@ <h2>Summary of isoform switching</h2> <pre class="r"><code># A tally of genes switching isoform ranks. print( dtu_switch_summary(mydtu) )</code></pre> <pre><code>## category genes -## 1 Primary switch (gene test) 1 +## 1 Primary switch (gene test) 2 ## 2 Non-primary switch (gene test) 1 -## 3 Primary switch (transc. test) 1 +## 3 Primary switch (transc. test) 2 ## 4 Non-primary switch (transc. test) 1 -## 5 Primary switch (both tests) 1 +## 5 Primary switch (both tests) 2 ## 6 Non-primary switch (both tests) 1</code></pre> <pre class="r"><code># The gene IDs displaying isoform switching. ids <- get_switch_ids(mydtu) print( ids )</code></pre> <pre><code>## $`Primary switch (gene test)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" ## ## $`Non-primary switch (gene test)` ## [1] "MIX6" ## ## $`Primary switch (transc. test)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" ## ## $`Non-primary switch (transc. test)` ## [1] "MIX6" ## ## $`Primary switch (both tests)` -## [1] "MIX6" +## [1] "1A1B" "MIX6" ## ## $`Non-primary switch (both tests)` ## [1] "MIX6"</code></pre> @@ -349,11 +351,15 @@ <h2>Summary of DTU plurality</h2> <pre class="r"><code># A tally of genes switching isoform ranks. print( dtu_plurality_summary(mydtu) )</code></pre> <pre><code>## isof_affected num_of_genes -## 1 3 1</code></pre> +## 1 2 2 +## 2 3 1</code></pre> <pre class="r"><code># The gene IDs displaying isoform switching. ids <- get_plurality_ids(mydtu) print( ids )</code></pre> -<pre><code>## $`3` +<pre><code>## $`2` +## [1] "1A1B" "CC" +## +## $`3` ## [1] "MIX6"</code></pre> <p>These give you the number and IDs of genes in which 2, 3, etc isoforms show DTU.</p> <p>For example, one gene (“MIX6”) is showing significant change in 3 of its isoforms.</p> @@ -511,13 +517,13 @@ <h2>Abundances</h2> </ol> <pre class="r"><code># Abundance table for first condition. print( head(mydtu$Abundances[[1]]) )</code></pre> -<pre><code>## V1 V2 target_id parent_id -## 1: 19.66667 15.5 1A1N-2 1A1N -## 2: NA NA 1B1C.1 1B1C -## 3: 52.33333 53.5 1B1C.2 1B1C -## 4: 0.00000 0.0 1D1C:one 1D1C -## 5: 76.00000 78.0 1D1C:two 1D1C -## 6: 50.00000 45.0 ALLA1 ALLA</code></pre> +<pre><code>## V1 V2 target_id parent_id +## 1: 84.33333 132.5 1A1B.a 1A1B +## 2: 0.00000 0.0 1A1B.b 1A1B +## 3: 19.66667 15.5 1A1N-2 1A1N +## 4: NA NA 1B1C.1 1B1C +## 5: 52.33333 53.5 1B1C.2 1B1C +## 6: 0.00000 0.0 1D1C:one 1D1C</code></pre> <hr /> </div> </div> diff --git a/inst/doc/plots.html b/inst/doc/plots.html index 4d2067d..a26a0cd 100644 --- a/inst/doc/plots.html +++ b/inst/doc/plots.html @@ -25,8 +25,8 @@ <link href="data:text/css;charset=utf-8,%0A%0A%2Etocify%20%7B%0Awidth%3A%2020%25%3B%0Amax%2Dheight%3A%2090%25%3B%0Aoverflow%3A%20auto%3B%0Amargin%2Dleft%3A%202%25%3B%0Aposition%3A%20fixed%3B%0Aborder%3A%201px%20solid%20%23ccc%3B%0Awebkit%2Dborder%2Dradius%3A%206px%3B%0Amoz%2Dborder%2Dradius%3A%206px%3B%0Aborder%2Dradius%3A%206px%3B%0A%7D%0A%0A%2Etocify%20ul%2C%20%2Etocify%20li%20%7B%0Alist%2Dstyle%3A%20none%3B%0Amargin%3A%200%3B%0Apadding%3A%200%3B%0Aborder%3A%20none%3B%0Aline%2Dheight%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dheader%20%7B%0Atext%2Dindent%3A%2010px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2020px%3B%0Adisplay%3A%20none%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20li%20%7B%0Afont%2Dsize%3A%2012px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2030px%3B%0A%7D%0A%0A%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%2Etocify%2Dsubheader%20%7B%0Atext%2Dindent%3A%2040px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20%3E%20a%2C%20%2Etocify%20%2Enav%2Dlist%20%2Enav%2Dheader%20%7B%0Amargin%3A%200px%3B%0A%7D%0A%0A%2Etocify%20%2Etocify%2Ditem%20a%2C%20%2Etocify%20%2Elist%2Dgroup%2Ditem%20%7B%0Apadding%3A%205px%3B%0A%7D%0A%2Etocify%20%2Enav%2Dpills%20%3E%20li%20%7B%0Afloat%3A%20none%3B%0A%7D%0A%0A%0A" rel="stylesheet" /> <script src="data:application/x-javascript;base64,LyoganF1ZXJ5IFRvY2lmeSAtIHYxLjkuMSAtIDIwMTMtMTAtMjIKICogaHR0cDovL3d3dy5ncmVnZnJhbmtvLmNvbS9qcXVlcnkudG9jaWZ5LmpzLwogKiBDb3B5cmlnaHQgKGMpIDIwMTMgR3JlZyBGcmFua287IExpY2Vuc2VkIE1JVCAqLwoKLy8gSW1tZWRpYXRlbHktSW52b2tlZCBGdW5jdGlvbiBFeHByZXNzaW9uIChJSUZFKSBbQmVuIEFsbWFuIEJsb2cgUG9zdF0oaHR0cDovL2JlbmFsbWFuLmNvbS9uZXdzLzIwMTAvMTEvaW1tZWRpYXRlbHktaW52b2tlZC1mdW5jdGlvbi1leHByZXNzaW9uLykgdGhhdCBjYWxscyBhbm90aGVyIElJRkUgdGhhdCBjb250YWlucyBhbGwgb2YgdGhlIHBsdWdpbiBsb2dpYy4gIEkgdXNlZCB0aGlzIHBhdHRlcm4gc28gdGhhdCBhbnlvbmUgdmlld2luZyB0aGlzIGNvZGUgd291bGQgbm90IGhhdmUgdG8gc2Nyb2xsIHRvIHRoZSBib3R0b20gb2YgdGhlIHBhZ2UgdG8gdmlldyB0aGUgbG9jYWwgcGFyYW1ldGVycyB0aGF0IHdlcmUgcGFzc2VkIHRvIHRoZSBtYWluIElJRkUuCihmdW5jdGlvbih0b2NpZnkpIHsKCiAgICAvLyBFQ01BU2NyaXB0IDUgU3RyaWN0IE1vZGU6IFtKb2huIFJlc2lnIEJsb2cgUG9zdF0oaHR0cDovL2Vqb2huLm9yZy9ibG9nL2VjbWFzY3JpcHQtNS1zdHJpY3QtbW9kZS1qc29uLWFuZC1tb3JlLykKICAgICJ1c2Ugc3RyaWN0IjsKCiAgICAvLyBDYWxscyB0aGUgc2Vjb25kIElJRkUgYW5kIGxvY2FsbHkgcGFzc2VzIGluIHRoZSBnbG9iYWwgalF1ZXJ5LCB3aW5kb3csIGFuZCBkb2N1bWVudCBvYmplY3RzCiAgICB0b2NpZnkod2luZG93LmpRdWVyeSwgd2luZG93LCBkb2N1bWVudCk7CgogIH0KCiAgLy8gTG9jYWxseSBwYXNzZXMgaW4gYGpRdWVyeWAsIHRoZSBgd2luZG93YCBvYmplY3QsIHRoZSBgZG9jdW1lbnRgIG9iamVjdCwgYW5kIGFuIGB1bmRlZmluZWRgIHZhcmlhYmxlLiAgVGhlIGBqUXVlcnlgLCBgd2luZG93YCBhbmQgYGRvY3VtZW50YCBvYmplY3RzIGFyZSBwYXNzZWQgaW4gbG9jYWxseSwgdG8gaW1wcm92ZSBwZXJmb3JtYW5jZSwgc2luY2UgamF2YXNjcmlwdCBmaXJzdCBzZWFyY2hlcyBmb3IgYSB2YXJpYWJsZSBtYXRjaCB3aXRoaW4gdGhlIGxvY2FsIHZhcmlhYmxlcyBzZXQgYmVmb3JlIHNlYXJjaGluZyB0aGUgZ2xvYmFsIHZhcmlhYmxlcyBzZXQuICBBbGwgb2YgdGhlIGdsb2JhbCB2YXJpYWJsZXMgYXJlIGFsc28gcGFzc2VkIGluIGxvY2FsbHkgdG8gYmUgbWluaWZpZXIgZnJpZW5kbHkuIGB1bmRlZmluZWRgIGNhbiBiZSBwYXNzZWQgaW4gbG9jYWxseSwgYmVjYXVzZSBpdCBpcyBub3QgYSByZXNlcnZlZCB3b3JkIGluIEphdmFTY3JpcHQuCiAgKGZ1bmN0aW9uKCQsIHdpbmRvdywgZG9jdW1lbnQsIHVuZGVmaW5lZCkgewoKICAgIC8vIEVDTUFTY3JpcHQgNSBTdHJpY3QgTW9kZTogW0pvaG4gUmVzaWcgQmxvZyBQb3N0XShodHRwOi8vZWpvaG4ub3JnL2Jsb2cvZWNtYXNjcmlwdC01LXN0cmljdC1tb2RlLWpzb24tYW5kLW1vcmUvKQogICAgInVzZSBzdHJpY3QiOwoKICAgIHZhciB0b2NDbGFzc05hbWUgPSAidG9jaWZ5IiwKICAgICAgdG9jQ2xhc3MgPSAiLiIgKyB0b2NDbGFzc05hbWUsCiAgICAgIHRvY0ZvY3VzQ2xhc3NOYW1lID0gInRvY2lmeS1mb2N1cyIsCiAgICAgIHRvY0hvdmVyQ2xhc3NOYW1lID0gInRvY2lmeS1ob3ZlciIsCiAgICAgIGhpZGVUb2NDbGFzc05hbWUgPSAidG9jaWZ5LWhpZGUiLAogICAgICBoaWRlVG9jQ2xhc3MgPSAiLiIgKyBoaWRlVG9jQ2xhc3NOYW1lLAogICAgICBoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LWhlYWRlciIsCiAgICAgIGhlYWRlckNsYXNzID0gIi4iICsgaGVhZGVyQ2xhc3NOYW1lLAogICAgICBzdWJoZWFkZXJDbGFzc05hbWUgPSAidG9jaWZ5LXN1YmhlYWRlciIsCiAgICAgIHN1YmhlYWRlckNsYXNzID0gIi4iICsgc3ViaGVhZGVyQ2xhc3NOYW1lLAogICAgICBpdGVtQ2xhc3NOYW1lID0gInRvY2lmeS1pdGVtIiwKICAgICAgaXRlbUNsYXNzID0gIi4iICsgaXRlbUNsYXNzTmFtZSwKICAgICAgZXh0ZW5kUGFnZUNsYXNzTmFtZSA9ICJ0b2NpZnktZXh0ZW5kLXBhZ2UiLAogICAgICBleHRlbmRQYWdlQ2xhc3MgPSAiLiIgKyBleHRlbmRQYWdlQ2xhc3NOYW1lOwoKICAgIC8vIENhbGxpbmcgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IE1ldGhvZAogICAgJC53aWRnZXQoInRvYy50b2NpZnkiLCB7CgogICAgICAvL1BsdWdpbiB2ZXJzaW9uCiAgICAgIHZlcnNpb246ICIxLjkuMSIsCgogICAgICAvLyBUaGVzZSBvcHRpb25zIHdpbGwgYmUgdXNlZCBhcyBkZWZhdWx0cwogICAgICBvcHRpb25zOiB7CgogICAgICAgIC8vICoqY29udGV4dCoqOiBBY2NlcHRzIFN0cmluZzogQW55IGpRdWVyeSBzZWxlY3RvcgogICAgICAgIC8vIFRoZSBjb250YWluZXIgZWxlbWVudCB0aGF0IGhvbGRzIGFsbCBvZiB0aGUgZWxlbWVudHMgdXNlZCB0byBnZW5lcmF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMKICAgICAgICBjb250ZXh0OiAiYm9keSIsCgogICAgICAgIC8vICoqaWdub3JlU2VsZWN0b3IqKjogQWNjZXB0cyBTdHJpbmc6IEFueSBqUXVlcnkgc2VsZWN0b3IKICAgICAgICAvLyBBIHNlbGVjdG9yIHRvIGFueSBlbGVtZW50IHRoYXQgd291bGQgYmUgbWF0Y2hlZCBieSBzZWxlY3RvcnMgdGhhdCB5b3Ugd2lzaCB0byBiZSBpZ25vcmVkCiAgICAgICAgaWdub3JlU2VsZWN0b3I6IG51bGwsCgogICAgICAgIC8vICoqc2VsZWN0b3JzKio6IEFjY2VwdHMgYW4gQXJyYXkgb2YgU3RyaW5nczogQW55IGpRdWVyeSBzZWxlY3RvcnMKICAgICAgICAvLyBUaGUgZWxlbWVudCdzIHVzZWQgdG8gZ2VuZXJhdGUgdGhlIHRhYmxlIG9mIGNvbnRlbnRzLiAgVGhlIG9yZGVyIGlzIHZlcnkgaW1wb3J0YW50IHNpbmNlIGl0IHdpbGwgZGV0ZXJtaW5lIHRoZSB0YWJsZSBvZiBjb250ZW50J3MgbmVzdGluZyBzdHJ1Y3R1cmUKICAgICAgICBzZWxlY3RvcnM6ICJoMSwgaDIsIGgzIiwKCiAgICAgICAgLy8gKipzaG93QW5kSGlkZSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIFVzZWQgdG8gZGV0ZXJtaW5lIGlmIGVsZW1lbnRzIHNob3VsZCBiZSBzaG93biBhbmQgaGlkZGVuCiAgICAgICAgc2hvd0FuZEhpZGU6IHRydWUsCgogICAgICAgIC8vICoqc2hvd0VmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZUluIiwgInNob3ciLCBvciAic2xpZGVEb3duIgogICAgICAgIC8vIFVzZWQgdG8gZGlzcGxheSBhbnkgb2YgdGhlIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcwogICAgICAgIHNob3dFZmZlY3Q6ICJzbGlkZURvd24iLAoKICAgICAgICAvLyAqKnNob3dFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBzaG93IGFuaW1hdGlvbgogICAgICAgIHNob3dFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqaGlkZUVmZmVjdCoqOiBBY2NlcHRzIFN0cmluZzogIm5vbmUiLCAiZmFkZU91dCIsICJoaWRlIiwgb3IgInNsaWRlVXAiCiAgICAgICAgLy8gVXNlZCB0byBoaWRlIGFueSBvZiB0aGUgdGFibGUgb2YgY29udGVudHMgbmVzdGVkIGl0ZW1zCiAgICAgICAgaGlkZUVmZmVjdDogInNsaWRlVXAiLAoKICAgICAgICAvLyAqKmhpZGVFZmZlY3RTcGVlZCoqOiBBY2NlcHRzIE51bWJlciAobWlsbGlzZWNvbmRzKSBvciBTdHJpbmc6ICJzbG93IiwgIm1lZGl1bSIsIG9yICJmYXN0IgogICAgICAgIC8vIFRoZSB0aW1lIGR1cmF0aW9uIG9mIHRoZSBoaWRlIGFuaW1hdGlvbgogICAgICAgIGhpZGVFZmZlY3RTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc21vb3RoU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiBhIGpRdWVyeSBhbmltYXRpb24gc2hvdWxkIGJlIHVzZWQgdG8gc2Nyb2xsIHRvIHNwZWNpZmljIHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW1zIG9uIHRoZSBwYWdlCiAgICAgICAgc21vb3RoU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKnNtb290aFNjcm9sbFNwZWVkKio6IEFjY2VwdHMgTnVtYmVyIChtaWxsaXNlY29uZHMpIG9yIFN0cmluZzogInNsb3ciLCAibWVkaXVtIiwgb3IgImZhc3QiCiAgICAgICAgLy8gVGhlIHRpbWUgZHVyYXRpb24gb2YgdGhlIHNtb290aFNjcm9sbCBhbmltYXRpb24KICAgICAgICBzbW9vdGhTY3JvbGxTcGVlZDogIm1lZGl1bSIsCgogICAgICAgIC8vICoqc2Nyb2xsVG8qKjogQWNjZXB0cyBOdW1iZXIgKHBpeGVscykKICAgICAgICAvLyBUaGUgYW1vdW50IG9mIHNwYWNlIGJldHdlZW4gdGhlIHRvcCBvZiBwYWdlIGFuZCB0aGUgc2VsZWN0ZWQgdGFibGUgb2YgY29udGVudHMgaXRlbSBhZnRlciB0aGUgcGFnZSBoYXMgYmVlbiBzY3JvbGxlZAogICAgICAgIHNjcm9sbFRvOiAwLAoKICAgICAgICAvLyAqKnNob3dBbmRIaWRlT25TY3JvbGwqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBEZXRlcm1pbmVzIGlmIHRhYmxlIG9mIGNvbnRlbnRzIG5lc3RlZCBpdGVtcyBzaG91bGQgYmUgc2hvd24gYW5kIGhpZGRlbiB3aGlsZSBzY3JvbGxpbmcKICAgICAgICBzaG93QW5kSGlkZU9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9uU2Nyb2xsKio6IEFjY2VwdHMgYSBib29sZWFuOiB0cnVlIG9yIGZhbHNlCiAgICAgICAgLy8gRGV0ZXJtaW5lcyBpZiB0YWJsZSBvZiBjb250ZW50cyBuZXN0ZWQgaXRlbXMgc2hvdWxkIGJlIGhpZ2hsaWdodGVkIChzZXQgdG8gYSBkaWZmZXJlbnQgY29sb3IpIHdoaWxlIHNjcm9sbGluZwogICAgICAgIGhpZ2hsaWdodE9uU2Nyb2xsOiB0cnVlLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodE9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyCiAgICAgICAgLy8gVGhlIG9mZnNldCBkaXN0YW5jZSBpbiBwaXhlbHMgdG8gdHJpZ2dlciB0aGUgbmV4dCBhY3RpdmUgdGFibGUgb2YgY29udGVudHMgaXRlbQogICAgICAgIGhpZ2hsaWdodE9mZnNldDogNDAsCgogICAgICAgIC8vICoqdGhlbWUqKjogQWNjZXB0cyBhIHN0cmluZzogImJvb3RzdHJhcCIsICJqcXVlcnl1aSIsIG9yICJub25lIgogICAgICAgIC8vIERldGVybWluZXMgaWYgVHdpdHRlciBCb290c3RyYXAsIGpRdWVyeVVJLCBvciBUb2NpZnkgY2xhc3NlcyBzaG91bGQgYmUgYWRkZWQgdG8gdGhlIHRhYmxlIG9mIGNvbnRlbnRzCiAgICAgICAgdGhlbWU6ICJib290c3RyYXAiLAoKICAgICAgICAvLyAqKmV4dGVuZFBhZ2UqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBJZiBhIHVzZXIgc2Nyb2xscyB0byB0aGUgYm90dG9tIG9mIHRoZSBwYWdlIGFuZCB0aGUgcGFnZSBpcyBub3QgdGFsbCBlbm91Z2ggdG8gc2Nyb2xsIHRvIHRoZSBsYXN0IHRhYmxlIG9mIGNvbnRlbnRzIGl0ZW0sIHRoZW4gdGhlIHBhZ2UgaGVpZ2h0IGlzIGluY3JlYXNlZAogICAgICAgIGV4dGVuZFBhZ2U6IHRydWUsCgogICAgICAgIC8vICoqZXh0ZW5kUGFnZU9mZnNldCoqOiBBY2NlcHRzIGEgbnVtYmVyOiBwaXhlbHMKICAgICAgICAvLyBIb3cgY2xvc2UgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhIHVzZXIgbXVzdCBzY3JvbGwgYmVmb3JlIHRoZSBwYWdlIGlzIGV4dGVuZGVkCiAgICAgICAgZXh0ZW5kUGFnZU9mZnNldDogMTAwLAoKICAgICAgICAvLyAqKmhpc3RvcnkqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBBZGRzIGEgaGFzaCB0byB0aGUgcGFnZSB1cmwgdG8gbWFpbnRhaW4gaGlzdG9yeQogICAgICAgIGhpc3Rvcnk6IHRydWUsCgogICAgICAgIC8vICoqc2Nyb2xsSGlzdG9yeSoqOiBBY2NlcHRzIGEgYm9vbGVhbjogdHJ1ZSBvciBmYWxzZQogICAgICAgIC8vIEFkZHMgYSBoYXNoIHRvIHRoZSBwYWdlIHVybCwgdG8gbWFpbnRhaW4gaGlzdG9yeSwgd2hlbiBzY3JvbGxpbmcgdG8gYSBUT0MgaXRlbQogICAgICAgIHNjcm9sbEhpc3Rvcnk6IGZhbHNlLAoKICAgICAgICAvLyAqKmhhc2hHZW5lcmF0b3IqKjogSG93IHRoZSBoYXNoIHZhbHVlICh0aGUgYW5jaG9yIHNlZ21lbnQgb2YgdGhlIFVSTCwgZm9sbG93aW5nIHRoZQogICAgICAgIC8vICMgY2hhcmFjdGVyKSB3aWxsIGJlIGdlbmVyYXRlZC4KICAgICAgICAvLwogICAgICAgIC8vICJjb21wYWN0IiAoZGVmYXVsdCkgLSAjQ29tcHJlc3Nlc0V2ZXJ5dGhpbmdUb2dldGhlcgogICAgICAgIC8vICJwcmV0dHkiIC0gI2xvb2tzLWxpa2UtYS1uaWNlLXVybC1hbmQtaXMtZWFzaWx5LXJlYWRhYmxlCiAgICAgICAgLy8gZnVuY3Rpb24odGV4dCwgZWxlbWVudCl7fSAtIFlvdXIgb3duIGhhc2ggZ2VuZXJhdGlvbiBmdW5jdGlvbiB0aGF0IGFjY2VwdHMgdGhlIHRleHQgYXMgYW4KICAgICAgICAvLyBhcmd1bWVudCwgYW5kIHJldHVybnMgdGhlIGhhc2ggdmFsdWUuCiAgICAgICAgaGFzaEdlbmVyYXRvcjogImNvbXBhY3QiLAoKICAgICAgICAvLyAqKmhpZ2hsaWdodERlZmF1bHQqKjogQWNjZXB0cyBhIGJvb2xlYW46IHRydWUgb3IgZmFsc2UKICAgICAgICAvLyBTZXQncyB0aGUgZmlyc3QgVE9DIGl0ZW0gYXMgYWN0aXZlIGlmIG5vIG90aGVyIFRPQyBpdGVtIGlzIGFjdGl2ZS4KICAgICAgICBoaWdobGlnaHREZWZhdWx0OiB0cnVlCgogICAgICB9LAoKICAgICAgLy8gX0NyZWF0ZQogICAgICAvLyAtLS0tLS0tCiAgICAgIC8vICAgICAgQ29uc3RydWN0cyB0aGUgcGx1Z2luLiAgT25seSBjYWxsZWQgb25jZS4KICAgICAgX2NyZWF0ZTogZnVuY3Rpb24oKSB7CgogICAgICAgIHZhciBzZWxmID0gdGhpczsKCiAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gdHJ1ZTsKCiAgICAgICAgLy8gSW50ZXJuYWwgYXJyYXkgdGhhdCBrZWVwcyB0cmFjayBvZiBhbGwgVE9DIGl0ZW1zIChIZWxwcyB0byByZWNvZ25pemUgaWYgdGhlcmUgYXJlIGR1cGxpY2F0ZSBUT0MgaXRlbSBzdHJpbmdzKQogICAgICAgIHNlbGYuaXRlbXMgPSBbXTsKCiAgICAgICAgLy8gR2VuZXJhdGVzIHRoZSBIVE1MIGZvciB0aGUgZHluYW1pYyB0YWJsZSBvZiBjb250ZW50cwogICAgICAgIHNlbGYuX2dlbmVyYXRlVG9jKCk7CgogICAgICAgIC8vIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgICAgc2VsZi5fYWRkQ1NTQ2xhc3NlcygpOwoKICAgICAgICBzZWxmLndlYmtpdCA9IChmdW5jdGlvbigpIHsKCiAgICAgICAgICBmb3IgKHZhciBwcm9wIGluIHdpbmRvdykgewoKICAgICAgICAgICAgaWYgKHByb3ApIHsKCiAgICAgICAgICAgICAgaWYgKHByb3AudG9Mb3dlckNhc2UoKS5pbmRleE9mKCJ3ZWJraXQiKSAhPT0gLTEpIHsKCiAgICAgICAgICAgICAgICByZXR1cm4gdHJ1ZTsKCiAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0KCiAgICAgICAgICByZXR1cm4gZmFsc2U7CgogICAgICAgIH0oKSk7CgogICAgICAgIC8vIEFkZHMgalF1ZXJ5IGV2ZW50IGhhbmRsZXJzIHRvIHRoZSBuZXdseSBnZW5lcmF0ZWQgdGFibGUgb2YgY29udGVudHMKICAgICAgICBzZWxmLl9zZXRFdmVudEhhbmRsZXJzKCk7CgogICAgICAgIC8vIEJpbmRpbmcgdG8gdGhlIFdpbmRvdyBsb2FkIGV2ZW50IHRvIG1ha2Ugc3VyZSB0aGUgY29ycmVjdCBzY3JvbGxUb3AgaXMgY2FsY3VsYXRlZAogICAgICAgICQod2luZG93KS5sb2FkKGZ1bmN0aW9uKCkgewoKICAgICAgICAgIC8vIFNldHMgdGhlIGFjdGl2ZSBUT0MgaXRlbQogICAgICAgICAgc2VsZi5fc2V0QWN0aXZlRWxlbWVudCh0cnVlKTsKCiAgICAgICAgICAvLyBPbmNlIGFsbCBhbmltYXRpb25zIG9uIHRoZSBwYWdlIGFyZSBjb21wbGV0ZSwgdGhpcyBjYWxsYmFjayBmdW5jdGlvbiB3aWxsIGJlIGNhbGxlZAogICAgICAgICAgJCgiaHRtbCwgYm9keSIpLnByb21pc2UoKS5kb25lKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgc2V0VGltZW91dChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgc2VsZi5leHRlbmRQYWdlU2Nyb2xsID0gZmFsc2U7CgogICAgICAgICAgICB9LCAwKTsKCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlVG9jCiAgICAgIC8vIC0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgSFRNTCBmb3IgdGhlIGR5bmFtaWMgdGFibGUgb2YgY29udGVudHMKICAgICAgX2dlbmVyYXRlVG9jOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gX0xvY2FsIHZhcmlhYmxlc18KCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgc2VsZiB2YXJpYWJsZQogICAgICAgIHZhciBzZWxmID0gdGhpcywKCiAgICAgICAgICAvLyBBbGwgb2YgdGhlIEhUTUwgdGFncyBmb3VuZCB3aXRoaW4gdGhlIGNvbnRleHQgcHJvdmlkZWQgKGkuZS4gYm9keSkgdGhhdCBtYXRjaCB0aGUgdG9wIGxldmVsIGpRdWVyeSBzZWxlY3RvciBhYm92ZQogICAgICAgICAgZmlyc3RFbGVtLAoKICAgICAgICAgIC8vIEluc3RhbnRpYXRlZCB2YXJpYWJsZSB0aGF0IHdpbGwgc3RvcmUgdGhlIHRvcCBsZXZlbCBuZXdseSBjcmVhdGVkIHVub3JkZXJlZCBsaXN0IERPTSBlbGVtZW50CiAgICAgICAgICB1bCwKICAgICAgICAgIGlnbm9yZVNlbGVjdG9yID0gc2VsZi5vcHRpb25zLmlnbm9yZVNlbGVjdG9yOwoKCiAgICAgICAgLy8gRGV0ZXJtaW5lIHRoZSBlbGVtZW50IHRvIHN0YXJ0IHRoZSB0b2Mgd2l0aAogICAgICAgIC8vIGdldCBhbGwgdGhlIHRvcCBsZXZlbCBzZWxlY3RvcnMKICAgICAgICBmaXJzdEVsZW0gPSBbXTsKICAgICAgICB2YXIgc2VsZWN0b3JzID0gdGhpcy5vcHRpb25zLnNlbGVjdG9ycy5yZXBsYWNlKC8gL2csICIiKS5zcGxpdCgiLCIpOwogICAgICAgIC8vIGZpbmQgdGhlIGZpcnN0IHNldCB0aGF0IGhhdmUgYXQgbGVhc3Qgb25lIG5vbi1pZ25vcmVkIGVsZW1lbnQKICAgICAgICBmb3IodmFyIGkgPSAwOyBpIDwgc2VsZWN0b3JzLmxlbmd0aDsgaSsrKSB7CiAgICAgICAgICB2YXIgZm91bmRTZWxlY3RvcnMgPSAkKHRoaXMub3B0aW9ucy5jb250ZXh0KS5maW5kKHNlbGVjdG9yc1tpXSk7CiAgICAgICAgICBmb3IgKHZhciBzID0gMDsgcyA8IGZvdW5kU2VsZWN0b3JzLmxlbmd0aDsgcysrKSB7CiAgICAgICAgICAgIGlmICghJChmb3VuZFNlbGVjdG9yc1tzXSkuaXMoaWdub3JlU2VsZWN0b3IpKSB7CiAgICAgICAgICAgICAgZmlyc3RFbGVtID0gZm91bmRTZWxlY3RvcnM7CiAgICAgICAgICAgICAgYnJlYWs7CiAgICAgICAgICAgIH0KICAgICAgICAgIH0KICAgICAgICAgIGlmIChmaXJzdEVsZW0ubGVuZ3RoPiAwKQogICAgICAgICAgICBicmVhazsKICAgICAgICB9CgogICAgICAgIGlmICghZmlyc3RFbGVtLmxlbmd0aCkgewoKICAgICAgICAgIHNlbGYuZWxlbWVudC5hZGRDbGFzcyhoaWRlVG9jQ2xhc3NOYW1lKTsKCiAgICAgICAgICByZXR1cm47CgogICAgICAgIH0KCiAgICAgICAgc2VsZi5lbGVtZW50LmFkZENsYXNzKHRvY0NsYXNzTmFtZSk7CgogICAgICAgIC8vIExvb3BzIHRocm91Z2ggZWFjaCB0b3AgbGV2ZWwgc2VsZWN0b3IKICAgICAgICBmaXJzdEVsZW0uZWFjaChmdW5jdGlvbihpbmRleCkgewoKICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgfQoKICAgICAgICAgIC8vIENyZWF0ZXMgYW4gdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGFuZCBhZGRzIGEgZHluYW1pYyBJRCBhbmQgc3RhbmRhcmQgY2xhc3MgbmFtZQogICAgICAgICAgdWwgPSAkKCI8dWwvPiIsIHsKICAgICAgICAgICAgImlkIjogaGVhZGVyQ2xhc3NOYW1lICsgaW5kZXgsCiAgICAgICAgICAgICJjbGFzcyI6IGhlYWRlckNsYXNzTmFtZQogICAgICAgICAgfSkuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIHRvcCBsZXZlbCBsaXN0IGl0ZW0gSFRNTCBlbGVtZW50IHRvIHRoZSBwcmV2aW91c2x5IGNyZWF0ZWQgSFRNTCBoZWFkZXIKICAgICAgICAgIGFwcGVuZChzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgICAvLyBBZGQgdGhlIGNyZWF0ZWQgdW5vcmRlcmVkIGxpc3QgZWxlbWVudCB0byB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgc2VsZi5lbGVtZW50LmFwcGVuZCh1bCk7CgogICAgICAgICAgLy8gRmluZHMgYWxsIG9mIHRoZSBIVE1MIHRhZ3MgYmV0d2VlbiB0aGUgaGVhZGVyIGFuZCBzdWJoZWFkZXIgZWxlbWVudHMKICAgICAgICAgICQodGhpcykubmV4dFVudGlsKHRoaXMubm9kZU5hbWUudG9Mb3dlckNhc2UoKSkuZWFjaChmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIElmIHRoZXJlIGFyZSBubyBuZXN0ZWQgc3ViaGVhZGVyIGVsZW1lbWVudHMKICAgICAgICAgICAgaWYgKCQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5sZW5ndGggPT09IDApIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmlsdGVyKHNlbGYub3B0aW9ucy5zZWxlY3RvcnMpLmVhY2goZnVuY3Rpb24oKSB7CgogICAgICAgICAgICAgICAgLy9JZiB0aGUgZWxlbWVudCBtYXRjaGVzIHRoZSBpZ25vcmVTZWxlY3RvciB0aGVuIHdlIHNraXAgaXQKICAgICAgICAgICAgICAgIGlmICgkKHRoaXMpLmlzKGlnbm9yZVNlbGVjdG9yKSkgewogICAgICAgICAgICAgICAgICByZXR1cm47CiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgICAgc2VsZi5fYXBwZW5kU3ViaGVhZGVycy5jYWxsKHRoaXMsIHNlbGYsIHVsKTsKCiAgICAgICAgICAgICAgfSk7CgogICAgICAgICAgICB9CgogICAgICAgICAgICAvLyBJZiB0aGVyZSBhcmUgbmVzdGVkIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICBlbHNlIHsKCiAgICAgICAgICAgICAgLy8gTG9vcHMgdGhyb3VnaCBhbGwgb2YgdGhlIHN1YmhlYWRlciBlbGVtZW50cwogICAgICAgICAgICAgICQodGhpcykuZmluZChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKS5lYWNoKGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vSWYgdGhlIGVsZW1lbnQgbWF0Y2hlcyB0aGUgaWdub3JlU2VsZWN0b3IgdGhlbiB3ZSBza2lwIGl0CiAgICAgICAgICAgICAgICBpZiAoJCh0aGlzKS5pcyhpZ25vcmVTZWxlY3RvcikpIHsKICAgICAgICAgICAgICAgICAgcmV0dXJuOwogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIHNlbGYuX2FwcGVuZFN1YmhlYWRlcnMuY2FsbCh0aGlzLCBzZWxmLCB1bCk7CgogICAgICAgICAgICAgIH0pOwoKICAgICAgICAgICAgfQoKICAgICAgICAgIH0pOwoKICAgICAgICB9KTsKCiAgICAgIH0sCgogICAgICBfc2V0QWN0aXZlRWxlbWVudDogZnVuY3Rpb24ocGFnZWxvYWQpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAoKICAgICAgICAgIGhhc2ggPSB3aW5kb3cubG9jYXRpb24uaGFzaC5zdWJzdHJpbmcoMSksCgogICAgICAgICAgZWxlbSA9IHNlbGYuZWxlbWVudC5maW5kKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGhhc2ggKyAnIl0nKTsKCiAgICAgICAgaWYgKGhhc2gubGVuZ3RoKSB7CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgZWxlbS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIFRyaWdnZXJzIHRoZSBjbGljayBldmVudCBvbiB0aGUgY3VycmVudGx5IGZvY3VzZWQgVE9DIGl0ZW0KICAgICAgICAgIGVsZW0uY2xpY2soKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBSZW1vdmVzIGhpZ2hsaWdodGluZyBmcm9tIGFsbCBvZiB0aGUgbGlzdCBpdGVtJ3MKICAgICAgICAgIHNlbGYuZWxlbWVudC5maW5kKCIuIiArIHNlbGYuZm9jdXNDbGFzcykucmVtb3ZlQ2xhc3Moc2VsZi5mb2N1c0NsYXNzKTsKCiAgICAgICAgICBpZiAoIWhhc2gubGVuZ3RoICYmIHBhZ2Vsb2FkICYmIHNlbGYub3B0aW9ucy5oaWdobGlnaHREZWZhdWx0KSB7CgogICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBmaXJzdCBUT0MgaXRlbSBpZiBubyBvdGhlciBpdGVtcyBhcmUgaGlnaGxpZ2h0ZWQKICAgICAgICAgICAgc2VsZi5lbGVtZW50LmZpbmQoaXRlbUNsYXNzKS5maXJzdCgpLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgfQoKICAgICAgICB9CgogICAgICAgIHJldHVybiBzZWxmOwoKICAgICAgfSwKCiAgICAgIC8vIF9uZXN0RWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEhlbHBzIGNyZWF0ZSB0aGUgdGFibGUgb2YgY29udGVudHMgbGlzdCBieSBhcHBlbmRpbmcgbmVzdGVkIGxpc3QgaXRlbXMKICAgICAgX25lc3RFbGVtZW50czogZnVuY3Rpb24oc2VsZiwgaW5kZXgpIHsKCiAgICAgICAgdmFyIGFyciwgaXRlbSwgaGFzaFZhbHVlOwoKICAgICAgICBhcnIgPSAkLmdyZXAodGhpcy5pdGVtcywgZnVuY3Rpb24oaXRlbSkgewoKICAgICAgICAgIHJldHVybiBpdGVtID09PSBzZWxmLnRleHQoKTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIElmIHRoZXJlIGlzIGFscmVhZHkgYSBkdXBsaWNhdGUgVE9DIGl0ZW0KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewoKICAgICAgICAgIC8vIEFkZHMgdGhlIGN1cnJlbnQgVE9DIGl0ZW0gdGV4dCBhbmQgaW5kZXggKGZvciBzbGlnaHQgcmFuZG9taXphdGlvbikgdG8gdGhlIGludGVybmFsIGFycmF5CiAgICAgICAgICB0aGlzLml0ZW1zLnB1c2goc2VsZi50ZXh0KCkgKyBpbmRleCk7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlcmUgbm90IGEgZHVwbGljYXRlIFRPQyBpdGVtCiAgICAgICAgZWxzZSB7CgogICAgICAgICAgLy8gQWRkcyB0aGUgY3VycmVudCBUT0MgaXRlbSB0ZXh0IHRvIHRoZSBpbnRlcm5hbCBhcnJheQogICAgICAgICAgdGhpcy5pdGVtcy5wdXNoKHNlbGYudGV4dCgpKTsKCiAgICAgICAgfQoKICAgICAgICBoYXNoVmFsdWUgPSB0aGlzLl9nZW5lcmF0ZUhhc2hWYWx1ZShhcnIsIHNlbGYsIGluZGV4KTsKCiAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIGl0ZW0gPSAkKCI8bGkvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUgdG8gdGhlIGxpc3QgaXRlbQogICAgICAgICAgImNsYXNzIjogaXRlbUNsYXNzTmFtZSwKCiAgICAgICAgICAiZGF0YS11bmlxdWUiOiBoYXNoVmFsdWUKCiAgICAgICAgfSk7CgogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAzIikgewoKICAgICAgICAgIGl0ZW0uYXBwZW5kKCQoIjxhLz4iLCB7CgogICAgICAgICAgICAidGV4dCI6IHNlbGYudGV4dCgpCgogICAgICAgICAgfSkpOwoKICAgICAgICB9IGVsc2UgewoKICAgICAgICAgIGl0ZW0udGV4dChzZWxmLnRleHQoKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gQWRkcyBhbiBIVE1MIGFuY2hvciB0YWcgYmVmb3JlIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIEhUTUwgZWxlbWVudAogICAgICAgIHNlbGYuYmVmb3JlKCQoIjxkaXYvPiIsIHsKCiAgICAgICAgICAvLyBTZXRzIGEgbmFtZSBhdHRyaWJ1dGUgb24gdGhlIGFuY2hvciB0YWcgdG8gdGhlIHRleHQgb2YgdGhlIGN1cnJlbnRseSB0cmF2ZXJzZWQgSFRNTCBlbGVtZW50IChhbHNvIG1ha2luZyBzdXJlIHRoYXQgYWxsIHdoaXRlc3BhY2UgaXMgcmVwbGFjZWQgd2l0aCBhbiB1bmRlcnNjb3JlKQogICAgICAgICAgIm5hbWUiOiBoYXNoVmFsdWUsCgogICAgICAgICAgImRhdGEtdW5pcXVlIjogaGFzaFZhbHVlCgogICAgICAgIH0pKTsKCiAgICAgICAgcmV0dXJuIGl0ZW07CgogICAgICB9LAoKICAgICAgLy8gX2dlbmVyYXRlSGFzaFZhbHVlCiAgICAgIC8vIC0tLS0tLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEdlbmVyYXRlcyB0aGUgaGFzaCB2YWx1ZSB0aGF0IHdpbGwgYmUgdXNlZCB0byByZWZlciB0byBlYWNoIGl0ZW0uCiAgICAgIF9nZW5lcmF0ZUhhc2hWYWx1ZTogZnVuY3Rpb24oYXJyLCBzZWxmLCBpbmRleCkgewoKICAgICAgICB2YXIgaGFzaFZhbHVlID0gIiIsCiAgICAgICAgICBoYXNoR2VuZXJhdG9yT3B0aW9uID0gdGhpcy5vcHRpb25zLmhhc2hHZW5lcmF0b3I7CgogICAgICAgIGlmIChoYXNoR2VuZXJhdG9yT3B0aW9uID09PSAicHJldHR5IikgewoKICAgICAgICAgIC8vIHByZXR0aWZ5IHRoZSB0ZXh0CiAgICAgICAgICBoYXNoVmFsdWUgPSBzZWxmLnRleHQoKS50b0xvd2VyQ2FzZSgpLnJlcGxhY2UoL1xzL2csICItIik7CgogICAgICAgICAgLy8gZml4IGRvdWJsZSBoeXBoZW5zCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIi0tIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvLS0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgICAvLyBmaXggY29sb24tc3BhY2UgaW5zdGFuY2VzCiAgICAgICAgICB3aGlsZSAoaGFzaFZhbHVlLmluZGV4T2YoIjotIikgPiAtMSkgewogICAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoVmFsdWUucmVwbGFjZSgvOi0vZywgIi0iKTsKICAgICAgICAgIH0KCiAgICAgICAgfSBlbHNlIGlmICh0eXBlb2YgaGFzaEdlbmVyYXRvck9wdGlvbiA9PT0gImZ1bmN0aW9uIikgewoKICAgICAgICAgIC8vIGNhbGwgdGhlIGZ1bmN0aW9uCiAgICAgICAgICBoYXNoVmFsdWUgPSBoYXNoR2VuZXJhdG9yT3B0aW9uKHNlbGYudGV4dCgpLCBzZWxmKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBjb21wYWN0IC0gdGhlIGRlZmF1bHQKICAgICAgICAgIGhhc2hWYWx1ZSA9IHNlbGYudGV4dCgpLnJlcGxhY2UoL1xzL2csICIiKTsKCiAgICAgICAgfQoKICAgICAgICAvLyBhZGQgdGhlIGluZGV4IGlmIHdlIG5lZWQgdG8KICAgICAgICBpZiAoYXJyLmxlbmd0aCkgewogICAgICAgICAgaGFzaFZhbHVlICs9ICIiICsgaW5kZXg7CiAgICAgICAgfQoKICAgICAgICAvLyByZXR1cm4gdGhlIHZhbHVlCiAgICAgICAgcmV0dXJuIGhhc2hWYWx1ZTsKCiAgICAgIH0sCgogICAgICAvLyBfYXBwZW5kRWxlbWVudHMKICAgICAgLy8gLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgSGVscHMgY3JlYXRlIHRoZSB0YWJsZSBvZiBjb250ZW50cyBsaXN0IGJ5IGFwcGVuZGluZyBzdWJoZWFkZXIgZWxlbWVudHMKCiAgICAgIF9hcHBlbmRTdWJoZWFkZXJzOiBmdW5jdGlvbihzZWxmLCB1bCkgewoKICAgICAgICAvLyBUaGUgY3VycmVudCBlbGVtZW50IGluZGV4CiAgICAgICAgdmFyIGluZGV4ID0gJCh0aGlzKS5pbmRleChzZWxmLm9wdGlvbnMuc2VsZWN0b3JzKSwKCiAgICAgICAgICAvLyBGaW5kcyB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50CiAgICAgICAgICBwcmV2aW91c0hlYWRlciA9ICQoc2VsZi5vcHRpb25zLnNlbGVjdG9ycykuZXEoaW5kZXggLSAxKSwKCiAgICAgICAgICBjdXJyZW50VGFnTmFtZSA9ICskKHRoaXMpLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgcHJldmlvdXNUYWdOYW1lID0gK3ByZXZpb3VzSGVhZGVyLnByb3AoInRhZ05hbWUiKS5jaGFyQXQoMSksCgogICAgICAgICAgbGFzdFN1YmhlYWRlcjsKCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgaGVhZGVyIERPTSBlbGVtZW50IGlzIHNtYWxsZXIgdGhhbiB0aGUgcHJldmlvdXMgaGVhZGVyIERPTSBlbGVtZW50IG9yIHRoZSBmaXJzdCBzdWJoZWFkZXIKICAgICAgICBpZiAoY3VycmVudFRhZ05hbWUgPCBwcmV2aW91c1RhZ05hbWUpIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZChzdWJoZWFkZXJDbGFzcyArICJbZGF0YS10YWc9IiArIGN1cnJlbnRUYWdOYW1lICsgIl0iKS5sYXN0KCkuYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGhlYWRlciBET00gZWxlbWVudCBpcyB0aGUgc2FtZSB0eXBlIG9mIGhlYWRlcihlZy4gaDQpIGFzIHRoZSBwcmV2aW91cyBoZWFkZXIgRE9NIGVsZW1lbnQKICAgICAgICBlbHNlIGlmIChjdXJyZW50VGFnTmFtZSA9PT0gcHJldmlvdXNUYWdOYW1lKSB7CgogICAgICAgICAgdWwuZmluZChpdGVtQ2xhc3MpLmxhc3QoKS5hZnRlcihzZWxmLl9uZXN0RWxlbWVudHMoJCh0aGlzKSwgaW5kZXgpKTsKCiAgICAgICAgfSBlbHNlIHsKCiAgICAgICAgICAvLyBTZWxlY3RzIHRoZSBsYXN0IHVub3JkZXJlZCBsaXN0IEhUTUwgZm91bmQgd2l0aGluIHRoZSBIVE1MIGVsZW1lbnQgY2FsbGluZyB0aGUgcGx1Z2luCiAgICAgICAgICB1bC5maW5kKGl0ZW1DbGFzcykubGFzdCgpLgoKICAgICAgICAgIC8vIEFwcGVuZHMgYW4gdW5vcmRlcmVkTGlzdCBIVE1MIGVsZW1lbnQgdG8gdGhlIGR5bmFtaWMgYHVub3JkZXJlZExpc3RgIHZhcmlhYmxlIGFuZCBzZXRzIGEgY29tbW9uIGNsYXNzIG5hbWUKICAgICAgICAgIGFmdGVyKCQoIjx1bC8+IiwgewoKICAgICAgICAgICAgImNsYXNzIjogc3ViaGVhZGVyQ2xhc3NOYW1lLAoKICAgICAgICAgICAgImRhdGEtdGFnIjogY3VycmVudFRhZ05hbWUKCiAgICAgICAgICB9KSkubmV4dChzdWJoZWFkZXJDbGFzcykuCgogICAgICAgICAgLy8gQXBwZW5kcyBhIGxpc3QgaXRlbSBIVE1MIGVsZW1lbnQgdG8gdGhlIGxhc3QgdW5vcmRlcmVkIGxpc3QgSFRNTCBlbGVtZW50IGZvdW5kIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgICAgYXBwZW5kKHNlbGYuX25lc3RFbGVtZW50cygkKHRoaXMpLCBpbmRleCkpOwogICAgICAgIH0KCiAgICAgIH0sCgogICAgICAvLyBfc2V0RXZlbnRIYW5kbGVycwogICAgICAvLyAtLS0tLS0tLS0tLS0tLS0tCiAgICAgIC8vICAgICAgQWRkcyBqUXVlcnkgZXZlbnQgaGFuZGxlcnMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cwogICAgICBfc2V0RXZlbnRIYW5kbGVyczogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgIC8vIFN0b3JlcyB0aGUgcGx1Z2luIGNvbnRleHQgaW4gdGhlIHNlbGYgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGhvbGQgYSBzcGVjaWZpYyBlbGVtZW50J3MgY29udGV4dAogICAgICAgICAgJHNlbGYsCgogICAgICAgICAgLy8gSW5zdGFudGlhdGVzIGEgbmV3IHZhcmlhYmxlIHRoYXQgd2lsbCBiZSB1c2VkIHRvIGRldGVybWluZSB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uCiAgICAgICAgICBkdXJhdGlvbjsKCiAgICAgICAgLy8gRXZlbnQgZGVsZWdhdGlvbiB0aGF0IGxvb2tzIGZvciBhbnkgY2xpY2tzIG9uIGxpc3QgaXRlbSBlbGVtZW50cyBpbnNpZGUgb2YgdGhlIEhUTUwgZWxlbWVudCBjYWxsaW5nIHRoZSBwbHVnaW4KICAgICAgICB0aGlzLmVsZW1lbnQub24oImNsaWNrLnRvY2lmeSIsICJsaSIsIGZ1bmN0aW9uKGV2ZW50KSB7CgogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5oaXN0b3J5KSB7CgogICAgICAgICAgICB3aW5kb3cubG9jYXRpb24uaGFzaCA9ICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gUmVtb3ZlcyBoaWdobGlnaHRpbmcgZnJvbSBhbGwgb2YgdGhlIGxpc3QgaXRlbSdzCiAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgLy8gSGlnaGxpZ2h0cyB0aGUgY3VycmVudCBsaXN0IGl0ZW0gdGhhdCB3YXMgY2xpY2tlZAogICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgIC8vIElmIHRoZSBzaG93QW5kSGlkZSBvcHRpb24gaXMgdHJ1ZQogICAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5zaG93QW5kSGlkZSkgewoKICAgICAgICAgICAgdmFyIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArICQodGhpcykuYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICAgICAgc2VsZi5fdHJpZ2dlclNob3coZWxlbSk7CgogICAgICAgICAgfQoKICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQodGhpcykpOwoKICAgICAgICB9KTsKCiAgICAgICAgLy8gTW91c2VlbnRlciBhbmQgTW91c2VsZWF2ZSBldmVudCBoYW5kbGVycyBmb3IgdGhlIGxpc3QgaXRlbSdzIHdpdGhpbiB0aGUgSFRNTCBlbGVtZW50IGNhbGxpbmcgdGhlIHBsdWdpbgogICAgICAgIHRoaXMuZWxlbWVudC5maW5kKCJsaSIpLm9uKHsKCiAgICAgICAgICAvLyBNb3VzZWVudGVyIGV2ZW50IGhhbmRsZXIKICAgICAgICAgICJtb3VzZWVudGVyLnRvY2lmeSI6IGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgLy8gQWRkcyBhIGhvdmVyIENTUyBjbGFzcyB0byB0aGUgY3VycmVudCBsaXN0IGl0ZW0KICAgICAgICAgICAgJCh0aGlzKS5hZGRDbGFzcyhzZWxmLmhvdmVyQ2xhc3MpOwoKICAgICAgICAgICAgLy8gTWFrZXMgc3VyZSB0aGUgY3Vyc29yIGlzIHNldCB0byB0aGUgcG9pbnRlciBpY29uCiAgICAgICAgICAgICQodGhpcykuY3NzKCJjdXJzb3IiLCAicG9pbnRlciIpOwoKICAgICAgICAgIH0sCgogICAgICAgICAgLy8gTW91c2VsZWF2ZSBldmVudCBoYW5kbGVyCiAgICAgICAgICAibW91c2VsZWF2ZS50b2NpZnkiOiBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMudGhlbWUgIT09ICJib290c3RyYXAiKSB7CgogICAgICAgICAgICAgIC8vIFJlbW92ZXMgdGhlIGhvdmVyIENTUyBjbGFzcyBmcm9tIHRoZSBjdXJyZW50IGxpc3QgaXRlbQogICAgICAgICAgICAgICQodGhpcykucmVtb3ZlQ2xhc3Moc2VsZi5ob3ZlckNsYXNzKTsKCiAgICAgICAgICAgIH0KCiAgICAgICAgICB9CiAgICAgICAgfSk7CgogICAgICAgIC8vIG9ubHkgYXR0YWNoIGhhbmRsZXIgaWYgbmVlZGVkIChleHBlbnNpdmUgaW4gSUUpCiAgICAgICAgaWYgKHNlbGYub3B0aW9ucy5leHRlbmRQYWdlIHx8IHNlbGYub3B0aW9ucy5oaWdobGlnaHRPblNjcm9sbCB8fCBzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSB8fCBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCkgewogICAgICAgICAgLy8gV2luZG93IHNjcm9sbCBldmVudCBoYW5kbGVyCiAgICAgICAgICAkKHdpbmRvdykub24oInNjcm9sbC50b2NpZnkiLCBmdW5jdGlvbigpIHsKCiAgICAgICAgICAgIC8vIE9uY2UgYWxsIGFuaW1hdGlvbnMgb24gdGhlIHBhZ2UgYXJlIGNvbXBsZXRlLCB0aGlzIGNhbGxiYWNrIGZ1bmN0aW9uIHdpbGwgYmUgY2FsbGVkCiAgICAgICAgICAgICQoImh0bWwsIGJvZHkiKS5wcm9taXNlKCkuZG9uZShmdW5jdGlvbigpIHsKCiAgICAgICAgICAgICAgLy8gTG9jYWwgdmFyaWFibGVzCgogICAgICAgICAgICAgIC8vIFN0b3JlcyBob3cgZmFyIHRoZSB1c2VyIGhhcyBzY3JvbGxlZAogICAgICAgICAgICAgIHZhciB3aW5TY3JvbGxUb3AgPSAkKHdpbmRvdykuc2Nyb2xsVG9wKCksCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBoZWlnaHQgb2YgdGhlIHdpbmRvdwogICAgICAgICAgICAgICAgd2luSGVpZ2h0ID0gJCh3aW5kb3cpLmhlaWdodCgpLAoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgaGVpZ2h0IG9mIHRoZSBkb2N1bWVudAogICAgICAgICAgICAgICAgZG9jSGVpZ2h0ID0gJChkb2N1bWVudCkuaGVpZ2h0KCksCgogICAgICAgICAgICAgICAgc2Nyb2xsSGVpZ2h0ID0gJCgiYm9keSIpWzBdLnNjcm9sbEhlaWdodCwKCiAgICAgICAgICAgICAgICAvLyBJbnN0YW50aWF0ZXMgYSB2YXJpYWJsZSB0aGF0IHdpbGwgYmUgdXNlZCB0byBob2xkIGEgc2VsZWN0ZWQgSFRNTCBlbGVtZW50CiAgICAgICAgICAgICAgICBlbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtLAoKICAgICAgICAgICAgICAgIGxhc3RFbGVtT2Zmc2V0LAoKICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtOwoKICAgICAgICAgICAgICBpZiAoc2VsZi5vcHRpb25zLmV4dGVuZFBhZ2UpIHsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgdXNlciBoYXMgc2Nyb2xsZWQgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgdGhlIGxhc3QgdG9jIGl0ZW0gaXMgbm90IGZvY3VzZWQKICAgICAgICAgICAgICAgIGlmICgoc2VsZi53ZWJraXQgJiYgd2luU2Nyb2xsVG9wID49IHNjcm9sbEhlaWdodCAtIHdpbkhlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSB8fCAoIXNlbGYud2Via2l0ICYmIHdpbkhlaWdodCArIHdpblNjcm9sbFRvcCA+IGRvY0hlaWdodCAtIHNlbGYub3B0aW9ucy5leHRlbmRQYWdlT2Zmc2V0KSkgewoKICAgICAgICAgICAgICAgICAgaWYgKCEkKGV4dGVuZFBhZ2VDbGFzcykubGVuZ3RoKSB7CgogICAgICAgICAgICAgICAgICAgIGxhc3RFbGVtID0gJCgnZGl2W2RhdGEtdW5pcXVlPSInICsgJChpdGVtQ2xhc3MpLmxhc3QoKS5hdHRyKCJkYXRhLXVuaXF1ZSIpICsgJyJdJyk7CgogICAgICAgICAgICAgICAgICAgIGlmICghbGFzdEVsZW0ubGVuZ3RoKSByZXR1cm47CgogICAgICAgICAgICAgICAgICAgIC8vIEdldHMgdGhlIHRvcCBvZmZzZXQgb2YgdGhlIHBhZ2UgaGVhZGVyIHRoYXQgaXMgbGlua2VkIHRvIHRoZSBsYXN0IHRvYyBpdGVtCiAgICAgICAgICAgICAgICAgICAgbGFzdEVsZW1PZmZzZXQgPSBsYXN0RWxlbS5vZmZzZXQoKS50b3A7CgogICAgICAgICAgICAgICAgICAgIC8vIEFwcGVuZHMgYSBkaXYgdG8gdGhlIGJvdHRvbSBvZiB0aGUgcGFnZSBhbmQgc2V0cyB0aGUgaGVpZ2h0IHRvIHRoZSBkaWZmZXJlbmNlIG9mIHRoZSB3aW5kb3cgc2Nyb2xsVG9wIGFuZCB0aGUgbGFzdCBlbGVtZW50J3MgcG9zaXRpb24gdG9wIG9mZnNldAogICAgICAgICAgICAgICAgICAgICQoc2VsZi5vcHRpb25zLmNvbnRleHQpLmFwcGVuZCgkKCI8ZGl2Lz4iLCB7CgogICAgICAgICAgICAgICAgICAgICAgImNsYXNzIjogZXh0ZW5kUGFnZUNsYXNzTmFtZSwKCiAgICAgICAgICAgICAgICAgICAgICAiaGVpZ2h0IjogTWF0aC5hYnMobGFzdEVsZW1PZmZzZXQgLSB3aW5TY3JvbGxUb3ApICsgInB4IiwKCiAgICAgICAgICAgICAgICAgICAgICAiZGF0YS11bmlxdWUiOiBleHRlbmRQYWdlQ2xhc3NOYW1lCgogICAgICAgICAgICAgICAgICAgIH0pKTsKCiAgICAgICAgICAgICAgICAgICAgaWYgKHNlbGYuZXh0ZW5kUGFnZVNjcm9sbCkgewoKICAgICAgICAgICAgICAgICAgICAgIGN1cnJlbnRFbGVtID0gc2VsZi5lbGVtZW50LmZpbmQoJ2xpLicgKyBzZWxmLmZvY3VzQ2xhc3MpOwoKICAgICAgICAgICAgICAgICAgICAgIHNlbGYuX3Njcm9sbFRvKCQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGN1cnJlbnRFbGVtLmF0dHIoImRhdGEtdW5pcXVlIikgKyAnIl0nKSk7CgogICAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgICB9CgogICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgLy8gVGhlIHplcm8gdGltZW91dCBlbnN1cmVzIHRoZSBmb2xsb3dpbmcgY29kZSBpcyBydW4gYWZ0ZXIgdGhlIHNjcm9sbCBldmVudHMKICAgICAgICAgICAgICBzZXRUaW1lb3V0KGZ1bmN0aW9uKCkgewoKICAgICAgICAgICAgICAgIC8vIF9Mb2NhbCB2YXJpYWJsZXNfCgogICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBkaXN0YW5jZSB0byB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIHZhciBjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPSBudWxsLAoKICAgICAgICAgICAgICAgICAgLy8gU3RvcmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgICAgY2xvc2VzdEFuY2hvcklkeCA9IG51bGwsCgogICAgICAgICAgICAgICAgICAvLyBLZWVwcyBhIHJlZmVyZW5jZSB0byBhbGwgYW5jaG9ycwogICAgICAgICAgICAgICAgICBhbmNob3JzID0gJChzZWxmLm9wdGlvbnMuY29udGV4dCkuZmluZCgiZGl2W2RhdGEtdW5pcXVlXSIpLAoKICAgICAgICAgICAgICAgICAgYW5jaG9yVGV4dDsKCiAgICAgICAgICAgICAgICAvLyBEZXRlcm1pbmVzIHRoZSBpbmRleCBvZiB0aGUgY2xvc2VzdCBhbmNob3IKICAgICAgICAgICAgICAgIGFuY2hvcnMuZWFjaChmdW5jdGlvbihpZHgpIHsKICAgICAgICAgICAgICAgICAgdmFyIGRpc3RhbmNlID0gTWF0aC5hYnMoKCQodGhpcykubmV4dCgpLmxlbmd0aCA/ICQodGhpcykubmV4dCgpIDogJCh0aGlzKSkub2Zmc2V0KCkudG9wIC0gd2luU2Nyb2xsVG9wIC0gc2VsZi5vcHRpb25zLmhpZ2hsaWdodE9mZnNldCk7CiAgICAgICAgICAgICAgICAgIGlmIChjbG9zZXN0QW5jaG9yRGlzdGFuY2UgPT0gbnVsbCB8fCBkaXN0YW5jZSA8IGNsb3Nlc3RBbmNob3JEaXN0YW5jZSkgewogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JEaXN0YW5jZSA9IGRpc3RhbmNlOwogICAgICAgICAgICAgICAgICAgIGNsb3Nlc3RBbmNob3JJZHggPSBpZHg7CiAgICAgICAgICAgICAgICAgIH0gZWxzZSB7CiAgICAgICAgICAgICAgICAgICAgcmV0dXJuIGZhbHNlOwogICAgICAgICAgICAgICAgICB9CiAgICAgICAgICAgICAgICB9KTsKCiAgICAgICAgICAgICAgICBhbmNob3JUZXh0ID0gJChhbmNob3JzW2Nsb3Nlc3RBbmNob3JJZHhdKS5hdHRyKCJkYXRhLXVuaXF1ZSIpOwoKICAgICAgICAgICAgICAgIC8vIFN0b3JlcyB0aGUgbGlzdCBpdGVtIEhUTUwgZWxlbWVudCB0aGF0IGNvcnJlc3BvbmRzIHRvIHRoZSBjdXJyZW50bHkgdHJhdmVyc2VkIGFuY2hvciB0YWcKICAgICAgICAgICAgICAgIGVsZW0gPSAkKCdsaVtkYXRhLXVuaXF1ZT0iJyArIGFuY2hvclRleHQgKyAnIl0nKTsKCiAgICAgICAgICAgICAgICAvLyBJZiB0aGUgYGhpZ2hsaWdodE9uU2Nyb2xsYCBvcHRpb24gaXMgdHJ1ZSBhbmQgYSBuZXh0IGVsZW1lbnQgaXMgZm91bmQKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuaGlnaGxpZ2h0T25TY3JvbGwgJiYgZWxlbS5sZW5ndGgpIHsKCiAgICAgICAgICAgICAgICAgIC8vIFJlbW92ZXMgaGlnaGxpZ2h0aW5nIGZyb20gYWxsIG9mIHRoZSBsaXN0IGl0ZW0ncwogICAgICAgICAgICAgICAgICBzZWxmLmVsZW1lbnQuZmluZCgiLiIgKyBzZWxmLmZvY3VzQ2xhc3MpLnJlbW92ZUNsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgICAvLyBIaWdobGlnaHRzIHRoZSBjb3JyZXNwb25kaW5nIGxpc3QgaXRlbQogICAgICAgICAgICAgICAgICBlbGVtLmFkZENsYXNzKHNlbGYuZm9jdXNDbGFzcyk7CgogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2Nyb2xsSGlzdG9yeSkgewoKICAgICAgICAgICAgICAgICAgaWYgKHdpbmRvdy5sb2NhdGlvbi5oYXNoICE9PSAiIyIgKyBhbmNob3JUZXh0KSB7CgogICAgICAgICAgICAgICAgICAgIHdpbmRvdy5sb2NhdGlvbi5yZXBsYWNlKCIjIiArIGFuY2hvclRleHQpOwoKICAgICAgICAgICAgICAgICAgfQogICAgICAgICAgICAgICAgfQoKICAgICAgICAgICAgICAgIC8vIElmIHRoZSBgc2hvd0FuZEhpZGVPblNjcm9sbGAgb3B0aW9uIGlzIHRydWUKICAgICAgICAgICAgICAgIGlmIChzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGVPblNjcm9sbCAmJiBzZWxmLm9wdGlvbnMuc2hvd0FuZEhpZGUpIHsKCiAgICAgICAgICAgICAgICAgIHNlbGYuX3RyaWdnZXJTaG93KGVsZW0sIHRydWUpOwoKICAgICAgICAgICAgICAgIH0KCiAgICAgICAgICAgICAgfSwgMCk7CgogICAgICAgICAgICB9KTsKCiAgICAgICAgICB9KTsKICAgICAgICB9CgogICAgICB9LAoKICAgICAgLy8gU2hvdwogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgT3BlbnMgdGhlIGN1cnJlbnQgc3ViLWhlYWRlcgogICAgICBzaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgLy8gU3RvcmVzIHRoZSBwbHVnaW4gY29udGV4dCBpbiB0aGUgYHNlbGZgIHZhcmlhYmxlCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzLAogICAgICAgICAgZWxlbWVudCA9IGVsZW07CgogICAgICAgIC8vIElmIHRoZSBzdWItaGVhZGVyIGlzIG5vdCBhbHJlYWR5IHZpc2libGUKICAgICAgICBpZiAoIWVsZW0uaXMoIjp2aXNpYmxlIikpIHsKCiAgICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50IGRvZXMgbm90IGhhdmUgYW55IG5lc3RlZCBzdWJoZWFkZXJzLCBpcyBub3QgYSBoZWFkZXIsIGFuZCBpdHMgcGFyZW50IGlzIG5vdCB2aXNpYmxlCiAgICAgICAgICBpZiAoIWVsZW0uZmluZChzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSAmJiAhZWxlbS5wYXJlbnQoKS5pcygiOnZpc2libGUiKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIGFsbCBvZiB0aGUgc3ViaGVhZGVycyB3aXRoaW4gdGhlIGN1cnJlbnQgaGVhZGVyCiAgICAgICAgICAgIGVsZW0gPSBlbGVtLnBhcmVudHMoc3ViaGVhZGVyQ2xhc3MpLmFkZChlbGVtKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgZWxlbWVudCBkb2VzIG5vdCBoYXZlIGFueSBuZXN0ZWQgc3ViaGVhZGVycyBhbmQgaXMgbm90IGEgaGVhZGVyCiAgICAgICAgICBlbHNlIGlmICghZWxlbS5jaGlsZHJlbihzdWJoZWFkZXJDbGFzcykubGVuZ3RoICYmICFlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSkgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgY3VycmVudCBlbGVtZW50IHRvIHRoZSBjbG9zZXN0IHN1YmhlYWRlcgogICAgICAgICAgICBlbGVtID0gZWxlbS5jbG9zZXN0KHN1YmhlYWRlckNsYXNzKTsKCiAgICAgICAgICB9CgogICAgICAgICAgLy9EZXRlcm1pbmVzIHdoYXQgalF1ZXJ5IGVmZmVjdCB0byB1c2UKICAgICAgICAgIHN3aXRjaCAoc2VsZi5vcHRpb25zLnNob3dFZmZlY3QpIHsKCiAgICAgICAgICAgIC8vVXNlcyBgbm8gZWZmZWN0YAogICAgICAgICAgICBjYXNlICJub25lIjoKCiAgICAgICAgICAgICAgZWxlbS5zaG93KCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL1VzZXMgdGhlIGpRdWVyeSBgc2hvd2Agc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAic2hvdyI6CgogICAgICAgICAgICAgIGVsZW0uc2hvdyhzZWxmLm9wdGlvbnMuc2hvd0VmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAgIC8vVXNlcyB0aGUgalF1ZXJ5IGBzbGlkZURvd25gIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICAgIGNhc2UgInNsaWRlRG93biI6CgogICAgICAgICAgICAgIGVsZW0uc2xpZGVEb3duKHNlbGYub3B0aW9ucy5zaG93RWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgICAgLy9Vc2VzIHRoZSBqUXVlcnkgYGZhZGVJbmAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgICAgY2FzZSAiZmFkZUluIjoKCiAgICAgICAgICAgICAgZWxlbS5mYWRlSW4oc2VsZi5vcHRpb25zLnNob3dFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgICAvL0lmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBgalF1ZXJ5VUkgc2hvdyBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICAgIGRlZmF1bHQ6CgogICAgICAgICAgICAgIGVsZW0uc2hvdygpOwoKICAgICAgICAgICAgICBicmVhazsKCiAgICAgICAgICB9CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIGN1cnJlbnQgc3ViaGVhZGVyIHBhcmVudCBlbGVtZW50IGlzIGEgaGVhZGVyCiAgICAgICAgaWYgKGVsZW0ucGFyZW50KCkuaXMoaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gSGlkZXMgYWxsIG5vbi1hY3RpdmUgc3ViLWhlYWRlcnMKICAgICAgICAgIHNlbGYuaGlkZSgkKHN1YmhlYWRlckNsYXNzKS5ub3QoZWxlbSkpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IHN1YmhlYWRlciBwYXJlbnQgZWxlbWVudCBpcyBub3QgYSBoZWFkZXIKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBIaWRlcyBhbGwgbm9uLWFjdGl2ZSBzdWItaGVhZGVycwogICAgICAgICAgc2VsZi5oaWRlKCQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLmNsb3Nlc3QoaGVhZGVyQ2xhc3MpLmZpbmQoc3ViaGVhZGVyQ2xhc3MpLm5vdChlbGVtLnNpYmxpbmdzKCkpKSk7CgogICAgICAgIH0KCiAgICAgICAgLy8gTWFpbnRhaW5zIGNoYWluYWJsaXR5CiAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICB9LAoKICAgICAgLy8gSGlkZQogICAgICAvLyAtLS0tCiAgICAgIC8vICAgICAgQ2xvc2VzIHRoZSBjdXJyZW50IHN1Yi1oZWFkZXIKICAgICAgaGlkZTogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICAvLyBTdG9yZXMgdGhlIHBsdWdpbiBjb250ZXh0IGluIHRoZSBgc2VsZmAgdmFyaWFibGUKICAgICAgICB2YXIgc2VsZiA9IHRoaXM7CgogICAgICAgIC8vRGV0ZXJtaW5lcyB3aGF0IGpRdWVyeSBlZmZlY3QgdG8gdXNlCiAgICAgICAgc3dpdGNoIChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdCkgewoKICAgICAgICAgIC8vIFVzZXMgYG5vIGVmZmVjdGAKICAgICAgICAgIGNhc2UgIm5vbmUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIFVzZXMgdGhlIGpRdWVyeSBgaGlkZWAgc3BlY2lhbCBlZmZlY3QKICAgICAgICAgIGNhc2UgImhpZGUiOgoKICAgICAgICAgICAgZWxlbS5oaWRlKHNlbGYub3B0aW9ucy5oaWRlRWZmZWN0U3BlZWQpOwoKICAgICAgICAgICAgYnJlYWs7CgogICAgICAgICAgICAvLyBVc2VzIHRoZSBqUXVlcnkgYHNsaWRlVXBgIHNwZWNpYWwgZWZmZWN0CiAgICAgICAgICBjYXNlICJzbGlkZVVwIjoKCiAgICAgICAgICAgIGVsZW0uc2xpZGVVcChzZWxmLm9wdGlvbnMuaGlkZUVmZmVjdFNwZWVkKTsKCiAgICAgICAgICAgIGJyZWFrOwoKICAgICAgICAgICAgLy8gVXNlcyB0aGUgalF1ZXJ5IGBmYWRlT3V0YCBzcGVjaWFsIGVmZmVjdAogICAgICAgICAgY2FzZSAiZmFkZU91dCI6CgogICAgICAgICAgICBlbGVtLmZhZGVPdXQoc2VsZi5vcHRpb25zLmhpZGVFZmZlY3RTcGVlZCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgICAgIC8vIElmIG5vbmUgb2YgdGhlIGFib3ZlIG9wdGlvbnMgd2VyZSBwYXNzZWQsIHRoZW4gYSBganF1ZXJ5VUkgaGlkZSBlZmZlY3RgIGlzIGV4cGVjdGVkCiAgICAgICAgICBkZWZhdWx0OgoKICAgICAgICAgICAgZWxlbS5oaWRlKCk7CgogICAgICAgICAgICBicmVhazsKCiAgICAgICAgfQoKICAgICAgICAvLyBNYWludGFpbnMgY2hhaW5hYmxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKICAgICAgfSwKCiAgICAgIC8vIF90cmlnZ2VyU2hvdwogICAgICAvLyAtLS0tLS0tLS0tLS0KICAgICAgLy8gICAgICBEZXRlcm1pbmVzIHdoYXQgZWxlbWVudHMgZ2V0IHNob3duIG9uIHNjcm9sbCBhbmQgY2xpY2sKICAgICAgX3RyaWdnZXJTaG93OiBmdW5jdGlvbihlbGVtLCBzY3JvbGwpIHsKCiAgICAgICAgdmFyIHNlbGYgPSB0aGlzOwoKICAgICAgICAvLyBJZiB0aGUgY3VycmVudCBlbGVtZW50J3MgcGFyZW50IGlzIGEgaGVhZGVyIGVsZW1lbnQgb3IgdGhlIG5leHQgZWxlbWVudCBpcyBhIG5lc3RlZCBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGlmIChlbGVtLnBhcmVudCgpLmlzKGhlYWRlckNsYXNzKSB8fCBlbGVtLm5leHQoKS5pcyhzdWJoZWFkZXJDbGFzcykpIHsKCiAgICAgICAgICAvLyBTaG93cyB0aGUgbmV4dCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLm5leHQoc3ViaGVhZGVyQ2xhc3MpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSBjdXJyZW50IGVsZW1lbnQncyBwYXJlbnQgaXMgYSBzdWJoZWFkZXIgZWxlbWVudAogICAgICAgIGVsc2UgaWYgKGVsZW0ucGFyZW50KCkuaXMoc3ViaGVhZGVyQ2xhc3MpKSB7CgogICAgICAgICAgLy8gU2hvd3MgdGhlIHBhcmVudCBzdWItaGVhZGVyIGVsZW1lbnQKICAgICAgICAgIHNlbGYuc2hvdyhlbGVtLnBhcmVudCgpLCBzY3JvbGwpOwoKICAgICAgICB9CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0sCgogICAgICAvLyBfYWRkQ1NTQ2xhc3NlcwogICAgICAvLyAtLS0tLS0tLS0tLS0tLQogICAgICAvLyAgICAgIEFkZHMgQ1NTIGNsYXNzZXMgdG8gdGhlIG5ld2x5IGdlbmVyYXRlZCB0YWJsZSBvZiBjb250ZW50cyBIVE1MCiAgICAgIF9hZGRDU1NDbGFzc2VzOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSBqcXVlcnlVSSB0aGVtZQogICAgICAgIGlmICh0aGlzLm9wdGlvbnMudGhlbWUgPT09ICJqcXVlcnl1aSIpIHsKCiAgICAgICAgICB0aGlzLmZvY3VzQ2xhc3MgPSAidWktc3RhdGUtZGVmYXVsdCI7CgogICAgICAgICAgdGhpcy5ob3ZlckNsYXNzID0gInVpLXN0YXRlLWhvdmVyIjsKCiAgICAgICAgICAvL0FkZHMgdGhlIGRlZmF1bHQgc3R5bGluZyB0byB0aGUgZHJvcGRvd24gbGlzdAogICAgICAgICAgdGhpcy5lbGVtZW50LmFkZENsYXNzKCJ1aS13aWRnZXQiKS5maW5kKCIudG9jLXRpdGxlIikuYWRkQ2xhc3MoInVpLXdpZGdldC1oZWFkZXIiKS5lbmQoKS5maW5kKCJsaSIpLmFkZENsYXNzKCJ1aS13aWRnZXQtY29udGVudCIpOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIHRoZSB1c2VyIHdhbnRzIGEgdHdpdHRlckJvb3RzdHJhcCB0aGVtZQogICAgICAgIGVsc2UgaWYgKHRoaXMub3B0aW9ucy50aGVtZSA9PT0gImJvb3RzdHJhcCIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibmF2IG5hdi1saXN0Iik7CgogICAgICAgICAgdGhpcy5mb2N1c0NsYXNzID0gImFjdGl2ZSI7CgogICAgICAgIH0KCiAgICAgICAgLy8gSWYgdGhlIHVzZXIgd2FudHMgYSB0d2l0dGVyQm9vdHN0cmFwIHRoZW1lCiAgICAgICAgZWxzZSBpZiAodGhpcy5vcHRpb25zLnRoZW1lID09PSAiYm9vdHN0cmFwMyIpIHsKCiAgICAgICAgICB0aGlzLmVsZW1lbnQuZmluZChoZWFkZXJDbGFzcyArICIsIiArIHN1YmhlYWRlckNsYXNzKS5hZGRDbGFzcygibGlzdC1ncm91cCIpOwoKICAgICAgICAgIHRoaXMuZWxlbWVudC5maW5kKGl0ZW1DbGFzcykuYWRkQ2xhc3MoImxpc3QtZ3JvdXAtaXRlbSIpOwoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9ICJhY3RpdmUiOwoKICAgICAgICB9CgogICAgICAgIC8vIElmIGEgdXNlciBkb2VzIG5vdCB3YW50IGEgcHJlYnVpbHQgdGhlbWUKICAgICAgICBlbHNlIHsKCiAgICAgICAgICAvLyBBZGRzIG1vcmUgbmV1dHJhbCBjbGFzc2VzIChpbnN0ZWFkIG9mIGpxdWVyeXVpKQoKICAgICAgICAgIHRoaXMuZm9jdXNDbGFzcyA9IHRvY0ZvY3VzQ2xhc3NOYW1lOwoKICAgICAgICAgIHRoaXMuaG92ZXJDbGFzcyA9IHRvY0hvdmVyQ2xhc3NOYW1lOwoKICAgICAgICB9CgogICAgICAgIC8vTWFpbnRhaW5zIGNoYWluYWJpbGl0eQogICAgICAgIHJldHVybiB0aGlzOwoKICAgICAgfSwKCiAgICAgIC8vIHNldE9wdGlvbgogICAgICAvLyAtLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIFRvY2lmeSBvcHRpb24gYWZ0ZXIgdGhlIHBsdWdpbiBpcyBpbnZva2VkCiAgICAgIHNldE9wdGlvbjogZnVuY3Rpb24oKSB7CgogICAgICAgIC8vIENhbGxzIHRoZSBqUXVlcnlVSSBXaWRnZXQgRmFjdG9yeSBzZXRPcHRpb24gbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb24uYXBwbHkodGhpcywgYXJndW1lbnRzKTsKCiAgICAgIH0sCgogICAgICAvLyBzZXRPcHRpb25zCiAgICAgIC8vIC0tLS0tLS0tLS0KICAgICAgLy8gICAgICBTZXRzIGEgc2luZ2xlIG9yIG11bHRpcGxlIFRvY2lmeSBvcHRpb25zIGFmdGVyIHRoZSBwbHVnaW4gaXMgaW52b2tlZAogICAgICBzZXRPcHRpb25zOiBmdW5jdGlvbigpIHsKCiAgICAgICAgLy8gQ2FsbHMgdGhlIGpRdWVyeVVJIFdpZGdldCBGYWN0b3J5IHNldE9wdGlvbnMgbWV0aG9kCiAgICAgICAgJC5XaWRnZXQucHJvdG90eXBlLl9zZXRPcHRpb25zLmFwcGx5KHRoaXMsIGFyZ3VtZW50cyk7CgogICAgICB9LAoKICAgICAgLy8gX3Njcm9sbFRvCiAgICAgIC8vIC0tLS0tLS0tLQogICAgICAvLyAgICAgIFNjcm9sbHMgdG8gYSBzcGVjaWZpYyBlbGVtZW50CiAgICAgIF9zY3JvbGxUbzogZnVuY3Rpb24oZWxlbSkgewoKICAgICAgICB2YXIgc2VsZiA9IHRoaXMsCiAgICAgICAgICBkdXJhdGlvbiA9IHNlbGYub3B0aW9ucy5zbW9vdGhTY3JvbGwgfHwgMCwKICAgICAgICAgIHNjcm9sbFRvID0gc2VsZi5vcHRpb25zLnNjcm9sbFRvLAogICAgICAgICAgY3VycmVudERpdiA9ICQoJ2RpdltkYXRhLXVuaXF1ZT0iJyArIGVsZW0uYXR0cigiZGF0YS11bmlxdWUiKSArICciXScpOwoKICAgICAgICBpZiAoIWN1cnJlbnREaXYubGVuZ3RoKSB7CgogICAgICAgICAgcmV0dXJuIHNlbGY7CgogICAgICAgIH0KCiAgICAgICAgLy8gT25jZSBhbGwgYW5pbWF0aW9ucyBvbiB0aGUgcGFnZSBhcmUgY29tcGxldGUsIHRoaXMgY2FsbGJhY2sgZnVuY3Rpb24gd2lsbCBiZSBjYWxsZWQKICAgICAgICAkKCJodG1sLCBib2R5IikucHJvbWlzZSgpLmRvbmUoZnVuY3Rpb24oKSB7CgogICAgICAgICAgLy8gQW5pbWF0ZXMgdGhlIGh0bWwgYW5kIGJvZHkgZWxlbWVudCBzY3JvbGx0b3BzCiAgICAgICAgICAkKCJodG1sLCBib2R5IikuYW5pbWF0ZSh7CgogICAgICAgICAgICAvLyBTZXRzIHRoZSBqUXVlcnkgYHNjcm9sbFRvcGAgdG8gdGhlIHRvcCBvZmZzZXQgb2YgdGhlIEhUTUwgZGl2IHRhZyB0aGF0IG1hdGNoZXMgdGhlIGN1cnJlbnQgbGlzdCBpdGVtJ3MgYGRhdGEtdW5pcXVlYCB0YWcKICAgICAgICAgICAgInNjcm9sbFRvcCI6IGN1cnJlbnREaXYub2Zmc2V0KCkudG9wIC0gKCQuaXNGdW5jdGlvbihzY3JvbGxUbykgPyBzY3JvbGxUby5jYWxsKCkgOiBzY3JvbGxUbykgKyAicHgiCgogICAgICAgICAgfSwgewoKICAgICAgICAgICAgLy8gU2V0cyB0aGUgc21vb3RoU2Nyb2xsIGFuaW1hdGlvbiB0aW1lIGR1cmF0aW9uIHRvIHRoZSBzbW9vdGhTY3JvbGxTcGVlZCBvcHRpb24KICAgICAgICAgICAgImR1cmF0aW9uIjogZHVyYXRpb24KCiAgICAgICAgICB9KTsKCiAgICAgICAgfSk7CgogICAgICAgIC8vIE1haW50YWlucyBjaGFpbmFiaWxpdHkKICAgICAgICByZXR1cm4gc2VsZjsKCiAgICAgIH0KCiAgICB9KTsKCiAgfSkpOyAvL2VuZCBvZiBwbHVnaW4K"></script> <script src="data:application/x-javascript;base64,CgovKioKICogalF1ZXJ5IFBsdWdpbjogU3RpY2t5IFRhYnMKICoKICogQGF1dGhvciBBaWRhbiBMaXN0ZXIgPGFpZGFuQHBocC5uZXQ+CiAqIGFkYXB0ZWQgYnkgUnViZW4gQXJzbGFuIHRvIGFjdGl2YXRlIHBhcmVudCB0YWJzIHRvbwogKiBodHRwOi8vd3d3LmFpZGFubGlzdGVyLmNvbS8yMDE0LzAzL3BlcnNpc3RpbmctdGhlLXRhYi1zdGF0ZS1pbi1ib290c3RyYXAvCiAqLwooZnVuY3Rpb24oJCkgewogICJ1c2Ugc3RyaWN0IjsKICAkLmZuLnJtYXJrZG93blN0aWNreVRhYnMgPSBmdW5jdGlvbigpIHsKICAgIHZhciBjb250ZXh0ID0gdGhpczsKICAgIC8vIFNob3cgdGhlIHRhYiBjb3JyZXNwb25kaW5nIHdpdGggdGhlIGhhc2ggaW4gdGhlIFVSTCwgb3IgdGhlIGZpcnN0IHRhYgogICAgdmFyIHNob3dTdHVmZkZyb21IYXNoID0gZnVuY3Rpb24oKSB7CiAgICAgIHZhciBoYXNoID0gd2luZG93LmxvY2F0aW9uLmhhc2g7CiAgICAgIHZhciBzZWxlY3RvciA9IGhhc2ggPyAnYVtocmVmPSInICsgaGFzaCArICciXScgOiAnbGkuYWN0aXZlID4gYSc7CiAgICAgIHZhciAkc2VsZWN0b3IgPSAkKHNlbGVjdG9yLCBjb250ZXh0KTsKICAgICAgaWYoJHNlbGVjdG9yLmRhdGEoJ3RvZ2dsZScpID09PSAidGFiIikgewogICAgICAgICRzZWxlY3Rvci50YWIoJ3Nob3cnKTsKICAgICAgICAvLyB3YWxrIHVwIHRoZSBhbmNlc3RvcnMgb2YgdGhpcyBlbGVtZW50LCBzaG93IGFueSBoaWRkZW4gdGFicwogICAgICAgICRzZWxlY3Rvci5wYXJlbnRzKCcuc2VjdGlvbi50YWJzZXQnKS5lYWNoKGZ1bmN0aW9uKGksIGVsbSkgewogICAgICAgICAgdmFyIGxpbmsgPSAkKCdhW2hyZWY9IiMnICsgJChlbG0pLmF0dHIoJ2lkJykgKyAnIl0nKTsKICAgICAgICAgIGlmKGxpbmsuZGF0YSgndG9nZ2xlJykgPT09ICJ0YWIiKSB7CiAgICAgICAgICAgIGxpbmsudGFiKCJzaG93Iik7CiAgICAgICAgICB9CiAgICAgICAgfSk7CiAgICAgIH0KICAgIH07CgoKICAgIC8vIFNldCB0aGUgY29ycmVjdCB0YWIgd2hlbiB0aGUgcGFnZSBsb2FkcwogICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CgogICAgLy8gU2V0IHRoZSBjb3JyZWN0IHRhYiB3aGVuIGEgdXNlciB1c2VzIHRoZWlyIGJhY2svZm9yd2FyZCBidXR0b24KICAgICQod2luZG93KS5vbignaGFzaGNoYW5nZScsIGZ1bmN0aW9uKCkgewogICAgICBzaG93U3R1ZmZGcm9tSGFzaChjb250ZXh0KTsKICAgIH0pOwoKICAgIC8vIENoYW5nZSB0aGUgVVJMIHdoZW4gdGFicyBhcmUgY2xpY2tlZAogICAgJCgnYScsIGNvbnRleHQpLm9uKCdjbGljaycsIGZ1bmN0aW9uKGUpIHsKICAgICAgaGlzdG9yeS5wdXNoU3RhdGUobnVsbCwgbnVsbCwgdGhpcy5ocmVmKTsKICAgICAgc2hvd1N0dWZmRnJvbUhhc2goY29udGV4dCk7CiAgICB9KTsKCiAgICByZXR1cm4gdGhpczsKICB9Owp9KGpRdWVyeSkpOwoKd2luZG93LmJ1aWxkVGFic2V0cyA9IGZ1bmN0aW9uKHRvY0lEKSB7CgogIC8vIGJ1aWxkIGEgdGFic2V0IGZyb20gYSBzZWN0aW9uIGRpdiB3aXRoIHRoZSAudGFic2V0IGNsYXNzCiAgZnVuY3Rpb24gYnVpbGRUYWJzZXQodGFic2V0KSB7CgogICAgLy8gY2hlY2sgZm9yIGZhZGUgYW5kIHBpbGxzIG9wdGlvbnMKICAgIHZhciBmYWRlID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtZmFkZSIpOwogICAgdmFyIHBpbGxzID0gdGFic2V0Lmhhc0NsYXNzKCJ0YWJzZXQtcGlsbHMiKTsKICAgIHZhciBuYXZDbGFzcyA9IHBpbGxzID8gIm5hdi1waWxscyIgOiAibmF2LXRhYnMiOwoKICAgIC8vIGRldGVybWluZSB0aGUgaGVhZGluZyBsZXZlbCBvZiB0aGUgdGFic2V0IGFuZCB0YWJzCiAgICB2YXIgbWF0Y2ggPSB0YWJzZXQuYXR0cignY2xhc3MnKS5tYXRjaCgvbGV2ZWwoXGQpIC8pOwogICAgaWYgKG1hdGNoID09PSBudWxsKQogICAgICByZXR1cm47CiAgICB2YXIgdGFic2V0TGV2ZWwgPSBOdW1iZXIobWF0Y2hbMV0pOwogICAgdmFyIHRhYkxldmVsID0gdGFic2V0TGV2ZWwgKyAxOwoKICAgIC8vIGZpbmQgYWxsIHN1YmhlYWRpbmdzIGltbWVkaWF0ZWx5IGJlbG93CiAgICB2YXIgdGFicyA9IHRhYnNldC5maW5kKCJkaXYuc2VjdGlvbi5sZXZlbCIgKyB0YWJMZXZlbCk7CiAgICBpZiAoIXRhYnMubGVuZ3RoKQogICAgICByZXR1cm47CgogICAgLy8gY3JlYXRlIHRhYmxpc3QgYW5kIHRhYi1jb250ZW50IGVsZW1lbnRzCiAgICB2YXIgdGFiTGlzdCA9ICQoJzx1bCBjbGFzcz0ibmF2ICcgKyBuYXZDbGFzcyArICciIHJvbGU9InRhYmxpc3QiPjwvdWw+Jyk7CiAgICAkKHRhYnNbMF0pLmJlZm9yZSh0YWJMaXN0KTsKICAgIHZhciB0YWJDb250ZW50ID0gJCgnPGRpdiBjbGFzcz0idGFiLWNvbnRlbnQiPjwvZGl2PicpOwogICAgJCh0YWJzWzBdKS5iZWZvcmUodGFiQ29udGVudCk7CgogICAgLy8gYnVpbGQgdGhlIHRhYnNldAogICAgdmFyIGFjdGl2ZVRhYiA9IDA7CiAgICB0YWJzLmVhY2goZnVuY3Rpb24oaSkgewoKICAgICAgLy8gZ2V0IHRoZSB0YWIgZGl2CiAgICAgIHZhciB0YWIgPSAkKHRhYnNbaV0pOwoKICAgICAgLy8gZ2V0IHRoZSBpZCB0aGVuIHNhbml0aXplIGl0IGZvciB1c2Ugd2l0aCBib290c3RyYXAgdGFicwogICAgICB2YXIgaWQgPSB0YWIuYXR0cignaWQnKTsKCiAgICAgIC8vIHNlZSBpZiB0aGlzIGlzIG1hcmtlZCBhcyB0aGUgYWN0aXZlIHRhYgogICAgICBpZiAodGFiLmhhc0NsYXNzKCdhY3RpdmUnKSkKICAgICAgICBhY3RpdmVUYWIgPSBpOwoKICAgICAgLy8gcmVtb3ZlIGFueSB0YWJsZSBvZiBjb250ZW50cyBlbnRyaWVzIGFzc29jaWF0ZWQgd2l0aAogICAgICAvLyB0aGlzIElEIChzaW5jZSB3ZSdsbCBiZSByZW1vdmluZyB0aGUgaGVhZGluZyBlbGVtZW50KQogICAgICAkKCJkaXYjIiArIHRvY0lEICsgIiBsaSBhW2hyZWY9JyMiICsgaWQgKyAiJ10iKS5wYXJlbnQoKS5yZW1vdmUoKTsKCiAgICAgIC8vIHNhbml0aXplIHRoZSBpZCBmb3IgdXNlIHdpdGggYm9vdHN0cmFwIHRhYnMKICAgICAgaWQgPSBpZC5yZXBsYWNlKC9bLlwvPyYhIzw+XS9nLCAnJykucmVwbGFjZSgvXHMvZywgJ18nKTsKICAgICAgdGFiLmF0dHIoJ2lkJywgaWQpOwoKICAgICAgLy8gZ2V0IHRoZSBoZWFkaW5nIGVsZW1lbnQgd2l0aGluIGl0LCBncmFiIGl0J3MgdGV4dCwgdGhlbiByZW1vdmUgaXQKICAgICAgdmFyIGhlYWRpbmcgPSB0YWIuZmluZCgnaCcgKyB0YWJMZXZlbCArICc6Zmlyc3QnKTsKICAgICAgdmFyIGhlYWRpbmdUZXh0ID0gaGVhZGluZy5odG1sKCk7CiAgICAgIGhlYWRpbmcucmVtb3ZlKCk7CgogICAgICAvLyBidWlsZCBhbmQgYXBwZW5kIHRoZSB0YWIgbGlzdCBpdGVtCiAgICAgIHZhciBhID0gJCgnPGEgcm9sZT0idGFiIiBkYXRhLXRvZ2dsZT0idGFiIj4nICsgaGVhZGluZ1RleHQgKyAnPC9hPicpOwogICAgICBhLmF0dHIoJ2hyZWYnLCAnIycgKyBpZCk7CiAgICAgIGEuYXR0cignYXJpYS1jb250cm9scycsIGlkKTsKICAgICAgdmFyIGxpID0gJCgnPGxpIHJvbGU9InByZXNlbnRhdGlvbiI+PC9saT4nKTsKICAgICAgbGkuYXBwZW5kKGEpOwogICAgICB0YWJMaXN0LmFwcGVuZChsaSk7CgogICAgICAvLyBzZXQgaXQncyBhdHRyaWJ1dGVzCiAgICAgIHRhYi5hdHRyKCdyb2xlJywgJ3RhYnBhbmVsJyk7CiAgICAgIHRhYi5hZGRDbGFzcygndGFiLXBhbmUnKTsKICAgICAgdGFiLmFkZENsYXNzKCd0YWJiZWQtcGFuZScpOwogICAgICBpZiAoZmFkZSkKICAgICAgICB0YWIuYWRkQ2xhc3MoJ2ZhZGUnKTsKCiAgICAgIC8vIG1vdmUgaXQgaW50byB0aGUgdGFiIGNvbnRlbnQgZGl2CiAgICAgIHRhYi5kZXRhY2goKS5hcHBlbmRUbyh0YWJDb250ZW50KTsKICAgIH0pOwoKICAgIC8vIHNldCBhY3RpdmUgdGFiCiAgICAkKHRhYkxpc3QuY2hpbGRyZW4oJ2xpJylbYWN0aXZlVGFiXSkuYWRkQ2xhc3MoJ2FjdGl2ZScpOwogICAgdmFyIGFjdGl2ZSA9ICQodGFiQ29udGVudC5jaGlsZHJlbignZGl2LnNlY3Rpb24nKVthY3RpdmVUYWJdKTsKICAgIGFjdGl2ZS5hZGRDbGFzcygnYWN0aXZlJyk7CiAgICBpZiAoZmFkZSkKICAgICAgYWN0aXZlLmFkZENsYXNzKCdpbicpOwoKICAgIGlmICh0YWJzZXQuaGFzQ2xhc3MoInRhYnNldC1zdGlja3kiKSkKICAgICAgdGFic2V0LnJtYXJrZG93blN0aWNreVRhYnMoKTsKICB9CgogIC8vIGNvbnZlcnQgc2VjdGlvbiBkaXZzIHdpdGggdGhlIC50YWJzZXQgY2xhc3MgdG8gdGFic2V0cwogIHZhciB0YWJzZXRzID0gJCgiZGl2LnNlY3Rpb24udGFic2V0Iik7CiAgdGFic2V0cy5lYWNoKGZ1bmN0aW9uKGkpIHsKICAgIGJ1aWxkVGFic2V0KCQodGFic2V0c1tpXSkpOwogIH0pOwp9OwoK"></script> -<link href="data:text/css;charset=utf-8,pre%20%2Eoperator%2C%0Apre%20%2Eparen%20%7B%0Acolor%3A%20rgb%28104%2C%20118%2C%20135%29%0A%7D%0Apre%20%2Eliteral%20%7B%0Acolor%3A%20%23990073%0A%7D%0Apre%20%2Enumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0Apre%20%2Ecomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%0A%7D%0Apre%20%2Ekeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%0A%7D%0Apre%20%2Eidentifier%20%7B%0Acolor%3A%20rgb%280%2C%200%2C%200%29%3B%0A%7D%0Apre%20%2Estring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> -<script src="data:application/x-javascript;base64,dmFyIGhsanM9bmV3IGZ1bmN0aW9uKCl7ZnVuY3Rpb24gbShwKXtyZXR1cm4gcC5yZXBsYWNlKC8mL2dtLCImYW1wOyIpLnJlcGxhY2UoLzwvZ20sIiZsdDsiKX1mdW5jdGlvbiBmKHIscSxwKXtyZXR1cm4gUmVnRXhwKHEsIm0iKyhyLmNJPyJpIjoiIikrKHA/ImciOiIiKSl9ZnVuY3Rpb24gYihyKXtmb3IodmFyIHA9MDtwPHIuY2hpbGROb2Rlcy5sZW5ndGg7cCsrKXt2YXIgcT1yLmNoaWxkTm9kZXNbcF07aWYocS5ub2RlTmFtZT09IkNPREUiKXtyZXR1cm4gcX1pZighKHEubm9kZVR5cGU9PTMmJnEubm9kZVZhbHVlLm1hdGNoKC9ccysvKSkpe2JyZWFrfX19ZnVuY3Rpb24gaCh0LHMpe3ZhciBwPSIiO2Zvcih2YXIgcj0wO3I8dC5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dmFyIHE9dC5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZTtpZihzKXtxPXEucmVwbGFjZSgvXG4vZywiIil9cCs9cX1lbHNle2lmKHQuY2hpbGROb2Rlc1tyXS5ub2RlTmFtZT09IkJSIil7cCs9IlxuIn1lbHNle3ArPWgodC5jaGlsZE5vZGVzW3JdKX19fWlmKC9NU0lFIFs2NzhdLy50ZXN0KG5hdmlnYXRvci51c2VyQWdlbnQpKXtwPXAucmVwbGFjZSgvXHIvZywiXG4iKX1yZXR1cm4gcH1mdW5jdGlvbiBhKHMpe3ZhciByPXMuY2xhc3NOYW1lLnNwbGl0KC9ccysvKTtyPXIuY29uY2F0KHMucGFyZW50Tm9kZS5jbGFzc05hbWUuc3BsaXQoL1xzKy8pKTtmb3IodmFyIHE9MDtxPHIubGVuZ3RoO3ErKyl7dmFyIHA9cltxXS5yZXBsYWNlKC9ebGFuZ3VhZ2UtLywiIik7aWYoZVtwXSl7cmV0dXJuIHB9fX1mdW5jdGlvbiBjKHEpe3ZhciBwPVtdOyhmdW5jdGlvbihzLHQpe2Zvcih2YXIgcj0wO3I8cy5jaGlsZE5vZGVzLmxlbmd0aDtyKyspe2lmKHMuY2hpbGROb2Rlc1tyXS5ub2RlVHlwZT09Myl7dCs9cy5jaGlsZE5vZGVzW3JdLm5vZGVWYWx1ZS5sZW5ndGh9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZU5hbWU9PSJCUiIpe3QrPTF9ZWxzZXtpZihzLmNoaWxkTm9kZXNbcl0ubm9kZVR5cGU9PTEpe3AucHVzaCh7ZXZlbnQ6InN0YXJ0IixvZmZzZXQ6dCxub2RlOnMuY2hpbGROb2Rlc1tyXX0pO3Q9YXJndW1lbnRzLmNhbGxlZShzLmNoaWxkTm9kZXNbcl0sdCk7cC5wdXNoKHtldmVudDoic3RvcCIsb2Zmc2V0OnQsbm9kZTpzLmNoaWxkTm9kZXNbcl19KX19fX1yZXR1cm4gdH0pKHEsMCk7cmV0dXJuIHB9ZnVuY3Rpb24gayh5LHcseCl7dmFyIHE9MDt2YXIgej0iIjt2YXIgcz1bXTtmdW5jdGlvbiB1KCl7aWYoeS5sZW5ndGgmJncubGVuZ3RoKXtpZih5WzBdLm9mZnNldCE9d1swXS5vZmZzZXQpe3JldHVybih5WzBdLm9mZnNldDx3WzBdLm9mZnNldCk/eTp3fWVsc2V7cmV0dXJuIHdbMF0uZXZlbnQ9PSJzdGFydCI/eTp3fX1lbHNle3JldHVybiB5Lmxlbmd0aD95Ond9fWZ1bmN0aW9uIHQoRCl7dmFyIEE9IjwiK0Qubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtmb3IodmFyIEI9MDtCPEQuYXR0cmlidXRlcy5sZW5ndGg7QisrKXt2YXIgQz1ELmF0dHJpYnV0ZXNbQl07QSs9IiAiK0Mubm9kZU5hbWUudG9Mb3dlckNhc2UoKTtpZihDLnZhbHVlIT09dW5kZWZpbmVkJiZDLnZhbHVlIT09ZmFsc2UmJkMudmFsdWUhPT1udWxsKXtBKz0nPSInK20oQy52YWx1ZSkrJyInfX1yZXR1cm4gQSsiPiJ9d2hpbGUoeS5sZW5ndGh8fHcubGVuZ3RoKXt2YXIgdj11KCkuc3BsaWNlKDAsMSlbMF07eis9bSh4LnN1YnN0cihxLHYub2Zmc2V0LXEpKTtxPXYub2Zmc2V0O2lmKHYuZXZlbnQ9PSJzdGFydCIpe3orPXQodi5ub2RlKTtzLnB1c2godi5ub2RlKX1lbHNle2lmKHYuZXZlbnQ9PSJzdG9wIil7dmFyIHAscj1zLmxlbmd0aDtkb3tyLS07cD1zW3JdO3orPSgiPC8iK3Aubm9kZU5hbWUudG9Mb3dlckNhc2UoKSsiPiIpfXdoaWxlKHAhPXYubm9kZSk7cy5zcGxpY2UociwxKTt3aGlsZShyPHMubGVuZ3RoKXt6Kz10KHNbcl0pO3IrK319fX1yZXR1cm4geittKHguc3Vic3RyKHEpKX1mdW5jdGlvbiBqKCl7ZnVuY3Rpb24gcSh4LHksdil7aWYoeC5jb21waWxlZCl7cmV0dXJufXZhciB1O3ZhciBzPVtdO2lmKHguayl7eC5sUj1mKHkseC5sfHxobGpzLklSLHRydWUpO2Zvcih2YXIgdyBpbiB4Lmspe2lmKCF4LmsuaGFzT3duUHJvcGVydHkodykpe2NvbnRpbnVlfWlmKHgua1t3XSBpbnN0YW5jZW9mIE9iamVjdCl7dT14Lmtbd119ZWxzZXt1PXguazt3PSJrZXl3b3JkIn1mb3IodmFyIHIgaW4gdSl7aWYoIXUuaGFzT3duUHJvcGVydHkocikpe2NvbnRpbnVlfXgua1tyXT1bdyx1W3JdXTtzLnB1c2gocil9fX1pZighdil7aWYoeC5iV0spe3guYj0iXFxiKCIrcy5qb2luKCJ8IikrIilcXHMifXguYlI9Zih5LHguYj94LmI6IlxcQnxcXGIiKTtpZigheC5lJiYheC5lVyl7eC5lPSJcXEJ8XFxiIn1pZih4LmUpe3guZVI9Zih5LHguZSl9fWlmKHguaSl7eC5pUj1mKHkseC5pKX1pZih4LnI9PT11bmRlZmluZWQpe3gucj0xfWlmKCF4LmMpe3guYz1bXX14LmNvbXBpbGVkPXRydWU7Zm9yKHZhciB0PTA7dDx4LmMubGVuZ3RoO3QrKyl7aWYoeC5jW3RdPT0ic2VsZiIpe3guY1t0XT14fXEoeC5jW3RdLHksZmFsc2UpfWlmKHguc3RhcnRzKXtxKHguc3RhcnRzLHksZmFsc2UpfX1mb3IodmFyIHAgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocCkpe2NvbnRpbnVlfXEoZVtwXS5kTSxlW3BdLHRydWUpfX1mdW5jdGlvbiBkKEIsQyl7aWYoIWouY2FsbGVkKXtqKCk7ai5jYWxsZWQ9dHJ1ZX1mdW5jdGlvbiBxKHIsTSl7Zm9yKHZhciBMPTA7TDxNLmMubGVuZ3RoO0wrKyl7aWYoKE0uY1tMXS5iUi5leGVjKHIpfHxbbnVsbF0pWzBdPT1yKXtyZXR1cm4gTS5jW0xdfX19ZnVuY3Rpb24gdihMLHIpe2lmKERbTF0uZSYmRFtMXS5lUi50ZXN0KHIpKXtyZXR1cm4gMX1pZihEW0xdLmVXKXt2YXIgTT12KEwtMSxyKTtyZXR1cm4gTT9NKzE6MH1yZXR1cm4gMH1mdW5jdGlvbiB3KHIsTCl7cmV0dXJuIEwuaSYmTC5pUi50ZXN0KHIpfWZ1bmN0aW9uIEsoTixPKXt2YXIgTT1bXTtmb3IodmFyIEw9MDtMPE4uYy5sZW5ndGg7TCsrKXtNLnB1c2goTi5jW0xdLmIpfXZhciByPUQubGVuZ3RoLTE7ZG97aWYoRFtyXS5lKXtNLnB1c2goRFtyXS5lKX1yLS19d2hpbGUoRFtyKzFdLmVXKTtpZihOLmkpe00ucHVzaChOLmkpfXJldHVybiBmKE8sTS5qb2luKCJ8IiksdHJ1ZSl9ZnVuY3Rpb24gcChNLEwpe3ZhciBOPURbRC5sZW5ndGgtMV07aWYoIU4udCl7Ti50PUsoTixFKX1OLnQubGFzdEluZGV4PUw7dmFyIHI9Ti50LmV4ZWMoTSk7cmV0dXJuIHI/W00uc3Vic3RyKEwsci5pbmRleC1MKSxyWzBdLGZhbHNlXTpbTS5zdWJzdHIoTCksIiIsdHJ1ZV19ZnVuY3Rpb24geihOLHIpe3ZhciBMPUUuY0k/clswXS50b0xvd2VyQ2FzZSgpOnJbMF07dmFyIE09Ti5rW0xdO2lmKE0mJk0gaW5zdGFuY2VvZiBBcnJheSl7cmV0dXJuIE19cmV0dXJuIGZhbHNlfWZ1bmN0aW9uIEYoTCxQKXtMPW0oTCk7aWYoIVAuayl7cmV0dXJuIEx9dmFyIHI9IiI7dmFyIE89MDtQLmxSLmxhc3RJbmRleD0wO3ZhciBNPVAubFIuZXhlYyhMKTt3aGlsZShNKXtyKz1MLnN1YnN0cihPLE0uaW5kZXgtTyk7dmFyIE49eihQLE0pO2lmKE4pe3grPU5bMV07cis9JzxzcGFuIGNsYXNzPSInK05bMF0rJyI+JytNWzBdKyI8L3NwYW4+In1lbHNle3IrPU1bMF19Tz1QLmxSLmxhc3RJbmRleDtNPVAubFIuZXhlYyhMKX1yZXR1cm4gcitMLnN1YnN0cihPLEwubGVuZ3RoLU8pfWZ1bmN0aW9uIEooTCxNKXtpZihNLnNMJiZlW00uc0xdKXt2YXIgcj1kKE0uc0wsTCk7eCs9ci5rZXl3b3JkX2NvdW50O3JldHVybiByLnZhbHVlfWVsc2V7cmV0dXJuIEYoTCxNKX19ZnVuY3Rpb24gSShNLHIpe3ZhciBMPU0uY04/JzxzcGFuIGNsYXNzPSInK00uY04rJyI+JzoiIjtpZihNLnJCKXt5Kz1MO00uYnVmZmVyPSIifWVsc2V7aWYoTS5lQil7eSs9bShyKStMO00uYnVmZmVyPSIifWVsc2V7eSs9TDtNLmJ1ZmZlcj1yfX1ELnB1c2goTSk7QSs9TS5yfWZ1bmN0aW9uIEcoTixNLFEpe3ZhciBSPURbRC5sZW5ndGgtMV07aWYoUSl7eSs9SihSLmJ1ZmZlcitOLFIpO3JldHVybiBmYWxzZX12YXIgUD1xKE0sUik7aWYoUCl7eSs9SihSLmJ1ZmZlcitOLFIpO0koUCxNKTtyZXR1cm4gUC5yQn12YXIgTD12KEQubGVuZ3RoLTEsTSk7aWYoTCl7dmFyIE89Ui5jTj8iPC9zcGFuPiI6IiI7aWYoUi5yRSl7eSs9SihSLmJ1ZmZlcitOLFIpK099ZWxzZXtpZihSLmVFKXt5Kz1KKFIuYnVmZmVyK04sUikrTyttKE0pfWVsc2V7eSs9SihSLmJ1ZmZlcitOK00sUikrT319d2hpbGUoTD4xKXtPPURbRC5sZW5ndGgtMl0uY04/Ijwvc3Bhbj4iOiIiO3krPU87TC0tO0QubGVuZ3RoLS19dmFyIHI9RFtELmxlbmd0aC0xXTtELmxlbmd0aC0tO0RbRC5sZW5ndGgtMV0uYnVmZmVyPSIiO2lmKHIuc3RhcnRzKXtJKHIuc3RhcnRzLCIiKX1yZXR1cm4gUi5yRX1pZih3KE0sUikpe3Rocm93IklsbGVnYWwifX12YXIgRT1lW0JdO3ZhciBEPVtFLmRNXTt2YXIgQT0wO3ZhciB4PTA7dmFyIHk9IiI7dHJ5e3ZhciBzLHU9MDtFLmRNLmJ1ZmZlcj0iIjtkb3tzPXAoQyx1KTt2YXIgdD1HKHNbMF0sc1sxXSxzWzJdKTt1Kz1zWzBdLmxlbmd0aDtpZighdCl7dSs9c1sxXS5sZW5ndGh9fXdoaWxlKCFzWzJdKTtpZihELmxlbmd0aD4xKXt0aHJvdyJJbGxlZ2FsIn1yZXR1cm57cjpBLGtleXdvcmRfY291bnQ6eCx2YWx1ZTp5fX1jYXRjaChIKXtpZihIPT0iSWxsZWdhbCIpe3JldHVybntyOjAsa2V5d29yZF9jb3VudDowLHZhbHVlOm0oQyl9fWVsc2V7dGhyb3cgSH19fWZ1bmN0aW9uIGcodCl7dmFyIHA9e2tleXdvcmRfY291bnQ6MCxyOjAsdmFsdWU6bSh0KX07dmFyIHI9cDtmb3IodmFyIHEgaW4gZSl7aWYoIWUuaGFzT3duUHJvcGVydHkocSkpe2NvbnRpbnVlfXZhciBzPWQocSx0KTtzLmxhbmd1YWdlPXE7aWYocy5rZXl3b3JkX2NvdW50K3Mucj5yLmtleXdvcmRfY291bnQrci5yKXtyPXN9aWYocy5rZXl3b3JkX2NvdW50K3Mucj5wLmtleXdvcmRfY291bnQrcC5yKXtyPXA7cD1zfX1pZihyLmxhbmd1YWdlKXtwLnNlY29uZF9iZXN0PXJ9cmV0dXJuIHB9ZnVuY3Rpb24gaShyLHEscCl7aWYocSl7cj1yLnJlcGxhY2UoL14oKDxbXj5dKz58XHQpKykvZ20sZnVuY3Rpb24odCx3LHYsdSl7cmV0dXJuIHcucmVwbGFjZSgvXHQvZyxxKX0pfWlmKHApe3I9ci5yZXBsYWNlKC9cbi9nLCI8YnI+Iil9cmV0dXJuIHJ9ZnVuY3Rpb24gbih0LHcscil7dmFyIHg9aCh0LHIpO3ZhciB2PWEodCk7dmFyIHkscztpZih2KXt5PWQodix4KX1lbHNle3JldHVybn12YXIgcT1jKHQpO2lmKHEubGVuZ3RoKXtzPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnQoInByZSIpO3MuaW5uZXJIVE1MPXkudmFsdWU7eS52YWx1ZT1rKHEsYyhzKSx4KX15LnZhbHVlPWkoeS52YWx1ZSx3LHIpO3ZhciB1PXQuY2xhc3NOYW1lO2lmKCF1Lm1hdGNoKCIoXFxzfF4pKGxhbmd1YWdlLSk/Iit2KyIoXFxzfCQpIikpe3U9dT8odSsiICIrdik6dn1pZigvTVNJRSBbNjc4XS8udGVzdChuYXZpZ2F0b3IudXNlckFnZW50KSYmdC50YWdOYW1lPT0iQ09ERSImJnQucGFyZW50Tm9kZS50YWdOYW1lPT0iUFJFIil7cz10LnBhcmVudE5vZGU7dmFyIHA9ZG9jdW1lbnQuY3JlYXRlRWxlbWVudCgiZGl2Iik7cC5pbm5lckhUTUw9IjxwcmU+PGNvZGU+Iit5LnZhbHVlKyI8L2NvZGU+PC9wcmU+Ijt0PXAuZmlyc3RDaGlsZC5maXJzdENoaWxkO3AuZmlyc3RDaGlsZC5jTj1zLmNOO3MucGFyZW50Tm9kZS5yZXBsYWNlQ2hpbGQocC5maXJzdENoaWxkLHMpfWVsc2V7dC5pbm5lckhUTUw9eS52YWx1ZX10LmNsYXNzTmFtZT11O3QucmVzdWx0PXtsYW5ndWFnZTp2LGt3Onkua2V5d29yZF9jb3VudCxyZTp5LnJ9O2lmKHkuc2Vjb25kX2Jlc3Qpe3Quc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnkuc2Vjb25kX2Jlc3QubGFuZ3VhZ2Usa3c6eS5zZWNvbmRfYmVzdC5rZXl3b3JkX2NvdW50LHJlOnkuc2Vjb25kX2Jlc3Qucn19fWZ1bmN0aW9uIG8oKXtpZihvLmNhbGxlZCl7cmV0dXJufW8uY2FsbGVkPXRydWU7dmFyIHI9ZG9jdW1lbnQuZ2V0RWxlbWVudHNCeVRhZ05hbWUoInByZSIpO2Zvcih2YXIgcD0wO3A8ci5sZW5ndGg7cCsrKXt2YXIgcT1iKHJbcF0pO2lmKHEpe24ocSxobGpzLnRhYlJlcGxhY2UpfX19ZnVuY3Rpb24gbCgpe2lmKHdpbmRvdy5hZGRFdmVudExpc3RlbmVyKXt3aW5kb3cuYWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsbyxmYWxzZSk7d2luZG93LmFkZEV2ZW50TGlzdGVuZXIoImxvYWQiLG8sZmFsc2UpfWVsc2V7aWYod2luZG93LmF0dGFjaEV2ZW50KXt3aW5kb3cuYXR0YWNoRXZlbnQoIm9ubG9hZCIsbyl9ZWxzZXt3aW5kb3cub25sb2FkPW99fX12YXIgZT17fTt0aGlzLkxBTkdVQUdFUz1lO3RoaXMuaGlnaGxpZ2h0PWQ7dGhpcy5oaWdobGlnaHRBdXRvPWc7dGhpcy5maXhNYXJrdXA9aTt0aGlzLmhpZ2hsaWdodEJsb2NrPW47dGhpcy5pbml0SGlnaGxpZ2h0aW5nPW87dGhpcy5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPWw7dGhpcy5JUj0iW2EtekEtWl1bYS16QS1aMC05X10qIjt0aGlzLlVJUj0iW2EtekEtWl9dW2EtekEtWjAtOV9dKiI7dGhpcy5OUj0iXFxiXFxkKyhcXC5cXGQrKT8iO3RoaXMuQ05SPSJcXGIoMFt4WF1bYS1mQS1GMC05XSt8KFxcZCsoXFwuXFxkKik/fFxcLlxcZCspKFtlRV1bLStdP1xcZCspPykiO3RoaXMuQk5SPSJcXGIoMGJbMDFdKykiO3RoaXMuUlNSPSIhfCE9fCE9PXwlfCU9fCZ8JiZ8Jj18XFwqfFxcKj18XFwrfFxcKz18LHxcXC58LXwtPXwvfC89fDp8O3w8fDw8fDw8PXw8PXw9fD09fD09PXw+fD49fD4+fD4+PXw+Pj58Pj4+PXxcXD98XFxbfFxce3xcXCh8XFxefFxcXj18XFx8fFxcfD18XFx8XFx8fH4iO3RoaXMuRVI9Iig/IVtcXHNcXFNdKSI7dGhpcy5CRT17YjoiXFxcXC4iLHI6MH07dGhpcy5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbdGhpcy5CRV0scjowfTt0aGlzLlFTTT17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOlt0aGlzLkJFXSxyOjB9O3RoaXMuQ0xDTT17Y046ImNvbW1lbnQiLGI6Ii8vIixlOiIkIn07dGhpcy5DQkxDTE09e2NOOiJjb21tZW50IixiOiIvXFwqIixlOiJcXCovIn07dGhpcy5IQ009e2NOOiJjb21tZW50IixiOiIjIixlOiIkIn07dGhpcy5OTT17Y046Im51bWJlciIsYjp0aGlzLk5SLHI6MH07dGhpcy5DTk09e2NOOiJudW1iZXIiLGI6dGhpcy5DTlIscjowfTt0aGlzLkJOTT17Y046Im51bWJlciIsYjp0aGlzLkJOUixyOjB9O3RoaXMuaW5oZXJpdD1mdW5jdGlvbihyLHMpe3ZhciBwPXt9O2Zvcih2YXIgcSBpbiByKXtwW3FdPXJbcV19aWYocyl7Zm9yKHZhciBxIGluIHMpe3BbcV09c1txXX19cmV0dXJuIHB9fSgpO2hsanMuTEFOR1VBR0VTLmJhc2g9ZnVuY3Rpb24oKXt2YXIgZT17InRydWUiOjEsImZhbHNlIjoxfTt2YXIgYj17Y046InZhcmlhYmxlIixiOiJcXCQoW2EtekEtWjAtOV9dKylcXGIifTt2YXIgYT17Y046InZhcmlhYmxlIixiOiJcXCRcXHsoKFtefV0pfChcXFxcfSkpK1xcfSIsYzpbaGxqcy5DTk1dfTt2YXIgZj17Y046InN0cmluZyIsYjonIicsZTonIicsaToiXFxuIixjOltobGpzLkJFLGIsYV0scjowfTt2YXIgYz17Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbe2I6IicnIn1dLHI6MH07dmFyIGQ9e2NOOiJ0ZXN0X2NvbmRpdGlvbiIsYjoiIixlOiIiLGM6W2YsYyxiLGEsaGxqcy5DTk1dLGs6e2xpdGVyYWw6ZX0scjowfTtyZXR1cm57ZE06e2s6e2tleXdvcmQ6eyJpZiI6MSx0aGVuOjEsImVsc2UiOjEsZmk6MSwiZm9yIjoxLCJicmVhayI6MSwiY29udGludWUiOjEsIndoaWxlIjoxLCJpbiI6MSwiZG8iOjEsZG9uZToxLGVjaG86MSxleGl0OjEsInJldHVybiI6MSxzZXQ6MSxkZWNsYXJlOjF9LGxpdGVyYWw6ZX0sYzpbe2NOOiJzaGViYW5nIixiOiIoIyFcXC9iaW5cXC9iYXNoKXwoIyFcXC9iaW5cXC9zaCkiLHI6MTB9LGIsYSxobGpzLkhDTSxobGpzLkNOTSxmLGMsaGxqcy5pbmhlcml0KGQse2I6IlxcWyAiLGU6IiBcXF0iLHI6MH0pLGhsanMuaW5oZXJpdChkLHtiOiJcXFtcXFsgIixlOiIgXFxdXFxdIn0pXX19fSgpO2hsanMuTEFOR1VBR0VTLmNwcD1mdW5jdGlvbigpe3ZhciBhPXtrZXl3b3JkOnsiZmFsc2UiOjEsImludCI6MSwiZmxvYXQiOjEsIndoaWxlIjoxLCJwcml2YXRlIjoxLCJjaGFyIjoxLCJjYXRjaCI6MSwiZXhwb3J0IjoxLHZpcnR1YWw6MSxvcGVyYXRvcjoyLHNpemVvZjoyLGR5bmFtaWNfY2FzdDoyLHR5cGVkZWY6Mixjb25zdF9jYXN0OjIsImNvbnN0IjoxLHN0cnVjdDoxLCJmb3IiOjEsc3RhdGljX2Nhc3Q6Mix1bmlvbjoxLG5hbWVzcGFjZToxLHVuc2lnbmVkOjEsImxvbmciOjEsInRocm93IjoxLCJ2b2xhdGlsZSI6Miwic3RhdGljIjoxLCJwcm90ZWN0ZWQiOjEsYm9vbDoxLHRlbXBsYXRlOjEsbXV0YWJsZToxLCJpZiI6MSwicHVibGljIjoxLGZyaWVuZDoyLCJkbyI6MSwicmV0dXJuIjoxLCJnb3RvIjoxLGF1dG86MSwidm9pZCI6MiwiZW51bSI6MSwiZWxzZSI6MSwiYnJlYWsiOjEsIm5ldyI6MSxleHRlcm46MSx1c2luZzoxLCJ0cnVlIjoxLCJjbGFzcyI6MSxhc206MSwiY2FzZSI6MSx0eXBlaWQ6MSwic2hvcnQiOjEscmVpbnRlcnByZXRfY2FzdDoyLCJkZWZhdWx0IjoxLCJkb3VibGUiOjEscmVnaXN0ZXI6MSxleHBsaWNpdDoxLHNpZ25lZDoxLHR5cGVuYW1lOjEsInRyeSI6MSwidGhpcyI6MSwic3dpdGNoIjoxLCJjb250aW51ZSI6MSx3Y2hhcl90OjEsaW5saW5lOjEsImRlbGV0ZSI6MSxhbGlnbm9mOjEsY2hhcjE2X3Q6MSxjaGFyMzJfdDoxLGNvbnN0ZXhwcjoxLGRlY2x0eXBlOjEsbm9leGNlcHQ6MSxudWxscHRyOjEsc3RhdGljX2Fzc2VydDoxLHRocmVhZF9sb2NhbDoxLHJlc3RyaWN0OjEsX0Jvb2w6MSxjb21wbGV4OjF9LGJ1aWx0X2luOntzdGQ6MSxzdHJpbmc6MSxjaW46MSxjb3V0OjEsY2VycjoxLGNsb2c6MSxzdHJpbmdzdHJlYW06MSxpc3RyaW5nc3RyZWFtOjEsb3N0cmluZ3N0cmVhbToxLGF1dG9fcHRyOjEsZGVxdWU6MSxsaXN0OjEscXVldWU6MSxzdGFjazoxLHZlY3RvcjoxLG1hcDoxLHNldDoxLGJpdHNldDoxLG11bHRpc2V0OjEsbXVsdGltYXA6MSx1bm9yZGVyZWRfc2V0OjEsdW5vcmRlcmVkX21hcDoxLHVub3JkZXJlZF9tdWx0aXNldDoxLHVub3JkZXJlZF9tdWx0aW1hcDoxLGFycmF5OjEsc2hhcmVkX3B0cjoxfX07cmV0dXJue2RNOntrOmEsaToiPC8iLGM6W2hsanMuQ0xDTSxobGpzLkNCTENMTSxobGpzLlFTTSx7Y046InN0cmluZyIsYjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9LHtjTjoibnVtYmVyIixiOiJcXGIoXFxkKyhcXC5cXGQqKT98XFwuXFxkKykodXxVfGx8THx1bHxVTHxmfEYpIn0saGxqcy5DTk0se2NOOiJwcmVwcm9jZXNzb3IiLGI6IiMiLGU6IiQifSx7Y046InN0bF9jb250YWluZXIiLGI6IlxcYihkZXF1ZXxsaXN0fHF1ZXVlfHN0YWNrfHZlY3RvcnxtYXB8c2V0fGJpdHNldHxtdWx0aXNldHxtdWx0aW1hcHx1bm9yZGVyZWRfbWFwfHVub3JkZXJlZF9zZXR8dW5vcmRlcmVkX211bHRpc2V0fHVub3JkZXJlZF9tdWx0aW1hcHxhcnJheSlcXHMqPCIsZToiPiIsazphLHI6MTAsYzpbInNlbGYiXX1dfX19KCk7aGxqcy5MQU5HVUFHRVMuY3NzPWZ1bmN0aW9uKCl7dmFyIGE9e2NOOiJmdW5jdGlvbiIsYjpobGpzLklSKyJcXCgiLGU6IlxcKSIsYzpbe2VXOnRydWUsZUU6dHJ1ZSxjOltobGpzLk5NLGhsanMuQVNNLGhsanMuUVNNXX1dfTtyZXR1cm57Y0k6dHJ1ZSxkTTp7aToiWz0vfCddIixjOltobGpzLkNCTENMTSx7Y046ImlkIixiOiJcXCNbQS1aYS16MC05Xy1dKyJ9LHtjTjoiY2xhc3MiLGI6IlxcLltBLVphLXowLTlfLV0rIixyOjB9LHtjTjoiYXR0cl9zZWxlY3RvciIsYjoiXFxbIixlOiJcXF0iLGk6IiQifSx7Y046InBzZXVkbyIsYjoiOig6KT9bYS16QS1aMC05XFxfXFwtXFwrXFwoXFwpXFxcIlxcJ10rIn0se2NOOiJhdF9ydWxlIixiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazp7ImZvbnQtZmFjZSI6MSxwYWdlOjF9fSx7Y046ImF0X3J1bGUiLGI6IkAiLGU6Ilt7O10iLGVFOnRydWUsazp7ImltcG9ydCI6MSxwYWdlOjEsbWVkaWE6MSxjaGFyc2V0OjF9LGM6W2EsaGxqcy5BU00saGxqcy5RU00saGxqcy5OTV19LHtjTjoidGFnIixiOmhsanMuSVIscjowfSx7Y046InJ1bGVzIixiOiJ7IixlOiJ9IixpOiJbXlxcc10iLHI6MCxjOltobGpzLkNCTENMTSx7Y046InJ1bGUiLGI6IlteXFxzXSIsckI6dHJ1ZSxlOiI7IixlVzp0cnVlLGM6W3tjTjoiYXR0cmlidXRlIixiOiJbQS1aXFxfXFwuXFwtXSsiLGU6IjoiLGVFOnRydWUsaToiW15cXHNdIixzdGFydHM6e2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxlRTp0cnVlLGM6W2EsaGxqcy5OTSxobGpzLlFTTSxobGpzLkFTTSxobGpzLkNCTENMTSx7Y046ImhleGNvbG9yIixiOiJcXCNbMC05QS1GXSsifSx7Y046ImltcG9ydGFudCIsYjoiIWltcG9ydGFudCJ9XX19XX1dfV19fX0oKTtobGpzLkxBTkdVQUdFUy5pbmk9e2NJOnRydWUsZE06e2k6IlteXFxzXSIsYzpbe2NOOiJjb21tZW50IixiOiI7IixlOiIkIn0se2NOOiJ0aXRsZSIsYjoiXlxcWyIsZToiXFxdIn0se2NOOiJzZXR0aW5nIixiOiJeW2EtejAtOV9cXFtcXF1dK1sgXFx0XSo9WyBcXHRdKiIsZToiJCIsYzpbe2NOOiJ2YWx1ZSIsZVc6dHJ1ZSxrOntvbjoxLG9mZjoxLCJ0cnVlIjoxLCJmYWxzZSI6MSx5ZXM6MSxubzoxfSxjOltobGpzLlFTTSxobGpzLk5NXX1dfV19fTtobGpzLkxBTkdVQUdFUy5wZXJsPWZ1bmN0aW9uKCl7dmFyIGQ9e2dldHB3ZW50OjEsZ2V0c2VydmVudDoxLHF1b3RlbWV0YToxLG1zZ3JjdjoxLHNjYWxhcjoxLGtpbGw6MSxkYm1jbG9zZToxLHVuZGVmOjEsbGM6MSxtYToxLHN5c3dyaXRlOjEsdHI6MSxzZW5kOjEsdW1hc2s6MSxzeXNvcGVuOjEsc2htd3JpdGU6MSx2ZWM6MSxxeDoxLHV0aW1lOjEsbG9jYWw6MSxvY3Q6MSxzZW1jdGw6MSxsb2NhbHRpbWU6MSxyZWFkcGlwZToxLCJkbyI6MSwicmV0dXJuIjoxLGZvcm1hdDoxLHJlYWQ6MSxzcHJpbnRmOjEsZGJtb3BlbjoxLHBvcDoxLGdldHBncnA6MSxub3Q6MSxnZXRwd25hbToxLHJld2luZGRpcjoxLHFxOjEsZmlsZW5vOjEscXc6MSxlbmRwcm90b2VudDoxLHdhaXQ6MSxzZXRob3N0ZW50OjEsYmxlc3M6MSxzOjAsb3BlbmRpcjoxLCJjb250aW51ZSI6MSxlYWNoOjEsc2xlZXA6MSxlbmRncmVudDoxLHNodXRkb3duOjEsZHVtcDoxLGNob21wOjEsY29ubmVjdDoxLGdldHNvY2tuYW1lOjEsZGllOjEsc29ja2V0cGFpcjoxLGNsb3NlOjEsZmxvY2s6MSxleGlzdHM6MSxpbmRleDoxLHNobWdldDoxLHN1YjoxLCJmb3IiOjEsZW5kcHdlbnQ6MSxyZWRvOjEsbHN0YXQ6MSxtc2djdGw6MSxzZXRwZ3JwOjEsYWJzOjEsZXhpdDoxLHNlbGVjdDoxLHByaW50OjEscmVmOjEsZ2V0aG9zdGJ5YWRkcjoxLHVuc2hpZnQ6MSxmY250bDoxLHN5c2NhbGw6MSwiZ290byI6MSxnZXRuZXRieWFkZHI6MSxqb2luOjEsZ210aW1lOjEsc3ltbGluazoxLHNlbWdldDoxLHNwbGljZToxLHg6MCxnZXRwZWVybmFtZToxLHJlY3Y6MSxsb2c6MSxzZXRzb2Nrb3B0OjEsY29zOjEsbGFzdDoxLHJldmVyc2U6MSxnZXRob3N0YnluYW1lOjEsZ2V0Z3JuYW06MSxzdHVkeToxLGZvcm1saW5lOjEsZW5kaG9zdGVudDoxLHRpbWVzOjEsY2hvcDoxLGxlbmd0aDoxLGdldGhvc3RlbnQ6MSxnZXRuZXRlbnQ6MSxwYWNrOjEsZ2V0cHJvdG9lbnQ6MSxnZXRzZXJ2YnluYW1lOjEscmFuZDoxLG1rZGlyOjEscG9zOjEsY2htb2Q6MSx5OjAsc3Vic3RyOjEsZW5kbmV0ZW50OjEscHJpbnRmOjEsbmV4dDoxLG9wZW46MSxtc2dzbmQ6MSxyZWFkZGlyOjEsdXNlOjEsdW5saW5rOjEsZ2V0c29ja29wdDoxLGdldHByaW9yaXR5OjEscmluZGV4OjEsd2FudGFycmF5OjEsaGV4OjEsc3lzdGVtOjEsZ2V0c2VydmJ5cG9ydDoxLGVuZHNlcnZlbnQ6MSwiaW50IjoxLGNocjoxLHVudGllOjEscm1kaXI6MSxwcm90b3R5cGU6MSx0ZWxsOjEsbGlzdGVuOjEsZm9yazoxLHNobXJlYWQ6MSx1Y2ZpcnN0OjEsc2V0cHJvdG9lbnQ6MSwiZWxzZSI6MSxzeXNzZWVrOjEsbGluazoxLGdldGdyZ2lkOjEsc2htY3RsOjEsd2FpdHBpZDoxLHVucGFjazoxLGdldG5ldGJ5bmFtZToxLHJlc2V0OjEsY2hkaXI6MSxncmVwOjEsc3BsaXQ6MSxyZXF1aXJlOjEsY2FsbGVyOjEsbGNmaXJzdDoxLHVudGlsOjEsd2FybjoxLCJ3aGlsZSI6MSx2YWx1ZXM6MSxzaGlmdDoxLHRlbGxkaXI6MSxnZXRwd3VpZDoxLG15OjEsZ2V0cHJvdG9ieW51bWJlcjoxLCJkZWxldGUiOjEsYW5kOjEsc29ydDoxLHVjOjEsZGVmaW5lZDoxLHNyYW5kOjEsYWNjZXB0OjEsInBhY2thZ2UiOjEsc2Vla2RpcjoxLGdldHByb3RvYnluYW1lOjEsc2Vtb3A6MSxvdXI6MSxyZW5hbWU6MSxzZWVrOjEsImlmIjoxLHE6MCxjaHJvb3Q6MSxzeXNyZWFkOjEsc2V0cHdlbnQ6MSxubzoxLGNyeXB0OjEsZ2V0YzoxLGNob3duOjEsc3FydDoxLHdyaXRlOjEsc2V0bmV0ZW50OjEsc2V0cHJpb3JpdHk6MSxmb3JlYWNoOjEsdGllOjEsc2luOjEsbXNnZ2V0OjEsbWFwOjEsc3RhdDoxLGdldGxvZ2luOjEsdW5sZXNzOjEsZWxzaWY6MSx0cnVuY2F0ZToxLGV4ZWM6MSxrZXlzOjEsZ2xvYjoxLHRpZWQ6MSxjbG9zZWRpcjoxLGlvY3RsOjEsc29ja2V0OjEscmVhZGxpbms6MSwiZXZhbCI6MSx4b3I6MSxyZWFkbGluZToxLGJpbm1vZGU6MSxzZXRzZXJ2ZW50OjEsZW9mOjEsb3JkOjEsYmluZDoxLGFsYXJtOjEscGlwZToxLGF0YW4yOjEsZ2V0Z3JlbnQ6MSxleHA6MSx0aW1lOjEscHVzaDoxLHNldGdyZW50OjEsZ3Q6MSxsdDoxLG9yOjEsbmU6MSxtOjB9O3ZhciBmPXtjTjoic3Vic3QiLGI6IlskQF1cXHsiLGU6IlxcfSIsazpkLHI6MTB9O3ZhciBjPXtjTjoidmFyaWFibGUiLGI6IlxcJFxcZCJ9O3ZhciBiPXtjTjoidmFyaWFibGUiLGI6IltcXCRcXCVcXEBcXCpdKFxcXlxcd1xcYnwjXFx3KyhcXDpcXDpcXHcrKSp8W15cXHNcXHd7XXx7XFx3K318XFx3KyhcXDpcXDpcXHcqKSopIn07dmFyIGg9W2hsanMuQkUsZixjLGJdO3ZhciBnPXtiOiItPiIsYzpbe2I6aGxqcy5JUn0se2I6InsiLGU6In0ifV19O3ZhciBlPXtjTjoiY29tbWVudCIsYjoiXihfX0VORF9ffF9fREFUQV9fKSIsZToiXFxuJCIscjo1fTt2YXIgYT1bYyxiLGhsanMuSENNLGUsZyx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFwoIixlOiJcXCkiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InFbcXd4cl0/XFxzKlxceyIsZToiXFx9IixjOmgscjo1fSx7Y046InN0cmluZyIsYjoicVtxd3hyXT9cXHMqXFx8IixlOiJcXHwiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIsYzpoLHI6NX0se2NOOiJzdHJpbmciLGI6InF3XFxzK3EiLGU6InEiLGM6aCxyOjV9LHtjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFXSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOmgscjowfSx7Y046InN0cmluZyIsYjoiYCIsZToiYCIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOiJ7XFx3K30iLHI6MH0se2NOOiJzdHJpbmciLGI6Ii0/XFx3K1xccypcXD1cXD4iLHI6MH0se2NOOiJudW1iZXIiLGI6IihcXGIwWzAtN19dKyl8KFxcYjB4WzAtOWEtZkEtRl9dKyl8KFxcYlsxLTldWzAtOV9dKihcXC5bMC05X10rKT8pfFswX11cXGIiLHI6MH0se2I6IigiK2hsanMuUlNSKyJ8XFxiKHNwbGl0fHJldHVybnxwcmludHxyZXZlcnNlfGdyZXApXFxiKVxccyoiLGs6e3NwbGl0OjEsInJldHVybiI6MSxwcmludDoxLHJldmVyc2U6MSxncmVwOjF9LHI6MCxjOltobGpzLkhDTSxlLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2hsanMuQkVdLHI6MH1dfSx7Y046InN1YiIsYjoiXFxic3ViXFxiIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsazp7c3ViOjF9LHI6NX0se2NOOiJvcGVyYXRvciIsYjoiLVxcd1xcYiIscjowfSx7Y046InBvZCIsYjoiXFw9XFx3IixlOiJcXD1jdXQifV07Zi5jPWE7Zy5jWzFdLmM9YTtyZXR1cm57ZE06e2s6ZCxjOmF9fX0oKTtobGpzLkxBTkdVQUdFUy5weXRob249ZnVuY3Rpb24oKXt2YXIgYj1be2NOOiJzdHJpbmciLGI6Iih1fGIpP3I/JycnIixlOiInJyciLHI6MTB9LHtjTjoic3RyaW5nIixiOicodXxiKT9yPyIiIicsZTonIiIiJyxyOjEwfSx7Y046InN0cmluZyIsYjoiKHV8cnx1ciknIixlOiInIixjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjonKHV8cnx1cikiJyxlOiciJyxjOltobGpzLkJFXSxyOjEwfSx7Y046InN0cmluZyIsYjoiKGJ8YnIpJyIsZToiJyIsYzpbaGxqcy5CRV19LHtjTjoic3RyaW5nIixiOicoYnxicikiJyxlOiciJyxjOltobGpzLkJFXX1dLmNvbmNhdChbaGxqcy5BU00saGxqcy5RU01dKTt2YXIgZD17Y046InRpdGxlIixiOmhsanMuVUlSfTt2YXIgYz17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGM6Yi5jb25jYXQoW2hsanMuQ05NXSl9O3ZhciBhPXtiV0s6dHJ1ZSxlOiI6IixpOiJbJHtdIixjOltkLGNdLHI6MTB9O3JldHVybntkTTp7azp7a2V5d29yZDp7YW5kOjEsZWxpZjoxLGlzOjEsZ2xvYmFsOjEsYXM6MSwiaW4iOjEsImlmIjoxLGZyb206MSxyYWlzZToxLCJmb3IiOjEsZXhjZXB0OjEsImZpbmFsbHkiOjEscHJpbnQ6MSwiaW1wb3J0IjoxLHBhc3M6MSwicmV0dXJuIjoxLGV4ZWM6MSwiZWxzZSI6MSwiYnJlYWsiOjEsbm90OjEsIndpdGgiOjEsImNsYXNzIjoxLGFzc2VydDoxLHlpZWxkOjEsInRyeSI6MSwid2hpbGUiOjEsImNvbnRpbnVlIjoxLGRlbDoxLG9yOjEsZGVmOjEsbGFtYmRhOjEsbm9ubG9jYWw6MTB9LGJ1aWx0X2luOntOb25lOjEsVHJ1ZToxLEZhbHNlOjEsRWxsaXBzaXM6MSxOb3RJbXBsZW1lbnRlZDoxfX0saToiKDwvfC0+fFxcPykiLGM6Yi5jb25jYXQoW2hsanMuSENNLGhsanMuaW5oZXJpdChhLHtjTjoiZnVuY3Rpb24iLGs6e2RlZjoxfX0pLGhsanMuaW5oZXJpdChhLHtjTjoiY2xhc3MiLGs6eyJjbGFzcyI6MX19KSxobGpzLkNOTSx7Y046ImRlY29yYXRvciIsYjoiQCIsZToiJCJ9XSl9fX0oKTtobGpzLkxBTkdVQUdFUy5yPXtkTTp7YzpbaGxqcy5IQ00se2NOOiJudW1iZXIiLGI6IlxcYjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjowfSx7Y046Im51bWJlciIsYjoiXFxiXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/TFxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibnVtYmVyIixiOiJcXGJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoibnVtYmVyIixiOiJcXC5cXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoia2V5d29yZCIsYjoiKD86dHJ5Q2F0Y2h8bGlicmFyeXxzZXRHZW5lcmljfHNldEdyb3VwR2VuZXJpYylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXC4iLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiJcXC5cXC5cXGQrKD8hW1xcdy5dKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046ImtleXdvcmQiLGI6IlxcYig/OmZ1bmN0aW9uKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoia2V5d29yZCIsYjoiKD86aWZ8aW58YnJlYWt8bmV4dHxyZXBlYXR8ZWxzZXxmb3J8cmV0dXJufHN3aXRjaHx3aGlsZXx0cnl8c3RvcHx3YXJuaW5nfHJlcXVpcmV8YXR0YWNofGRldGFjaHxzb3VyY2V8c2V0TWV0aG9kfHNldENsYXNzKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoibGl0ZXJhbCIsYjoiKD86TkF8TkFfaW50ZWdlcl98TkFfcmVhbF98TkFfY2hhcmFjdGVyX3xOQV9jb21wbGV4XylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJsaXRlcmFsIixiOiIoPzpOVUxMfFRSVUV8RkFMU0V8VHxGfEluZnxOYU4pXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MX0se2NOOiJpZGVudGlmaWVyIixiOiJbYS16QS1aLl1bYS16QS1aMC05Ll9dKlxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjB9LHtjTjoib3BlcmF0b3IiLGI6IjxcXC0oPyFcXHMqXFxkKSIsZTpobGpzLklNTUVESUFURV9SRSxyOjJ9LHtjTjoib3BlcmF0b3IiLGI6IlxcLT58PFxcLSIsZTpobGpzLklNTUVESUFURV9SRSxyOjF9LHtjTjoib3BlcmF0b3IiLGI6IiUlfH4iLGU6aGxqcy5JTU1FRElBVEVfUkV9LHtjTjoib3BlcmF0b3IiLGI6Ij49fDw9fD09fCE9fFxcfFxcfHwmJnw9fFxcK3xcXC18XFwqfC98XFxefD58PHwhfCZ8XFx8fFxcJHw6IixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJvcGVyYXRvciIsYjoiJSIsZToiJSIsaToiXFxuIixyOjF9LHtjTjoiaWRlbnRpZmllciIsYjoiYCIsZToiYCIscjowfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbaGxqcy5CRV0scjowfSx7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzpbaGxqcy5CRV0scjowfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH1dfX07aGxqcy5MQU5HVUFHRVMucnVieT1mdW5jdGlvbigpe3ZhciBhPSJbYS16QS1aX11bYS16QS1aMC05X10qKFxcIXxcXD8pPyI7dmFyIGo9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iO3ZhciBmPXtrZXl3b3JkOnthbmQ6MSwiZmFsc2UiOjEsdGhlbjoxLGRlZmluZWQ6MSxtb2R1bGU6MSwiaW4iOjEsInJldHVybiI6MSxyZWRvOjEsImlmIjoxLEJFR0lOOjEscmV0cnk6MSxlbmQ6MSwiZm9yIjoxLCJ0cnVlIjoxLHNlbGY6MSx3aGVuOjEsbmV4dDoxLHVudGlsOjEsImRvIjoxLGJlZ2luOjEsdW5sZXNzOjEsRU5EOjEscmVzY3VlOjEsbmlsOjEsImVsc2UiOjEsImJyZWFrIjoxLHVuZGVmOjEsbm90OjEsInN1cGVyIjoxLCJjbGFzcyI6MSwiY2FzZSI6MSxyZXF1aXJlOjEseWllbGQ6MSxhbGlhczoxLCJ3aGlsZSI6MSxlbnN1cmU6MSxlbHNpZjoxLG9yOjEsZGVmOjF9LGtleW1ldGhvZHM6e19faWRfXzoxLF9fc2VuZF9fOjEsYWJvcnQ6MSxhYnM6MSwiYWxsPyI6MSxhbGxvY2F0ZToxLGFuY2VzdG9yczoxLCJhbnk/IjoxLGFyaXR5OjEsYXNzb2M6MSxhdDoxLGF0X2V4aXQ6MSxhdXRvbG9hZDoxLCJhdXRvbG9hZD8iOjEsImJldHdlZW4/IjoxLGJpbmRpbmc6MSxiaW5tb2RlOjEsImJsb2NrX2dpdmVuPyI6MSxjYWxsOjEsY2FsbGNjOjEsY2FsbGVyOjEsY2FwaXRhbGl6ZToxLCJjYXBpdGFsaXplISI6MSxjYXNlY21wOjEsImNhdGNoIjoxLGNlaWw6MSxjZW50ZXI6MSxjaG9tcDoxLCJjaG9tcCEiOjEsY2hvcDoxLCJjaG9wISI6MSxjaHI6MSwiY2xhc3MiOjEsY2xhc3NfZXZhbDoxLCJjbGFzc192YXJpYWJsZV9kZWZpbmVkPyI6MSxjbGFzc192YXJpYWJsZXM6MSxjbGVhcjoxLGNsb25lOjEsY2xvc2U6MSxjbG9zZV9yZWFkOjEsY2xvc2Vfd3JpdGU6MSwiY2xvc2VkPyI6MSxjb2VyY2U6MSxjb2xsZWN0OjEsImNvbGxlY3QhIjoxLGNvbXBhY3Q6MSwiY29tcGFjdCEiOjEsY29uY2F0OjEsImNvbnN0X2RlZmluZWQ/IjoxLGNvbnN0X2dldDoxLGNvbnN0X21pc3Npbmc6MSxjb25zdF9zZXQ6MSxjb25zdGFudHM6MSxjb3VudDoxLGNyeXB0OjEsImRlZmF1bHQiOjEsZGVmYXVsdF9wcm9jOjEsImRlbGV0ZSI6MSwiZGVsZXRlISI6MSxkZWxldGVfYXQ6MSxkZWxldGVfaWY6MSxkZXRlY3Q6MSxkaXNwbGF5OjEsZGl2OjEsZGl2bW9kOjEsZG93bmNhc2U6MSwiZG93bmNhc2UhIjoxLGRvd250bzoxLGR1bXA6MSxkdXA6MSxlYWNoOjEsZWFjaF9ieXRlOjEsZWFjaF9pbmRleDoxLGVhY2hfa2V5OjEsZWFjaF9saW5lOjEsZWFjaF9wYWlyOjEsZWFjaF92YWx1ZToxLGVhY2hfd2l0aF9pbmRleDoxLCJlbXB0eT8iOjEsZW50cmllczoxLGVvZjoxLCJlb2Y/IjoxLCJlcWw/IjoxLCJlcXVhbD8iOjEsImV2YWwiOjEsZXhlYzoxLGV4aXQ6MSwiZXhpdCEiOjEsZXh0ZW5kOjEsZmFpbDoxLGZjbnRsOjEsZmV0Y2g6MSxmaWxlbm86MSxmaWxsOjEsZmluZDoxLGZpbmRfYWxsOjEsZmlyc3Q6MSxmbGF0dGVuOjEsImZsYXR0ZW4hIjoxLGZsb29yOjEsZmx1c2g6MSxmb3JfZmQ6MSxmb3JlYWNoOjEsZm9yazoxLGZvcm1hdDoxLGZyZWV6ZToxLCJmcm96ZW4/IjoxLGZzeW5jOjEsZ2V0YzoxLGdldHM6MSxnbG9iYWxfdmFyaWFibGVzOjEsZ3JlcDoxLGdzdWI6MSwiZ3N1YiEiOjEsImhhc19rZXk/IjoxLCJoYXNfdmFsdWU/IjoxLGhhc2g6MSxoZXg6MSxpZDoxLGluY2x1ZGU6MSwiaW5jbHVkZT8iOjEsaW5jbHVkZWRfbW9kdWxlczoxLGluZGV4OjEsaW5kZXhlczoxLGluZGljZXM6MSxpbmR1Y2VkX2Zyb206MSxpbmplY3Q6MSxpbnNlcnQ6MSxpbnNwZWN0OjEsaW5zdGFuY2VfZXZhbDoxLGluc3RhbmNlX21ldGhvZDoxLGluc3RhbmNlX21ldGhvZHM6MSwiaW5zdGFuY2Vfb2Y/IjoxLCJpbnN0YW5jZV92YXJpYWJsZV9kZWZpbmVkPyI6MSxpbnN0YW5jZV92YXJpYWJsZV9nZXQ6MSxpbnN0YW5jZV92YXJpYWJsZV9zZXQ6MSxpbnN0YW5jZV92YXJpYWJsZXM6MSwiaW50ZWdlcj8iOjEsaW50ZXJuOjEsaW52ZXJ0OjEsaW9jdGw6MSwiaXNfYT8iOjEsaXNhdHR5OjEsIml0ZXJhdG9yPyI6MSxqb2luOjEsImtleT8iOjEsa2V5czoxLCJraW5kX29mPyI6MSxsYW1iZGE6MSxsYXN0OjEsbGVuZ3RoOjEsbGluZW5vOjEsbGp1c3Q6MSxsb2FkOjEsbG9jYWxfdmFyaWFibGVzOjEsbG9vcDoxLGxzdHJpcDoxLCJsc3RyaXAhIjoxLG1hcDoxLCJtYXAhIjoxLG1hdGNoOjEsbWF4OjEsIm1lbWJlcj8iOjEsbWVyZ2U6MSwibWVyZ2UhIjoxLG1ldGhvZDoxLCJtZXRob2RfZGVmaW5lZD8iOjEsbWV0aG9kX21pc3Npbmc6MSxtZXRob2RzOjEsbWluOjEsbW9kdWxlX2V2YWw6MSxtb2R1bG86MSxuYW1lOjEsbmVzdGluZzoxLCJuZXciOjEsbmV4dDoxLCJuZXh0ISI6MSwibmlsPyI6MSxuaXRlbXM6MSwibm9uemVybz8iOjEsb2JqZWN0X2lkOjEsb2N0OjEsb3BlbjoxLHBhY2s6MSxwYXJ0aXRpb246MSxwaWQ6MSxwaXBlOjEscG9wOjEscG9wZW46MSxwb3M6MSxwcmVjOjEscHJlY19mOjEscHJlY19pOjEscHJpbnQ6MSxwcmludGY6MSxwcml2YXRlX2NsYXNzX21ldGhvZDoxLHByaXZhdGVfaW5zdGFuY2VfbWV0aG9kczoxLCJwcml2YXRlX21ldGhvZF9kZWZpbmVkPyI6MSxwcml2YXRlX21ldGhvZHM6MSxwcm9jOjEscHJvdGVjdGVkX2luc3RhbmNlX21ldGhvZHM6MSwicHJvdGVjdGVkX21ldGhvZF9kZWZpbmVkPyI6MSxwcm90ZWN0ZWRfbWV0aG9kczoxLHB1YmxpY19jbGFzc19tZXRob2Q6MSxwdWJsaWNfaW5zdGFuY2VfbWV0aG9kczoxLCJwdWJsaWNfbWV0aG9kX2RlZmluZWQ/IjoxLHB1YmxpY19tZXRob2RzOjEscHVzaDoxLHB1dGM6MSxwdXRzOjEscXVvOjEscmFpc2U6MSxyYW5kOjEscmFzc29jOjEscmVhZDoxLHJlYWRfbm9uYmxvY2s6MSxyZWFkY2hhcjoxLHJlYWRsaW5lOjEscmVhZGxpbmVzOjEscmVhZHBhcnRpYWw6MSxyZWhhc2g6MSxyZWplY3Q6MSwicmVqZWN0ISI6MSxyZW1haW5kZXI6MSxyZW9wZW46MSxyZXBsYWNlOjEscmVxdWlyZToxLCJyZXNwb25kX3RvPyI6MSxyZXZlcnNlOjEsInJldmVyc2UhIjoxLHJldmVyc2VfZWFjaDoxLHJld2luZDoxLHJpbmRleDoxLHJqdXN0OjEscm91bmQ6MSxyc3RyaXA6MSwicnN0cmlwISI6MSxzY2FuOjEsc2VlazoxLHNlbGVjdDoxLHNlbmQ6MSxzZXRfdHJhY2VfZnVuYzoxLHNoaWZ0OjEsc2luZ2xldG9uX21ldGhvZF9hZGRlZDoxLHNpbmdsZXRvbl9tZXRob2RzOjEsc2l6ZToxLHNsZWVwOjEsc2xpY2U6MSwic2xpY2UhIjoxLHNvcnQ6MSwic29ydCEiOjEsc29ydF9ieToxLHNwbGl0OjEsc3ByaW50ZjoxLHNxdWVlemU6MSwic3F1ZWV6ZSEiOjEsc3JhbmQ6MSxzdGF0OjEsc3RlcDoxLHN0b3JlOjEsc3RyaXA6MSwic3RyaXAhIjoxLHN1YjoxLCJzdWIhIjoxLHN1Y2M6MSwic3VjYyEiOjEsc3VtOjEsc3VwZXJjbGFzczoxLHN3YXBjYXNlOjEsInN3YXBjYXNlISI6MSxzeW5jOjEsc3lzY2FsbDoxLHN5c29wZW46MSxzeXNyZWFkOjEsc3lzc2VlazoxLHN5c3RlbToxLHN5c3dyaXRlOjEsdGFpbnQ6MSwidGFpbnRlZD8iOjEsdGVsbDoxLHRlc3Q6MSwidGhyb3ciOjEsdGltZXM6MSx0b19hOjEsdG9fYXJ5OjEsdG9fZjoxLHRvX2hhc2g6MSx0b19pOjEsdG9faW50OjEsdG9faW86MSx0b19wcm9jOjEsdG9fczoxLHRvX3N0cjoxLHRvX3N5bToxLHRyOjEsInRyISI6MSx0cl9zOjEsInRyX3MhIjoxLHRyYWNlX3ZhcjoxLHRyYW5zcG9zZToxLHRyYXA6MSx0cnVuY2F0ZToxLCJ0dHk/IjoxLHR5cGU6MSx1bmdldGM6MSx1bmlxOjEsInVuaXEhIjoxLHVucGFjazoxLHVuc2hpZnQ6MSx1bnRhaW50OjEsdW50cmFjZV92YXI6MSx1cGNhc2U6MSwidXBjYXNlISI6MSx1cGRhdGU6MSx1cHRvOjEsInZhbHVlPyI6MSx2YWx1ZXM6MSx2YWx1ZXNfYXQ6MSx3YXJuOjEsd3JpdGU6MSx3cml0ZV9ub25ibG9jazoxLCJ6ZXJvPyI6MSx6aXA6MX19O3ZhciBjPXtjTjoieWFyZG9jdGFnIixiOiJAW0EtWmEtel0rIn07dmFyIGs9W3tjTjoiY29tbWVudCIsYjoiIyIsZToiJCIsYzpbY119LHtjTjoiY29tbWVudCIsYjoiXlxcPWJlZ2luIixlOiJeXFw9ZW5kIixjOltjXSxyOjEwfSx7Y046ImNvbW1lbnQiLGI6Il5fX0VORF9fIixlOiJcXG4kIn1dO3ZhciBkPXtjTjoic3Vic3QiLGI6IiNcXHsiLGU6In0iLGw6YSxrOmZ9O3ZhciBpPVtobGpzLkJFLGRdO3ZhciBiPVt7Y046InN0cmluZyIsYjoiJyIsZToiJyIsYzppLHI6MH0se2NOOiJzdHJpbmciLGI6JyInLGU6JyInLGM6aSxyOjB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXCgiLGU6IlxcKSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT9cXFsiLGU6IlxcXSIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT97IixlOiJ9IixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPzwiLGU6Ij4iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/LyIsZToiLyIsYzppLHI6MTB9LHtjTjoic3RyaW5nIixiOiIlW3F3XT8lIixlOiIlIixjOmkscjoxMH0se2NOOiJzdHJpbmciLGI6IiVbcXddPy0iLGU6Ii0iLGM6aSxyOjEwfSx7Y046InN0cmluZyIsYjoiJVtxd10/XFx8IixlOiJcXHwiLGM6aSxyOjEwfV07dmFyIGg9e2NOOiJmdW5jdGlvbiIsYjoiXFxiZGVmXFxzKyIsZToiIHwkfDsiLGw6YSxrOmYsYzpbe2NOOiJ0aXRsZSIsYjpqLGw6YSxrOmZ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsbDphLGs6Zn1dLmNvbmNhdChrKX07dmFyIGc9e2NOOiJpZGVudGlmaWVyIixiOmEsbDphLGs6ZixyOjB9O3ZhciBlPWsuY29uY2F0KGIuY29uY2F0KFt7Y046ImNsYXNzIixiOiJcXGIoY2xhc3N8bW9kdWxlKVxcYiIsZToiJHw7IixrOnsiY2xhc3MiOjEsbW9kdWxlOjF9LGM6W3tjTjoidGl0bGUiLGI6IltBLVphLXpfXVxcdyooOjpcXHcrKSooXFw/fFxcISk/IixyOjB9LHtjTjoiaW5oZXJpdGFuY2UiLGI6IjxcXHMqIixjOlt7Y046InBhcmVudCIsYjoiKCIraGxqcy5JUisiOjopPyIraGxqcy5JUn1dfV0uY29uY2F0KGspfSxoLHtjTjoiY29uc3RhbnQiLGI6Iig6Oik/KFtBLVpdXFx3Kig6Oik/KSsiLHI6MH0se2NOOiJzeW1ib2wiLGI6IjoiLGM6Yi5jb25jYXQoW2ddKSxyOjB9LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXD9cXHcifSx7Y046InZhcmlhYmxlIixiOiIoXFwkXFxXKXwoKFxcJHxcXEBcXEA/KShcXHcrKSkifSxnLHtiOiIoIitobGpzLlJTUisiKVxccyoiLGM6ay5jb25jYXQoW3tjTjoicmVnZXhwIixiOiIvIixlOiIvW2Etel0qIixpOiJcXG4iLGM6W2hsanMuQkVdfV0pLHI6MH1dKSk7ZC5jPWU7aC5jWzFdLmM9ZTtyZXR1cm57ZE06e2w6YSxrOmYsYzplfX19KCk7aGxqcy5MQU5HVUFHRVMuc2NhbGE9ZnVuY3Rpb24oKXt2YXIgYj17Y046ImFubm90YXRpb24iLGI6IkBbQS1aYS16XSsifTt2YXIgYT17Y046InN0cmluZyIsYjondT9yPyIiIicsZTonIiIiJyxyOjEwfTtyZXR1cm57ZE06e2s6e3R5cGU6MSx5aWVsZDoxLGxhenk6MSxvdmVycmlkZToxLGRlZjoxLCJ3aXRoIjoxLHZhbDoxLCJ2YXIiOjEsImZhbHNlIjoxLCJ0cnVlIjoxLHNlYWxlZDoxLCJhYnN0cmFjdCI6MSwicHJpdmF0ZSI6MSx0cmFpdDoxLG9iamVjdDoxLCJudWxsIjoxLCJpZiI6MSwiZm9yIjoxLCJ3aGlsZSI6MSwidGhyb3ciOjEsImZpbmFsbHkiOjEsInByb3RlY3RlZCI6MSwiZXh0ZW5kcyI6MSwiaW1wb3J0IjoxLCJmaW5hbCI6MSwicmV0dXJuIjoxLCJlbHNlIjoxLCJicmVhayI6MSwibmV3IjoxLCJjYXRjaCI6MSwic3VwZXIiOjEsImNsYXNzIjoxLCJjYXNlIjoxLCJwYWNrYWdlIjoxLCJkZWZhdWx0IjoxLCJ0cnkiOjEsInRoaXMiOjEsbWF0Y2g6MSwiY29udGludWUiOjEsInRocm93cyI6MX0sYzpbe2NOOiJqYXZhZG9jIixiOiIvXFwqXFwqIixlOiJcXCovIixjOlt7Y046ImphdmFkb2N0YWciLGI6IkBbQS1aYS16XSsifV0scjoxMH0saGxqcy5DTENNLGhsanMuQ0JMQ0xNLGhsanMuQVNNLGhsanMuUVNNLGEse2NOOiJjbGFzcyIsYjoiKChjYXNlICk/Y2xhc3MgfG9iamVjdCB8dHJhaXQgKSIsZToiKHt8JCkiLGk6IjoiLGs6eyJjYXNlIjoxLCJjbGFzcyI6MSx0cmFpdDoxLG9iamVjdDoxfSxjOlt7YldLOnRydWUsazp7ImV4dGVuZHMiOjEsIndpdGgiOjF9LHI6MTB9LHtjTjoidGl0bGUiLGI6aGxqcy5VSVJ9LHtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSIsYzpbaGxqcy5BU00saGxqcy5RU00sYSxiXX1dfSxobGpzLkNOTSxiXX19fSgpO2hsanMuTEFOR1VBR0VTLnNxbD17Y0k6dHJ1ZSxkTTp7aToiW15cXHNdIixjOlt7Y046Im9wZXJhdG9yIixiOiIoYmVnaW58c3RhcnR8Y29tbWl0fHJvbGxiYWNrfHNhdmVwb2ludHxsb2NrfGFsdGVyfGNyZWF0ZXxkcm9wfHJlbmFtZXxjYWxsfGRlbGV0ZXxkb3xoYW5kbGVyfGluc2VydHxsb2FkfHJlcGxhY2V8c2VsZWN0fHRydW5jYXRlfHVwZGF0ZXxzZXR8c2hvd3xwcmFnbWF8Z3JhbnQpXFxiIixlOiI7fCIraGxqcy5FUixrOntrZXl3b3JkOnthbGw6MSxwYXJ0aWFsOjEsZ2xvYmFsOjEsbW9udGg6MSxjdXJyZW50X3RpbWVzdGFtcDoxLHVzaW5nOjEsZ286MSxyZXZva2U6MSxzbWFsbGludDoxLGluZGljYXRvcjoxLCJlbmQtZXhlYyI6MSxkaXNjb25uZWN0OjEsem9uZToxLCJ3aXRoIjoxLGNoYXJhY3RlcjoxLGFzc2VydGlvbjoxLHRvOjEsYWRkOjEsY3VycmVudF91c2VyOjEsdXNhZ2U6MSxpbnB1dDoxLGxvY2FsOjEsYWx0ZXI6MSxtYXRjaDoxLGNvbGxhdGU6MSxyZWFsOjEsdGhlbjoxLHJvbGxiYWNrOjEsZ2V0OjEscmVhZDoxLHRpbWVzdGFtcDoxLHNlc3Npb25fdXNlcjoxLG5vdDoxLGludGVnZXI6MSxiaXQ6MSx1bmlxdWU6MSxkYXk6MSxtaW51dGU6MSxkZXNjOjEsaW5zZXJ0OjEsZXhlY3V0ZToxLGxpa2U6MSxpbGlrZToyLGxldmVsOjEsZGVjaW1hbDoxLGRyb3A6MSwiY29udGludWUiOjEsaXNvbGF0aW9uOjEsZm91bmQ6MSx3aGVyZToxLGNvbnN0cmFpbnRzOjEsZG9tYWluOjEscmlnaHQ6MSxuYXRpb25hbDoxLHNvbWU6MSxtb2R1bGU6MSx0cmFuc2FjdGlvbjoxLHJlbGF0aXZlOjEsc2Vjb25kOjEsY29ubmVjdDoxLGVzY2FwZToxLGNsb3NlOjEsc3lzdGVtX3VzZXI6MSwiZm9yIjoxLGRlZmVycmVkOjEsc2VjdGlvbjoxLGNhc3Q6MSxjdXJyZW50OjEsc3Fsc3RhdGU6MSxhbGxvY2F0ZToxLGludGVyc2VjdDoxLGRlYWxsb2NhdGU6MSxudW1lcmljOjEsInB1YmxpYyI6MSxwcmVzZXJ2ZToxLGZ1bGw6MSwiZ290byI6MSxpbml0aWFsbHk6MSxhc2M6MSxubzoxLGtleToxLG91dHB1dDoxLGNvbGxhdGlvbjoxLGdyb3VwOjEsYnk6MSx1bmlvbjoxLHNlc3Npb246MSxib3RoOjEsbGFzdDoxLGxhbmd1YWdlOjEsY29uc3RyYWludDoxLGNvbHVtbjoxLG9mOjEsc3BhY2U6MSxmb3JlaWduOjEsZGVmZXJyYWJsZToxLHByaW9yOjEsY29ubmVjdGlvbjoxLHVua25vd246MSxhY3Rpb246MSxjb21taXQ6MSx2aWV3OjEsb3I6MSxmaXJzdDoxLGludG86MSwiZmxvYXQiOjEseWVhcjoxLHByaW1hcnk6MSxjYXNjYWRlZDoxLGV4Y2VwdDoxLHJlc3RyaWN0OjEsc2V0OjEscmVmZXJlbmNlczoxLG5hbWVzOjEsdGFibGU6MSxvdXRlcjoxLG9wZW46MSxzZWxlY3Q6MSxzaXplOjEsYXJlOjEscm93czoxLGZyb206MSxwcmVwYXJlOjEsZGlzdGluY3Q6MSxsZWFkaW5nOjEsY3JlYXRlOjEsb25seToxLG5leHQ6MSxpbm5lcjoxLGF1dGhvcml6YXRpb246MSxzY2hlbWE6MSxjb3JyZXNwb25kaW5nOjEsb3B0aW9uOjEsZGVjbGFyZToxLHByZWNpc2lvbjoxLGltbWVkaWF0ZToxLCJlbHNlIjoxLHRpbWV6b25lX21pbnV0ZToxLGV4dGVybmFsOjEsdmFyeWluZzoxLHRyYW5zbGF0aW9uOjEsInRydWUiOjEsImNhc2UiOjEsZXhjZXB0aW9uOjEsam9pbjoxLGhvdXI6MSwiZGVmYXVsdCI6MSwiZG91YmxlIjoxLHNjcm9sbDoxLHZhbHVlOjEsY3Vyc29yOjEsZGVzY3JpcHRvcjoxLHZhbHVlczoxLGRlYzoxLGZldGNoOjEscHJvY2VkdXJlOjEsImRlbGV0ZSI6MSxhbmQ6MSwiZmFsc2UiOjEsImludCI6MSxpczoxLGRlc2NyaWJlOjEsImNoYXIiOjEsYXM6MSxhdDoxLCJpbiI6MSx2YXJjaGFyOjEsIm51bGwiOjEsdHJhaWxpbmc6MSxhbnk6MSxhYnNvbHV0ZToxLGN1cnJlbnRfdGltZToxLGVuZDoxLGdyYW50OjEscHJpdmlsZWdlczoxLHdoZW46MSxjcm9zczoxLGNoZWNrOjEsd3JpdGU6MSxjdXJyZW50X2RhdGU6MSxwYWQ6MSxiZWdpbjoxLHRlbXBvcmFyeToxLGV4ZWM6MSx0aW1lOjEsdXBkYXRlOjEsY2F0YWxvZzoxLHVzZXI6MSxzcWw6MSxkYXRlOjEsb246MSxpZGVudGl0eToxLHRpbWV6b25lX2hvdXI6MSxuYXR1cmFsOjEsd2hlbmV2ZXI6MSxpbnRlcnZhbDoxLHdvcms6MSxvcmRlcjoxLGNhc2NhZGU6MSxkaWFnbm9zdGljczoxLG5jaGFyOjEsaGF2aW5nOjEsbGVmdDoxLGNhbGw6MSwiZG8iOjEsaGFuZGxlcjoxLGxvYWQ6MSxyZXBsYWNlOjEsdHJ1bmNhdGU6MSxzdGFydDoxLGxvY2s6MSxzaG93OjEscHJhZ21hOjF9LGFnZ3JlZ2F0ZTp7Y291bnQ6MSxzdW06MSxtaW46MSxtYXg6MSxhdmc6MX19LGM6W3tjTjoic3RyaW5nIixiOiInIixlOiInIixjOltobGpzLkJFLHtiOiInJyJ9XSxyOjB9LHtjTjoic3RyaW5nIixiOiciJyxlOiciJyxjOltobGpzLkJFLHtiOiciIid9XSxyOjB9LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltobGpzLkJFXX0saGxqcy5DTk1dfSxobGpzLkNCTENMTSx7Y046ImNvbW1lbnQiLGI6Ii0tIixlOiIkIn1dfX07aGxqcy5MQU5HVUFHRVMuc3Rhbj17ZE06e2M6W2hsanMuSENNLGhsanMuQ0xDTSxobGpzLlFTTSxobGpzLkNOTSx7Y046Im9wZXJhdG9yIixiOiIoPzo8LXx+fFxcfFxcfHwmJnw9PXwhPXw8PT98Pj0/fFxcK3wtfFxcLj8vfFxcXFx8XFxefFxcXnwhfCd8JXw6fCx8O3w9KVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjEwfSx7Y046InBhcmVuIixiOiJbWyh7XFxdKX1dIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MH0se2NOOiJmdW5jdGlvbiIsYjoiKD86UGhpfFBoaV9hcHByb3h8YWJzfGFjb3N8YWNvc2h8YXBwZW5kX2NvbHxhcHBlbmRfcm93fGFzaW58YXNpbmh8YXRhbnxhdGFuMnxhdGFuaHxiZXJub3VsbGlfY2NkZl9sb2d8YmVybm91bGxpX2NkZnxiZXJub3VsbGlfY2RmX2xvZ3xiZXJub3VsbGlfbG9nfGJlcm5vdWxsaV9sb2dpdF9sb2d8YmVybm91bGxpX3JuZ3xiZXNzZWxfZmlyc3Rfa2luZHxiZXNzZWxfc2Vjb25kX2tpbmR8YmV0YV9iaW5vbWlhbF9jY2RmX2xvZ3xiZXRhX2Jpbm9taWFsX2NkZnxiZXRhX2Jpbm9taWFsX2NkZl9sb2d8YmV0YV9iaW5vbWlhbF9sb2d8YmV0YV9iaW5vbWlhbF9ybmd8YmV0YV9jY2RmX2xvZ3xiZXRhX2NkZnxiZXRhX2NkZl9sb2d8YmV0YV9sb2d8YmV0YV9ybmd8YmluYXJ5X2xvZ19sb3NzfGJpbm9taWFsX2NjZGZfbG9nfGJpbm9taWFsX2NkZnxiaW5vbWlhbF9jZGZfbG9nfGJpbm9taWFsX2NvZWZmaWNpZW50X2xvZ3xiaW5vbWlhbF9sb2d8Ymlub21pYWxfbG9naXRfbG9nfGJpbm9taWFsX3JuZ3xibG9ja3xjYXRlZ29yaWNhbF9sb2d8Y2F0ZWdvcmljYWxfbG9naXRfbG9nfGNhdGVnb3JpY2FsX3JuZ3xjYXVjaHlfY2NkZl9sb2d8Y2F1Y2h5X2NkZnxjYXVjaHlfY2RmX2xvZ3xjYXVjaHlfbG9nfGNhdWNoeV9ybmd8Y2JydHxjZWlsfGNoaV9zcXVhcmVfY2NkZl9sb2d8Y2hpX3NxdWFyZV9jZGZ8Y2hpX3NxdWFyZV9jZGZfbG9nfGNoaV9zcXVhcmVfbG9nfGNoaV9zcXVhcmVfcm5nfGNob2xlc2t5X2RlY29tcG9zZXxjb2x8Y29sc3xjb2x1bW5zX2RvdF9wcm9kdWN0fGNvbHVtbnNfZG90X3NlbGZ8Y29zfGNvc2h8Y3Jvc3Nwcm9kfGNzcl9leHRyYWN0X3V8Y3NyX2V4dHJhY3Rfdnxjc3JfZXh0cmFjdF93fGNzcl9tYXRyaXhfdGltZXNfdmVjdG9yfGNzcl90b19kZW5zZV9tYXRyaXh8Y3VtdWxhdGl2ZV9zdW18ZGV0ZXJtaW5hbnR8ZGlhZ19tYXRyaXh8ZGlhZ19wb3N0X211bHRpcGx5fGRpYWdfcHJlX211bHRpcGx5fGRpYWdvbmFsfGRpZ2FtbWF8ZGltc3xkaXJpY2hsZXRfbG9nfGRpcmljaGxldF9ybmd8ZGlzdGFuY2V8ZG90X3Byb2R1Y3R8ZG90X3NlbGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NjZGZfbG9nfGRvdWJsZV9leHBvbmVudGlhbF9jZGZ8ZG91YmxlX2V4cG9uZW50aWFsX2NkZl9sb2d8ZG91YmxlX2V4cG9uZW50aWFsX2xvZ3xkb3VibGVfZXhwb25lbnRpYWxfcm5nfGV8ZWlnZW52YWx1ZXNfc3ltfGVpZ2VudmVjdG9yc19zeW18ZXJmfGVyZmN8ZXhwfGV4cDJ8ZXhwX21vZF9ub3JtYWxfY2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfY2RmfGV4cF9tb2Rfbm9ybWFsX2NkZl9sb2d8ZXhwX21vZF9ub3JtYWxfbG9nfGV4cF9tb2Rfbm9ybWFsX3JuZ3xleHBtMXxleHBvbmVudGlhbF9jY2RmX2xvZ3xleHBvbmVudGlhbF9jZGZ8ZXhwb25lbnRpYWxfY2RmX2xvZ3xleHBvbmVudGlhbF9sb2d8ZXhwb25lbnRpYWxfcm5nfGZhYnN8ZmFsbGluZ19mYWN0b3JpYWx8ZmRpbXxmbG9vcnxmbWF8Zm1heHxmbWlufGZtb2R8ZnJlY2hldF9jY2RmX2xvZ3xmcmVjaGV0X2NkZnxmcmVjaGV0X2NkZl9sb2d8ZnJlY2hldF9sb2d8ZnJlY2hldF9ybmd8Z2FtbWFfY2NkZl9sb2d8Z2FtbWFfY2RmfGdhbW1hX2NkZl9sb2d8Z2FtbWFfbG9nfGdhbW1hX3B8Z2FtbWFfcXxnYW1tYV9ybmd8Z2F1c3NpYW5fZGxtX29ic19sb2d8Z2V0X2xwfGd1bWJlbF9jY2RmX2xvZ3xndW1iZWxfY2RmfGd1bWJlbF9jZGZfbG9nfGd1bWJlbF9sb2d8Z3VtYmVsX3JuZ3xoZWFkfGh5cGVyZ2VvbWV0cmljX2xvZ3xoeXBlcmdlb21ldHJpY19ybmd8aHlwb3R8aWZfZWxzZXxpbnRfc3RlcHxpbnZ8aW52X2NoaV9zcXVhcmVfY2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfY2RmfGludl9jaGlfc3F1YXJlX2NkZl9sb2d8aW52X2NoaV9zcXVhcmVfbG9nfGludl9jaGlfc3F1YXJlX3JuZ3xpbnZfY2xvZ2xvZ3xpbnZfZ2FtbWFfY2NkZl9sb2d8aW52X2dhbW1hX2NkZnxpbnZfZ2FtbWFfY2RmX2xvZ3xpbnZfZ2FtbWFfbG9nfGludl9nYW1tYV9ybmd8aW52X2xvZ2l0fGludl9waGl8aW52X3NxcnR8aW52X3NxdWFyZXxpbnZfd2lzaGFydF9sb2d8aW52X3dpc2hhcnRfcm5nfGludmVyc2V8aW52ZXJzZV9zcGR8aXNfaW5mfGlzX25hbnxsYmV0YXxsZ2FtbWF8bGtqX2NvcnJfY2hvbGVza3lfbG9nfGxral9jb3JyX2Nob2xlc2t5X3JuZ3xsa2pfY29ycl9sb2d8bGtqX2NvcnJfcm5nfGxtZ2FtbWF8bG9nfGxvZzEwfGxvZzFtfGxvZzFtX2V4cHxsb2cxbV9pbnZfbG9naXR8bG9nMXB8bG9nMXBfZXhwfGxvZzJ8bG9nX2RldGVybWluYW50fGxvZ19kaWZmX2V4cHxsb2dfZmFsbGluZ19mYWN0b3JpYWx8bG9nX2ludl9sb2dpdHxsb2dfbWl4fGxvZ19yaXNpbmdfZmFjdG9yaWFsfGxvZ19zb2Z0bWF4fGxvZ19zdW1fZXhwfGxvZ2lzdGljX2NjZGZfbG9nfGxvZ2lzdGljX2NkZnxsb2dpc3RpY19jZGZfbG9nfGxvZ2lzdGljX2xvZ3xsb2dpc3RpY19ybmd8bG9naXR8bG9nbm9ybWFsX2NjZGZfbG9nfGxvZ25vcm1hbF9jZGZ8bG9nbm9ybWFsX2NkZl9sb2d8bG9nbm9ybWFsX2xvZ3xsb2dub3JtYWxfcm5nfG1hY2hpbmVfcHJlY2lzaW9ufG1heHxtZGl2aWRlX2xlZnRfdHJpX2xvd3xtZGl2aWRlX3JpZ2h0X3RyaV9sb3d8bWVhbnxtaW58bW9kaWZpZWRfYmVzc2VsX2ZpcnN0X2tpbmR8bW9kaWZpZWRfYmVzc2VsX3NlY29uZF9raW5kfG11bHRpX2dwX2Nob2xlc2t5X2xvZ3xtdWx0aV9ncF9sb2d8bXVsdGlfbm9ybWFsX2Nob2xlc2t5X2xvZ3xtdWx0aV9ub3JtYWxfY2hvbGVza3lfcm5nfG11bHRpX25vcm1hbF9sb2d8bXVsdGlfbm9ybWFsX3ByZWNfbG9nfG11bHRpX25vcm1hbF9ybmd8bXVsdGlfc3R1ZGVudF90X2xvZ3xtdWx0aV9zdHVkZW50X3Rfcm5nfG11bHRpbm9taWFsX2xvZ3xtdWx0aW5vbWlhbF9ybmd8bXVsdGlwbHlfbG9nfG11bHRpcGx5X2xvd2VyX3RyaV9zZWxmX3RyYW5zcG9zZXxuZWdfYmlub21pYWxfMl9jY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9jZGZ8bmVnX2Jpbm9taWFsXzJfY2RmX2xvZ3xuZWdfYmlub21pYWxfMl9sb2d8bmVnX2Jpbm9taWFsXzJfbG9nX2xvZ3xuZWdfYmlub21pYWxfMl9sb2dfcm5nfG5lZ19iaW5vbWlhbF8yX3JuZ3xuZWdfYmlub21pYWxfY2NkZl9sb2d8bmVnX2Jpbm9taWFsX2NkZnxuZWdfYmlub21pYWxfY2RmX2xvZ3xuZWdfYmlub21pYWxfbG9nfG5lZ19iaW5vbWlhbF9ybmd8bmVnYXRpdmVfaW5maW5pdHl8bm9ybWFsX2NjZGZfbG9nfG5vcm1hbF9jZGZ8bm9ybWFsX2NkZl9sb2d8bm9ybWFsX2xvZ3xub3JtYWxfcm5nfG5vdF9hX251bWJlcnxudW1fZWxlbWVudHN8b3JkZXJlZF9sb2dpc3RpY19sb2d8b3JkZXJlZF9sb2dpc3RpY19ybmd8b3dlbnNfdHxwYXJldG9fY2NkZl9sb2d8cGFyZXRvX2NkZnxwYXJldG9fY2RmX2xvZ3xwYXJldG9fbG9nfHBhcmV0b19ybmd8cGFyZXRvX3R5cGVfMl9jY2RmX2xvZ3xwYXJldG9fdHlwZV8yX2NkZnxwYXJldG9fdHlwZV8yX2NkZl9sb2d8cGFyZXRvX3R5cGVfMl9sb2d8cGFyZXRvX3R5cGVfMl9ybmd8cGl8cG9pc3Nvbl9jY2RmX2xvZ3xwb2lzc29uX2NkZnxwb2lzc29uX2NkZl9sb2d8cG9pc3Nvbl9sb2d8cG9pc3Nvbl9sb2dfbG9nfHBvaXNzb25fbG9nX3JuZ3xwb2lzc29uX3JuZ3xwb3NpdGl2ZV9pbmZpbml0eXxwb3d8cHJvZHxxcl9RfHFyX1J8cXVhZF9mb3JtfHF1YWRfZm9ybV9kaWFnfHF1YWRfZm9ybV9zeW18cmFua3xyYXlsZWlnaF9jY2RmX2xvZ3xyYXlsZWlnaF9jZGZ8cmF5bGVpZ2hfY2RmX2xvZ3xyYXlsZWlnaF9sb2d8cmF5bGVpZ2hfcm5nfHJlcF9hcnJheXxyZXBfbWF0cml4fHJlcF9yb3dfdmVjdG9yfHJlcF92ZWN0b3J8cmlzaW5nX2ZhY3RvcmlhbHxyb3VuZHxyb3d8cm93c3xyb3dzX2RvdF9wcm9kdWN0fHJvd3NfZG90X3NlbGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NjZGZfbG9nfHNjYWxlZF9pbnZfY2hpX3NxdWFyZV9jZGZ8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2NkZl9sb2d8c2NhbGVkX2ludl9jaGlfc3F1YXJlX2xvZ3xzY2FsZWRfaW52X2NoaV9zcXVhcmVfcm5nfHNkfHNlZ21lbnR8c2lufHNpbmd1bGFyX3ZhbHVlc3xzaW5ofHNpemV8c2tld19ub3JtYWxfY2NkZl9sb2d8c2tld19ub3JtYWxfY2RmfHNrZXdfbm9ybWFsX2NkZl9sb2d8c2tld19ub3JtYWxfbG9nfHNrZXdfbm9ybWFsX3JuZ3xzb2Z0bWF4fHNvcnRfYXNjfHNvcnRfZGVzY3xzb3J0X2luZGljZXNfYXNjfHNvcnRfaW5kaWNlc19kZXNjfHNxcnR8c3FydDJ8c3F1YXJlfHNxdWFyZWRfZGlzdGFuY2V8c3RlcHxzdHVkZW50X3RfY2NkZl9sb2d8c3R1ZGVudF90X2NkZnxzdHVkZW50X3RfY2RmX2xvZ3xzdHVkZW50X3RfbG9nfHN0dWRlbnRfdF9ybmd8c3ViX2NvbHxzdWJfcm93fHN1bXx0YWlsfHRhbnx0YW5ofHRjcm9zc3Byb2R8dGdhbW1hfHRvX2FycmF5XzFkfHRvX2FycmF5XzJkfHRvX21hdHJpeHx0b19yb3dfdmVjdG9yfHRvX3ZlY3Rvcnx0cmFjZXx0cmFjZV9nZW5fcXVhZF9mb3JtfHRyYWNlX3F1YWRfZm9ybXx0cmlnYW1tYXx0cnVuY3x1bmlmb3JtX2NjZGZfbG9nfHVuaWZvcm1fY2RmfHVuaWZvcm1fY2RmX2xvZ3x1bmlmb3JtX2xvZ3x1bmlmb3JtX3JuZ3x2YXJpYW5jZXx2b25fbWlzZXNfbG9nfHZvbl9taXNlc19ybmd8d2VpYnVsbF9jY2RmX2xvZ3x3ZWlidWxsX2NkZnx3ZWlidWxsX2NkZl9sb2d8d2VpYnVsbF9sb2d8d2VpYnVsbF9ybmd8d2llbmVyX2xvZ3x3aXNoYXJ0X2xvZ3x3aXNoYXJ0X3JuZylcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJmdW5jdGlvbiIsYjoiKD86YmVybm91bGxpfGJlcm5vdWxsaV9sb2dpdHxiZXRhfGJldGFfYmlub21pYWx8Ymlub21pYWx8Ymlub21pYWxfbG9naXR8Y2F0ZWdvcmljYWx8Y2F0ZWdvcmljYWxfbG9naXR8Y2F1Y2h5fGNoaV9zcXVhcmV8ZGlyaWNobGV0fGRvdWJsZV9leHBvbmVudGlhbHxleHBfbW9kX25vcm1hbHxleHBvbmVudGlhbHxmcmVjaGV0fGdhbW1hfGdhdXNzaWFuX2RsbV9vYnN8Z3VtYmVsfGh5cGVyZ2VvbWV0cmljfGludl9jaGlfc3F1YXJlfGludl9nYW1tYXxpbnZfd2lzaGFydHxsa2pfY29ycnxsa2pfY29ycl9jaG9sZXNreXxsb2dpc3RpY3xsb2dub3JtYWx8bXVsdGlfZ3B8bXVsdGlfZ3BfY2hvbGVza3l8bXVsdGlfbm9ybWFsfG11bHRpX25vcm1hbF9jaG9sZXNreXxtdWx0aV9ub3JtYWxfcHJlY3xtdWx0aV9zdHVkZW50X3R8bXVsdGlub21pYWx8bmVnX2Jpbm9taWFsfG5lZ19iaW5vbWlhbF8yfG5lZ19iaW5vbWlhbF8yX2xvZ3xub3JtYWx8b3JkZXJlZF9sb2dpc3RpY3xwYXJldG98cGFyZXRvX3R5cGVfMnxwb2lzc29ufHBvaXNzb25fbG9nfHJheWxlaWdofHNjYWxlZF9pbnZfY2hpX3NxdWFyZXxza2V3X25vcm1hbHxzdHVkZW50X3R8dW5pZm9ybXx2b25fbWlzZXN8d2VpYnVsbHx3aWVuZXJ8d2lzaGFydClcXGIiLGU6aGxqcy5JTU1FRElBVEVfUkUscjoxMH0se2NOOiJrZXl3b3JkIixiOiIoPzpmb3J8aW58d2hpbGV8aWZ8dGhlbnxlbHNlfHJldHVybnxsb3dlcnx1cHBlcnxwcmludHxpbmNyZW1lbnRfbG9nX3Byb2J8aW50ZWdyYXRlX29kZXxyZWplY3QpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6MTB9LHtjTjoia2V5d29yZCIsYjoiKD86aW50fHJlYWx8dmVjdG9yfHNpbXBsZXh8dW5pdF92ZWN0b3J8b3JkZXJlZHxwb3NpdGl2ZV9vcmRlcmVkfHJvd192ZWN0b3J8bWF0cml4fGNob2xlc2t5X2ZhY3Rvcl9jb3Z8Y2hvbGVza3lfZmFjdG9yX2NvcnJ8Y29ycl9tYXRyaXh8Y292X21hdHJpeHx2b2lkKVxcYiIsZTpobGpzLklNTUVESUFURV9SRSxyOjV9LHtjTjoia2V5d29yZCIsYjoiKD86ZnVuY3Rpb25zfGRhdGF8dHJhbnNmb3JtZWRcXHMrZGF0YXxwYXJhbWV0ZXJzfHRyYW5zZm9ybWVkXFxzK3BhcmFtZXRlcnN8bW9kZWx8Z2VuZXJhdGVkXFxzK3F1YW50aXRpZXMpXFxiIixlOmhsanMuSU1NRURJQVRFX1JFLHI6NX1dfX07aGxqcy5MQU5HVUFHRVMueG1sPWZ1bmN0aW9uKCl7dmFyIGI9IltBLVphLXowLTlcXC5fOi1dKyI7dmFyIGE9e2VXOnRydWUsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6YixyOjB9LHtiOic9IicsckI6dHJ1ZSxlOiciJyxjOlt7Y046InZhbHVlIixiOiciJyxlVzp0cnVlfV19LHtiOiI9JyIsckI6dHJ1ZSxlOiInIixjOlt7Y046InZhbHVlIixiOiInIixlVzp0cnVlfV19LHtiOiI9IixjOlt7Y046InZhbHVlIixiOiJbXlxccy8+XSsifV19XX07cmV0dXJue2NJOnRydWUsZE06e2M6W3tjTjoicGkiLGI6IjxcXD8iLGU6IlxcPz4iLHI6MTB9LHtjTjoiZG9jdHlwZSIsYjoiPCFET0NUWVBFIixlOiI+IixyOjEwLGM6W3tiOiJcXFsiLGU6IlxcXSJ9XX0se2NOOiJjb21tZW50IixiOiI8IS0tIixlOiItLT4iLHI6MTB9LHtjTjoiY2RhdGEiLGI6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2NOOiJ0YWciLGI6IjxzdHlsZSg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c3R5bGU6MX19LGM6W2FdLHN0YXJ0czp7Y046ImNzcyIsZToiPC9zdHlsZT4iLHJFOnRydWUsc0w6ImNzcyJ9fSx7Y046InRhZyIsYjoiPHNjcmlwdCg/PVxcc3w+fCQpIixlOiI+IixrOnt0aXRsZTp7c2NyaXB0OjF9fSxjOlthXSxzdGFydHM6e2NOOiJqYXZhc2NyaXB0IixlOiI8XC9zY3JpcHQ+IixyRTp0cnVlLHNMOiJqYXZhc2NyaXB0In19LHtjTjoidmJzY3JpcHQiLGI6IjwlIixlOiIlPiIsc0w6InZic2NyaXB0In0se2NOOiJ0YWciLGI6IjwvPyIsZToiLz8+IixjOlt7Y046InRpdGxlIixiOiJbXiAvPl0rIn0sYV19XX19fSgpOwpobGpzLmluaXRIaWdobGlnaHRpbmdPbkxvYWQoKTsKCg=="></script> +<link href="data:text/css;charset=utf-8,%2Ehljs%2Dliteral%20%7B%0Acolor%3A%20%23990073%3B%0A%7D%0A%2Ehljs%2Dnumber%20%7B%0Acolor%3A%20%23099%3B%0A%7D%0A%2Ehljs%2Dcomment%20%7B%0Acolor%3A%20%23998%3B%0Afont%2Dstyle%3A%20italic%3B%0A%7D%0A%2Ehljs%2Dkeyword%20%7B%0Acolor%3A%20%23900%3B%0Afont%2Dweight%3A%20bold%3B%0A%7D%0A%2Ehljs%2Dstring%20%7B%0Acolor%3A%20%23d14%3B%0A%7D%0A" rel="stylesheet" /> +<script src="data:application/x-javascript;base64,LyohIGhpZ2hsaWdodC5qcyB2OS4xMi4wIHwgQlNEMyBMaWNlbnNlIHwgZ2l0LmlvL2hsanNsaWNlbnNlICovCiFmdW5jdGlvbihlKXt2YXIgbj0ib2JqZWN0Ij09dHlwZW9mIHdpbmRvdyYmd2luZG93fHwib2JqZWN0Ij09dHlwZW9mIHNlbGYmJnNlbGY7InVuZGVmaW5lZCIhPXR5cGVvZiBleHBvcnRzP2UoZXhwb3J0cyk6biYmKG4uaGxqcz1lKHt9KSwiZnVuY3Rpb24iPT10eXBlb2YgZGVmaW5lJiZkZWZpbmUuYW1kJiZkZWZpbmUoW10sZnVuY3Rpb24oKXtyZXR1cm4gbi5obGpzfSkpfShmdW5jdGlvbihlKXtmdW5jdGlvbiBuKGUpe3JldHVybiBlLnJlcGxhY2UoLyYvZywiJmFtcDsiKS5yZXBsYWNlKC88L2csIiZsdDsiKS5yZXBsYWNlKC8+L2csIiZndDsiKX1mdW5jdGlvbiB0KGUpe3JldHVybiBlLm5vZGVOYW1lLnRvTG93ZXJDYXNlKCl9ZnVuY3Rpb24gcihlLG4pe3ZhciB0PWUmJmUuZXhlYyhuKTtyZXR1cm4gdCYmMD09PXQuaW5kZXh9ZnVuY3Rpb24gYShlKXtyZXR1cm4gay50ZXN0KGUpfWZ1bmN0aW9uIGkoZSl7dmFyIG4sdCxyLGksbz1lLmNsYXNzTmFtZSsiICI7aWYobys9ZS5wYXJlbnROb2RlP2UucGFyZW50Tm9kZS5jbGFzc05hbWU6IiIsdD1CLmV4ZWMobykpcmV0dXJuIHcodFsxXSk/dFsxXToibm8taGlnaGxpZ2h0Ijtmb3Iobz1vLnNwbGl0KC9ccysvKSxuPTAscj1vLmxlbmd0aDtyPm47bisrKWlmKGk9b1tuXSxhKGkpfHx3KGkpKXJldHVybiBpfWZ1bmN0aW9uIG8oZSl7dmFyIG4sdD17fSxyPUFycmF5LnByb3RvdHlwZS5zbGljZS5jYWxsKGFyZ3VtZW50cywxKTtmb3IobiBpbiBlKXRbbl09ZVtuXTtyZXR1cm4gci5mb3JFYWNoKGZ1bmN0aW9uKGUpe2ZvcihuIGluIGUpdFtuXT1lW25dfSksdH1mdW5jdGlvbiB1KGUpe3ZhciBuPVtdO3JldHVybiBmdW5jdGlvbiByKGUsYSl7Zm9yKHZhciBpPWUuZmlyc3RDaGlsZDtpO2k9aS5uZXh0U2libGluZykzPT09aS5ub2RlVHlwZT9hKz1pLm5vZGVWYWx1ZS5sZW5ndGg6MT09PWkubm9kZVR5cGUmJihuLnB1c2goe2V2ZW50OiJzdGFydCIsb2Zmc2V0OmEsbm9kZTppfSksYT1yKGksYSksdChpKS5tYXRjaCgvYnJ8aHJ8aW1nfGlucHV0Lyl8fG4ucHVzaCh7ZXZlbnQ6InN0b3AiLG9mZnNldDphLG5vZGU6aX0pKTtyZXR1cm4gYX0oZSwwKSxufWZ1bmN0aW9uIGMoZSxyLGEpe2Z1bmN0aW9uIGkoKXtyZXR1cm4gZS5sZW5ndGgmJnIubGVuZ3RoP2VbMF0ub2Zmc2V0IT09clswXS5vZmZzZXQ/ZVswXS5vZmZzZXQ8clswXS5vZmZzZXQ/ZTpyOiJzdGFydCI9PT1yWzBdLmV2ZW50P2U6cjplLmxlbmd0aD9lOnJ9ZnVuY3Rpb24gbyhlKXtmdW5jdGlvbiByKGUpe3JldHVybiIgIitlLm5vZGVOYW1lKyc9IicrbihlLnZhbHVlKS5yZXBsYWNlKCciJywiJnF1b3Q7IikrJyInfXMrPSI8Iit0KGUpK0UubWFwLmNhbGwoZS5hdHRyaWJ1dGVzLHIpLmpvaW4oIiIpKyI+In1mdW5jdGlvbiB1KGUpe3MrPSI8LyIrdChlKSsiPiJ9ZnVuY3Rpb24gYyhlKXsoInN0YXJ0Ij09PWUuZXZlbnQ/bzp1KShlLm5vZGUpfWZvcih2YXIgbD0wLHM9IiIsZj1bXTtlLmxlbmd0aHx8ci5sZW5ndGg7KXt2YXIgZz1pKCk7aWYocys9bihhLnN1YnN0cmluZyhsLGdbMF0ub2Zmc2V0KSksbD1nWzBdLm9mZnNldCxnPT09ZSl7Zi5yZXZlcnNlKCkuZm9yRWFjaCh1KTtkbyBjKGcuc3BsaWNlKDAsMSlbMF0pLGc9aSgpO3doaWxlKGc9PT1lJiZnLmxlbmd0aCYmZ1swXS5vZmZzZXQ9PT1sKTtmLnJldmVyc2UoKS5mb3JFYWNoKG8pfWVsc2Uic3RhcnQiPT09Z1swXS5ldmVudD9mLnB1c2goZ1swXS5ub2RlKTpmLnBvcCgpLGMoZy5zcGxpY2UoMCwxKVswXSl9cmV0dXJuIHMrbihhLnN1YnN0cihsKSl9ZnVuY3Rpb24gbChlKXtyZXR1cm4gZS52JiYhZS5jYWNoZWRfdmFyaWFudHMmJihlLmNhY2hlZF92YXJpYW50cz1lLnYubWFwKGZ1bmN0aW9uKG4pe3JldHVybiBvKGUse3Y6bnVsbH0sbil9KSksZS5jYWNoZWRfdmFyaWFudHN8fGUuZVcmJltvKGUpXXx8W2VdfWZ1bmN0aW9uIHMoZSl7ZnVuY3Rpb24gbihlKXtyZXR1cm4gZSYmZS5zb3VyY2V8fGV9ZnVuY3Rpb24gdCh0LHIpe3JldHVybiBuZXcgUmVnRXhwKG4odCksIm0iKyhlLmNJPyJpIjoiIikrKHI/ImciOiIiKSl9ZnVuY3Rpb24gcihhLGkpe2lmKCFhLmNvbXBpbGVkKXtpZihhLmNvbXBpbGVkPSEwLGEuaz1hLmt8fGEuYkssYS5rKXt2YXIgbz17fSx1PWZ1bmN0aW9uKG4sdCl7ZS5jSSYmKHQ9dC50b0xvd2VyQ2FzZSgpKSx0LnNwbGl0KCIgIikuZm9yRWFjaChmdW5jdGlvbihlKXt2YXIgdD1lLnNwbGl0KCJ8Iik7b1t0WzBdXT1bbix0WzFdP051bWJlcih0WzFdKToxXX0pfTsic3RyaW5nIj09dHlwZW9mIGEuaz91KCJrZXl3b3JkIixhLmspOngoYS5rKS5mb3JFYWNoKGZ1bmN0aW9uKGUpe3UoZSxhLmtbZV0pfSksYS5rPW99YS5sUj10KGEubHx8L1x3Ky8sITApLGkmJihhLmJLJiYoYS5iPSJcXGIoIithLmJLLnNwbGl0KCIgIikuam9pbigifCIpKyIpXFxiIiksYS5ifHwoYS5iPS9cQnxcYi8pLGEuYlI9dChhLmIpLGEuZXx8YS5lV3x8KGEuZT0vXEJ8XGIvKSxhLmUmJihhLmVSPXQoYS5lKSksYS50RT1uKGEuZSl8fCIiLGEuZVcmJmkudEUmJihhLnRFKz0oYS5lPyJ8IjoiIikraS50RSkpLGEuaSYmKGEuaVI9dChhLmkpKSxudWxsPT1hLnImJihhLnI9MSksYS5jfHwoYS5jPVtdKSxhLmM9QXJyYXkucHJvdG90eXBlLmNvbmNhdC5hcHBseShbXSxhLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBsKCJzZWxmIj09PWU/YTplKX0pKSxhLmMuZm9yRWFjaChmdW5jdGlvbihlKXtyKGUsYSl9KSxhLnN0YXJ0cyYmcihhLnN0YXJ0cyxpKTt2YXIgYz1hLmMubWFwKGZ1bmN0aW9uKGUpe3JldHVybiBlLmJLPyJcXC4/KCIrZS5iKyIpXFwuPyI6ZS5ifSkuY29uY2F0KFthLnRFLGEuaV0pLm1hcChuKS5maWx0ZXIoQm9vbGVhbik7YS50PWMubGVuZ3RoP3QoYy5qb2luKCJ8IiksITApOntleGVjOmZ1bmN0aW9uKCl7cmV0dXJuIG51bGx9fX19cihlKX1mdW5jdGlvbiBmKGUsdCxhLGkpe2Z1bmN0aW9uIG8oZSxuKXt2YXIgdCxhO2Zvcih0PTAsYT1uLmMubGVuZ3RoO2E+dDt0KyspaWYocihuLmNbdF0uYlIsZSkpcmV0dXJuIG4uY1t0XX1mdW5jdGlvbiB1KGUsbil7aWYocihlLmVSLG4pKXtmb3IoO2UuZW5kc1BhcmVudCYmZS5wYXJlbnQ7KWU9ZS5wYXJlbnQ7cmV0dXJuIGV9cmV0dXJuIGUuZVc/dShlLnBhcmVudCxuKTp2b2lkIDB9ZnVuY3Rpb24gYyhlLG4pe3JldHVybiFhJiZyKG4uaVIsZSl9ZnVuY3Rpb24gbChlLG4pe3ZhciB0PU4uY0k/blswXS50b0xvd2VyQ2FzZSgpOm5bMF07cmV0dXJuIGUuay5oYXNPd25Qcm9wZXJ0eSh0KSYmZS5rW3RdfWZ1bmN0aW9uIHAoZSxuLHQscil7dmFyIGE9cj8iIjpJLmNsYXNzUHJlZml4LGk9JzxzcGFuIGNsYXNzPSInK2Esbz10PyIiOkM7cmV0dXJuIGkrPWUrJyI+JyxpK24rb31mdW5jdGlvbiBoKCl7dmFyIGUsdCxyLGE7aWYoIUUuaylyZXR1cm4gbihrKTtmb3IoYT0iIix0PTAsRS5sUi5sYXN0SW5kZXg9MCxyPUUubFIuZXhlYyhrKTtyOylhKz1uKGsuc3Vic3RyaW5nKHQsci5pbmRleCkpLGU9bChFLHIpLGU/KEIrPWVbMV0sYSs9cChlWzBdLG4oclswXSkpKTphKz1uKHJbMF0pLHQ9RS5sUi5sYXN0SW5kZXgscj1FLmxSLmV4ZWMoayk7cmV0dXJuIGErbihrLnN1YnN0cih0KSl9ZnVuY3Rpb24gZCgpe3ZhciBlPSJzdHJpbmciPT10eXBlb2YgRS5zTDtpZihlJiYheVtFLnNMXSlyZXR1cm4gbihrKTt2YXIgdD1lP2YoRS5zTCxrLCEwLHhbRS5zTF0pOmcoayxFLnNMLmxlbmd0aD9FLnNMOnZvaWQgMCk7cmV0dXJuIEUucj4wJiYoQis9dC5yKSxlJiYoeFtFLnNMXT10LnRvcCkscCh0Lmxhbmd1YWdlLHQudmFsdWUsITEsITApfWZ1bmN0aW9uIGIoKXtMKz1udWxsIT1FLnNMP2QoKTpoKCksaz0iIn1mdW5jdGlvbiB2KGUpe0wrPWUuY04/cChlLmNOLCIiLCEwKToiIixFPU9iamVjdC5jcmVhdGUoZSx7cGFyZW50Ont2YWx1ZTpFfX0pfWZ1bmN0aW9uIG0oZSxuKXtpZihrKz1lLG51bGw9PW4pcmV0dXJuIGIoKSwwO3ZhciB0PW8obixFKTtpZih0KXJldHVybiB0LnNraXA/ays9bjoodC5lQiYmKGsrPW4pLGIoKSx0LnJCfHx0LmVCfHwoaz1uKSksdih0LG4pLHQuckI/MDpuLmxlbmd0aDt2YXIgcj11KEUsbik7aWYocil7dmFyIGE9RTthLnNraXA/ays9bjooYS5yRXx8YS5lRXx8KGsrPW4pLGIoKSxhLmVFJiYoaz1uKSk7ZG8gRS5jTiYmKEwrPUMpLEUuc2tpcHx8KEIrPUUuciksRT1FLnBhcmVudDt3aGlsZShFIT09ci5wYXJlbnQpO3JldHVybiByLnN0YXJ0cyYmdihyLnN0YXJ0cywiIiksYS5yRT8wOm4ubGVuZ3RofWlmKGMobixFKSl0aHJvdyBuZXcgRXJyb3IoJ0lsbGVnYWwgbGV4ZW1lICInK24rJyIgZm9yIG1vZGUgIicrKEUuY058fCI8dW5uYW1lZD4iKSsnIicpO3JldHVybiBrKz1uLG4ubGVuZ3RofHwxfXZhciBOPXcoZSk7aWYoIU4pdGhyb3cgbmV3IEVycm9yKCdVbmtub3duIGxhbmd1YWdlOiAiJytlKyciJyk7cyhOKTt2YXIgUixFPWl8fE4seD17fSxMPSIiO2ZvcihSPUU7UiE9PU47Uj1SLnBhcmVudClSLmNOJiYoTD1wKFIuY04sIiIsITApK0wpO3ZhciBrPSIiLEI9MDt0cnl7Zm9yKHZhciBNLGosTz0wOzspe2lmKEUudC5sYXN0SW5kZXg9TyxNPUUudC5leGVjKHQpLCFNKWJyZWFrO2o9bSh0LnN1YnN0cmluZyhPLE0uaW5kZXgpLE1bMF0pLE89TS5pbmRleCtqfWZvcihtKHQuc3Vic3RyKE8pKSxSPUU7Ui5wYXJlbnQ7Uj1SLnBhcmVudClSLmNOJiYoTCs9Qyk7cmV0dXJue3I6Qix2YWx1ZTpMLGxhbmd1YWdlOmUsdG9wOkV9fWNhdGNoKFQpe2lmKFQubWVzc2FnZSYmLTEhPT1ULm1lc3NhZ2UuaW5kZXhPZigiSWxsZWdhbCIpKXJldHVybntyOjAsdmFsdWU6bih0KX07dGhyb3cgVH19ZnVuY3Rpb24gZyhlLHQpe3Q9dHx8SS5sYW5ndWFnZXN8fHgoeSk7dmFyIHI9e3I6MCx2YWx1ZTpuKGUpfSxhPXI7cmV0dXJuIHQuZmlsdGVyKHcpLmZvckVhY2goZnVuY3Rpb24obil7dmFyIHQ9ZihuLGUsITEpO3QubGFuZ3VhZ2U9bix0LnI+YS5yJiYoYT10KSx0LnI+ci5yJiYoYT1yLHI9dCl9KSxhLmxhbmd1YWdlJiYoci5zZWNvbmRfYmVzdD1hKSxyfWZ1bmN0aW9uIHAoZSl7cmV0dXJuIEkudGFiUmVwbGFjZXx8SS51c2VCUj9lLnJlcGxhY2UoTSxmdW5jdGlvbihlLG4pe3JldHVybiBJLnVzZUJSJiYiXG4iPT09ZT8iPGJyPiI6SS50YWJSZXBsYWNlP24ucmVwbGFjZSgvXHQvZyxJLnRhYlJlcGxhY2UpOiIifSk6ZX1mdW5jdGlvbiBoKGUsbix0KXt2YXIgcj1uP0xbbl06dCxhPVtlLnRyaW0oKV07cmV0dXJuIGUubWF0Y2goL1xiaGxqc1xiLyl8fGEucHVzaCgiaGxqcyIpLC0xPT09ZS5pbmRleE9mKHIpJiZhLnB1c2gociksYS5qb2luKCIgIikudHJpbSgpfWZ1bmN0aW9uIGQoZSl7dmFyIG4sdCxyLG8sbCxzPWkoZSk7YShzKXx8KEkudXNlQlI/KG49ZG9jdW1lbnQuY3JlYXRlRWxlbWVudE5TKCJodHRwOi8vd3d3LnczLm9yZy8xOTk5L3hodG1sIiwiZGl2Iiksbi5pbm5lckhUTUw9ZS5pbm5lckhUTUwucmVwbGFjZSgvXG4vZywiIikucmVwbGFjZSgvPGJyWyBcL10qPi9nLCJcbiIpKTpuPWUsbD1uLnRleHRDb250ZW50LHI9cz9mKHMsbCwhMCk6ZyhsKSx0PXUobiksdC5sZW5ndGgmJihvPWRvY3VtZW50LmNyZWF0ZUVsZW1lbnROUygiaHR0cDovL3d3dy53My5vcmcvMTk5OS94aHRtbCIsImRpdiIpLG8uaW5uZXJIVE1MPXIudmFsdWUsci52YWx1ZT1jKHQsdShvKSxsKSksci52YWx1ZT1wKHIudmFsdWUpLGUuaW5uZXJIVE1MPXIudmFsdWUsZS5jbGFzc05hbWU9aChlLmNsYXNzTmFtZSxzLHIubGFuZ3VhZ2UpLGUucmVzdWx0PXtsYW5ndWFnZTpyLmxhbmd1YWdlLHJlOnIucn0sci5zZWNvbmRfYmVzdCYmKGUuc2Vjb25kX2Jlc3Q9e2xhbmd1YWdlOnIuc2Vjb25kX2Jlc3QubGFuZ3VhZ2UscmU6ci5zZWNvbmRfYmVzdC5yfSkpfWZ1bmN0aW9uIGIoZSl7ST1vKEksZSl9ZnVuY3Rpb24gdigpe2lmKCF2LmNhbGxlZCl7di5jYWxsZWQ9ITA7dmFyIGU9ZG9jdW1lbnQucXVlcnlTZWxlY3RvckFsbCgicHJlIGNvZGUiKTtFLmZvckVhY2guY2FsbChlLGQpfX1mdW5jdGlvbiBtKCl7YWRkRXZlbnRMaXN0ZW5lcigiRE9NQ29udGVudExvYWRlZCIsdiwhMSksYWRkRXZlbnRMaXN0ZW5lcigibG9hZCIsdiwhMSl9ZnVuY3Rpb24gTihuLHQpe3ZhciByPXlbbl09dChlKTtyLmFsaWFzZXMmJnIuYWxpYXNlcy5mb3JFYWNoKGZ1bmN0aW9uKGUpe0xbZV09bn0pfWZ1bmN0aW9uIFIoKXtyZXR1cm4geCh5KX1mdW5jdGlvbiB3KGUpe3JldHVybiBlPShlfHwiIikudG9Mb3dlckNhc2UoKSx5W2VdfHx5W0xbZV1dfXZhciBFPVtdLHg9T2JqZWN0LmtleXMseT17fSxMPXt9LGs9L14obm8tP2hpZ2hsaWdodHxwbGFpbnx0ZXh0KSQvaSxCPS9cYmxhbmcoPzp1YWdlKT8tKFtcdy1dKylcYi9pLE09LygoXig8W14+XSs+fFx0fCkrfCg/OlxuKSkpL2dtLEM9Ijwvc3Bhbj4iLEk9e2NsYXNzUHJlZml4OiJobGpzLSIsdGFiUmVwbGFjZTpudWxsLHVzZUJSOiExLGxhbmd1YWdlczp2b2lkIDB9O3JldHVybiBlLmhpZ2hsaWdodD1mLGUuaGlnaGxpZ2h0QXV0bz1nLGUuZml4TWFya3VwPXAsZS5oaWdobGlnaHRCbG9jaz1kLGUuY29uZmlndXJlPWIsZS5pbml0SGlnaGxpZ2h0aW5nPXYsZS5pbml0SGlnaGxpZ2h0aW5nT25Mb2FkPW0sZS5yZWdpc3Rlckxhbmd1YWdlPU4sZS5saXN0TGFuZ3VhZ2VzPVIsZS5nZXRMYW5ndWFnZT13LGUuaW5oZXJpdD1vLGUuSVI9IlthLXpBLVpdXFx3KiIsZS5VSVI9IlthLXpBLVpfXVxcdyoiLGUuTlI9IlxcYlxcZCsoXFwuXFxkKyk/IixlLkNOUj0iKC0/KShcXGIwW3hYXVthLWZBLUYwLTldK3woXFxiXFxkKyhcXC5cXGQqKT98XFwuXFxkKykoW2VFXVstK10/XFxkKyk/KSIsZS5CTlI9IlxcYigwYlswMV0rKSIsZS5SU1I9IiF8IT18IT09fCV8JT18JnwmJnwmPXxcXCp8XFwqPXxcXCt8XFwrPXwsfC18LT18Lz18L3w6fDt8PDx8PDw9fDw9fDx8PT09fD09fD18Pj4+PXw+Pj18Pj18Pj4+fD4+fD58XFw/fFxcW3xcXHt8XFwofFxcXnxcXF49fFxcfHxcXHw9fFxcfFxcfHx+IixlLkJFPXtiOiJcXFxcW1xcc1xcU10iLHI6MH0sZS5BU009e2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGk6IlxcbiIsYzpbZS5CRV19LGUuUVNNPXtjTjoic3RyaW5nIixiOiciJyxlOiciJyxpOiJcXG4iLGM6W2UuQkVdfSxlLlBXTT17YjovXGIoYXxhbnx0aGV8YXJlfEknbXxpc24ndHxkb24ndHxkb2Vzbid0fHdvbid0fGJ1dHxqdXN0fHNob3VsZHxwcmV0dHl8c2ltcGx5fGVub3VnaHxnb25uYXxnb2luZ3x3dGZ8c298c3VjaHx3aWxsfHlvdXx5b3VyfHRoZXl8bGlrZXxtb3JlKVxiL30sZS5DPWZ1bmN0aW9uKG4sdCxyKXt2YXIgYT1lLmluaGVyaXQoe2NOOiJjb21tZW50IixiOm4sZTp0LGM6W119LHJ8fHt9KTtyZXR1cm4gYS5jLnB1c2goZS5QV00pLGEuYy5wdXNoKHtjTjoiZG9jdGFnIixiOiIoPzpUT0RPfEZJWE1FfE5PVEV8QlVHfFhYWCk6IixyOjB9KSxhfSxlLkNMQ009ZS5DKCIvLyIsIiQiKSxlLkNCQ009ZS5DKCIvXFwqIiwiXFwqLyIpLGUuSENNPWUuQygiIyIsIiQiKSxlLk5NPXtjTjoibnVtYmVyIixiOmUuTlIscjowfSxlLkNOTT17Y046Im51bWJlciIsYjplLkNOUixyOjB9LGUuQk5NPXtjTjoibnVtYmVyIixiOmUuQk5SLHI6MH0sZS5DU1NOTT17Y046Im51bWJlciIsYjplLk5SKyIoJXxlbXxleHxjaHxyZW18dnd8dmh8dm1pbnx2bWF4fGNtfG1tfGlufHB0fHBjfHB4fGRlZ3xncmFkfHJhZHx0dXJufHN8bXN8SHp8a0h6fGRwaXxkcGNtfGRwcHgpPyIscjowfSxlLlJNPXtjTjoicmVnZXhwIixiOi9cLy8sZTovXC9bZ2ltdXldKi8saTovXG4vLGM6W2UuQkUse2I6L1xbLyxlOi9cXS8scjowLGM6W2UuQkVdfV19LGUuVE09e2NOOiJ0aXRsZSIsYjplLklSLHI6MH0sZS5VVE09e2NOOiJ0aXRsZSIsYjplLlVJUixyOjB9LGUuTUVUSE9EX0dVQVJEPXtiOiJcXC5cXHMqIitlLlVJUixyOjB9LGV9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInNxbCIsZnVuY3Rpb24oZSl7dmFyIHQ9ZS5DKCItLSIsIiQiKTtyZXR1cm57Y0k6ITAsaTovWzw+e30qI10vLGM6W3tiSzoiYmVnaW4gZW5kIHN0YXJ0IGNvbW1pdCByb2xsYmFjayBzYXZlcG9pbnQgbG9jayBhbHRlciBjcmVhdGUgZHJvcCByZW5hbWUgY2FsbCBkZWxldGUgZG8gaGFuZGxlciBpbnNlcnQgbG9hZCByZXBsYWNlIHNlbGVjdCB0cnVuY2F0ZSB1cGRhdGUgc2V0IHNob3cgcHJhZ21hIGdyYW50IG1lcmdlIGRlc2NyaWJlIHVzZSBleHBsYWluIGhlbHAgZGVjbGFyZSBwcmVwYXJlIGV4ZWN1dGUgZGVhbGxvY2F0ZSByZWxlYXNlIHVubG9jayBwdXJnZSByZXNldCBjaGFuZ2Ugc3RvcCBhbmFseXplIGNhY2hlIGZsdXNoIG9wdGltaXplIHJlcGFpciBraWxsIGluc3RhbGwgdW5pbnN0YWxsIGNoZWNrc3VtIHJlc3RvcmUgY2hlY2sgYmFja3VwIHJldm9rZSBjb21tZW50IixlOi87LyxlVzohMCxsOi9bXHdcLl0rLyxrOntrZXl3b3JkOiJhYm9ydCBhYnMgYWJzb2x1dGUgYWNjIGFjY2UgYWNjZXAgYWNjZXB0IGFjY2VzcyBhY2Nlc3NlZCBhY2Nlc3NpYmxlIGFjY291bnQgYWNvcyBhY3Rpb24gYWN0aXZhdGUgYWRkIGFkZHRpbWUgYWRtaW4gYWRtaW5pc3RlciBhZHZhbmNlZCBhZHZpc2UgYWVzX2RlY3J5cHQgYWVzX2VuY3J5cHQgYWZ0ZXIgYWdlbnQgYWdncmVnYXRlIGFsaSBhbGlhIGFsaWFzIGFsbG9jYXRlIGFsbG93IGFsdGVyIGFsd2F5cyBhbmFseXplIGFuY2lsbGFyeSBhbmQgYW55IGFueWRhdGEgYW55ZGF0YXNldCBhbnlzY2hlbWEgYW55dHlwZSBhcHBseSBhcmNoaXZlIGFyY2hpdmVkIGFyY2hpdmVsb2cgYXJlIGFzIGFzYyBhc2NpaSBhc2luIGFzc2VtYmx5IGFzc2VydGlvbiBhc3NvY2lhdGUgYXN5bmNocm9ub3VzIGF0IGF0YW4gYXRuMiBhdHRyIGF0dHJpIGF0dHJpYiBhdHRyaWJ1IGF0dHJpYnV0IGF0dHJpYnV0ZSBhdHRyaWJ1dGVzIGF1ZGl0IGF1dGhlbnRpY2F0ZWQgYXV0aGVudGljYXRpb24gYXV0aGlkIGF1dGhvcnMgYXV0byBhdXRvYWxsb2NhdGUgYXV0b2RibGluayBhdXRvZXh0ZW5kIGF1dG9tYXRpYyBhdmFpbGFiaWxpdHkgYXZnIGJhY2t1cCBiYWRmaWxlIGJhc2ljZmlsZSBiZWZvcmUgYmVnaW4gYmVnaW5uaW5nIGJlbmNobWFyayBiZXR3ZWVuIGJmaWxlIGJmaWxlX2Jhc2UgYmlnIGJpZ2ZpbGUgYmluIGJpbmFyeV9kb3VibGUgYmluYXJ5X2Zsb2F0IGJpbmxvZyBiaXRfYW5kIGJpdF9jb3VudCBiaXRfbGVuZ3RoIGJpdF9vciBiaXRfeG9yIGJpdG1hcCBibG9iX2Jhc2UgYmxvY2sgYmxvY2tzaXplIGJvZHkgYm90aCBib3VuZCBidWZmZXJfY2FjaGUgYnVmZmVyX3Bvb2wgYnVpbGQgYnVsayBieSBieXRlIGJ5dGVvcmRlcm1hcmsgYnl0ZXMgY2FjaGUgY2FjaGluZyBjYWxsIGNhbGxpbmcgY2FuY2VsIGNhcGFjaXR5IGNhc2NhZGUgY2FzY2FkZWQgY2FzZSBjYXN0IGNhdGFsb2cgY2F0ZWdvcnkgY2VpbCBjZWlsaW5nIGNoYWluIGNoYW5nZSBjaGFuZ2VkIGNoYXJfYmFzZSBjaGFyX2xlbmd0aCBjaGFyYWN0ZXJfbGVuZ3RoIGNoYXJhY3RlcnMgY2hhcmFjdGVyc2V0IGNoYXJpbmRleCBjaGFyc2V0IGNoYXJzZXRmb3JtIGNoYXJzZXRpZCBjaGVjayBjaGVja3N1bSBjaGVja3N1bV9hZ2cgY2hpbGQgY2hvb3NlIGNociBjaHVuayBjbGFzcyBjbGVhbnVwIGNsZWFyIGNsaWVudCBjbG9iIGNsb2JfYmFzZSBjbG9uZSBjbG9zZSBjbHVzdGVyX2lkIGNsdXN0ZXJfcHJvYmFiaWxpdHkgY2x1c3Rlcl9zZXQgY2x1c3RlcmluZyBjb2FsZXNjZSBjb2VyY2liaWxpdHkgY29sIGNvbGxhdGUgY29sbGF0aW9uIGNvbGxlY3QgY29sdSBjb2x1bSBjb2x1bW4gY29sdW1uX3ZhbHVlIGNvbHVtbnMgY29sdW1uc191cGRhdGVkIGNvbW1lbnQgY29tbWl0IGNvbXBhY3QgY29tcGF0aWJpbGl0eSBjb21waWxlZCBjb21wbGV0ZSBjb21wb3NpdGVfbGltaXQgY29tcG91bmQgY29tcHJlc3MgY29tcHV0ZSBjb25jYXQgY29uY2F0X3dzIGNvbmN1cnJlbnQgY29uZmlybSBjb25uIGNvbm5lYyBjb25uZWN0IGNvbm5lY3RfYnlfaXNjeWNsZSBjb25uZWN0X2J5X2lzbGVhZiBjb25uZWN0X2J5X3Jvb3QgY29ubmVjdF90aW1lIGNvbm5lY3Rpb24gY29uc2lkZXIgY29uc2lzdGVudCBjb25zdGFudCBjb25zdHJhaW50IGNvbnN0cmFpbnRzIGNvbnN0cnVjdG9yIGNvbnRhaW5lciBjb250ZW50IGNvbnRlbnRzIGNvbnRleHQgY29udHJpYnV0b3JzIGNvbnRyb2xmaWxlIGNvbnYgY29udmVydCBjb252ZXJ0X3R6IGNvcnIgY29ycl9rIGNvcnJfcyBjb3JyZXNwb25kaW5nIGNvcnJ1cHRpb24gY29zIGNvc3QgY291bnQgY291bnRfYmlnIGNvdW50ZWQgY292YXJfcG9wIGNvdmFyX3NhbXAgY3B1X3Blcl9jYWxsIGNwdV9wZXJfc2Vzc2lvbiBjcmMzMiBjcmVhdGUgY3JlYXRpb24gY3JpdGljYWwgY3Jvc3MgY3ViZSBjdW1lX2Rpc3QgY3VyZGF0ZSBjdXJyZW50IGN1cnJlbnRfZGF0ZSBjdXJyZW50X3RpbWUgY3VycmVudF90aW1lc3RhbXAgY3VycmVudF91c2VyIGN1cnNvciBjdXJ0aW1lIGN1c3RvbWRhdHVtIGN5Y2xlIGRhdGEgZGF0YWJhc2UgZGF0YWJhc2VzIGRhdGFmaWxlIGRhdGFmaWxlcyBkYXRhbGVuZ3RoIGRhdGVfYWRkIGRhdGVfY2FjaGUgZGF0ZV9mb3JtYXQgZGF0ZV9zdWIgZGF0ZWFkZCBkYXRlZGlmZiBkYXRlZnJvbXBhcnRzIGRhdGVuYW1lIGRhdGVwYXJ0IGRhdGV0aW1lMmZyb21wYXJ0cyBkYXkgZGF5X3RvX3NlY29uZCBkYXluYW1lIGRheW9mbW9udGggZGF5b2Z3ZWVrIGRheW9meWVhciBkYXlzIGRiX3JvbGVfY2hhbmdlIGRidGltZXpvbmUgZGRsIGRlYWxsb2NhdGUgZGVjbGFyZSBkZWNvZGUgZGVjb21wb3NlIGRlY3JlbWVudCBkZWNyeXB0IGRlZHVwbGljYXRlIGRlZiBkZWZhIGRlZmF1IGRlZmF1bCBkZWZhdWx0IGRlZmF1bHRzIGRlZmVycmVkIGRlZmkgZGVmaW4gZGVmaW5lIGRlZ3JlZXMgZGVsYXllZCBkZWxlZ2F0ZSBkZWxldGUgZGVsZXRlX2FsbCBkZWxpbWl0ZWQgZGVtYW5kIGRlbnNlX3JhbmsgZGVwdGggZGVxdWV1ZSBkZXNfZGVjcnlwdCBkZXNfZW5jcnlwdCBkZXNfa2V5X2ZpbGUgZGVzYyBkZXNjciBkZXNjcmkgZGVzY3JpYiBkZXNjcmliZSBkZXNjcmlwdG9yIGRldGVybWluaXN0aWMgZGlhZ25vc3RpY3MgZGlmZmVyZW5jZSBkaW1lbnNpb24gZGlyZWN0X2xvYWQgZGlyZWN0b3J5IGRpc2FibGUgZGlzYWJsZV9hbGwgZGlzYWxsb3cgZGlzYXNzb2NpYXRlIGRpc2NhcmRmaWxlIGRpc2Nvbm5lY3QgZGlza2dyb3VwIGRpc3RpbmN0IGRpc3RpbmN0cm93IGRpc3RyaWJ1dGUgZGlzdHJpYnV0ZWQgZGl2IGRvIGRvY3VtZW50IGRvbWFpbiBkb3RuZXQgZG91YmxlIGRvd25ncmFkZSBkcm9wIGR1bXBmaWxlIGR1cGxpY2F0ZSBkdXJhdGlvbiBlYWNoIGVkaXRpb24gZWRpdGlvbmFibGUgZWRpdGlvbnMgZWxlbWVudCBlbGxpcHNpcyBlbHNlIGVsc2lmIGVsdCBlbXB0eSBlbmFibGUgZW5hYmxlX2FsbCBlbmNsb3NlZCBlbmNvZGUgZW5jb2RpbmcgZW5jcnlwdCBlbmQgZW5kLWV4ZWMgZW5kaWFuIGVuZm9yY2VkIGVuZ2luZSBlbmdpbmVzIGVucXVldWUgZW50ZXJwcmlzZSBlbnRpdHllc2NhcGluZyBlb21vbnRoIGVycm9yIGVycm9ycyBlc2NhcGVkIGV2YWxuYW1lIGV2YWx1YXRlIGV2ZW50IGV2ZW50ZGF0YSBldmVudHMgZXhjZXB0IGV4Y2VwdGlvbiBleGNlcHRpb25zIGV4Y2hhbmdlIGV4Y2x1ZGUgZXhjbHVkaW5nIGV4ZWN1IGV4ZWN1dCBleGVjdXRlIGV4ZW1wdCBleGlzdHMgZXhpdCBleHAgZXhwaXJlIGV4cGxhaW4gZXhwb3J0IGV4cG9ydF9zZXQgZXh0ZW5kZWQgZXh0ZW50IGV4dGVybmFsIGV4dGVybmFsXzEgZXh0ZXJuYWxfMiBleHRlcm5hbGx5IGV4dHJhY3QgZmFpbGVkIGZhaWxlZF9sb2dpbl9hdHRlbXB0cyBmYWlsb3ZlciBmYWlsdXJlIGZhciBmYXN0IGZlYXR1cmVfc2V0IGZlYXR1cmVfdmFsdWUgZmV0Y2ggZmllbGQgZmllbGRzIGZpbGUgZmlsZV9uYW1lX2NvbnZlcnQgZmlsZXN5c3RlbV9saWtlX2xvZ2dpbmcgZmluYWwgZmluaXNoIGZpcnN0IGZpcnN0X3ZhbHVlIGZpeGVkIGZsYXNoX2NhY2hlIGZsYXNoYmFjayBmbG9vciBmbHVzaCBmb2xsb3dpbmcgZm9sbG93cyBmb3IgZm9yYWxsIGZvcmNlIGZvcm0gZm9ybWEgZm9ybWF0IGZvdW5kIGZvdW5kX3Jvd3MgZnJlZWxpc3QgZnJlZWxpc3RzIGZyZWVwb29scyBmcmVzaCBmcm9tIGZyb21fYmFzZTY0IGZyb21fZGF5cyBmdHAgZnVsbCBmdW5jdGlvbiBnZW5lcmFsIGdlbmVyYXRlZCBnZXQgZ2V0X2Zvcm1hdCBnZXRfbG9jayBnZXRkYXRlIGdldHV0Y2RhdGUgZ2xvYmFsIGdsb2JhbF9uYW1lIGdsb2JhbGx5IGdvIGdvdG8gZ3JhbnQgZ3JhbnRzIGdyZWF0ZXN0IGdyb3VwIGdyb3VwX2NvbmNhdCBncm91cF9pZCBncm91cGluZyBncm91cGluZ19pZCBncm91cHMgZ3RpZF9zdWJ0cmFjdCBndWFyYW50ZWUgZ3VhcmQgaGFuZGxlciBoYXNoIGhhc2hrZXlzIGhhdmluZyBoZWEgaGVhZCBoZWFkaSBoZWFkaW4gaGVhZGluZyBoZWFwIGhlbHAgaGV4IGhpZXJhcmNoeSBoaWdoIGhpZ2hfcHJpb3JpdHkgaG9zdHMgaG91ciBodHRwIGlkIGlkZW50X2N1cnJlbnQgaWRlbnRfaW5jciBpZGVudF9zZWVkIGlkZW50aWZpZWQgaWRlbnRpdHkgaWRsZV90aW1lIGlmIGlmbnVsbCBpZ25vcmUgaWlmIGlsaWtlIGlsbSBpbW1lZGlhdGUgaW1wb3J0IGluIGluY2x1ZGUgaW5jbHVkaW5nIGluY3JlbWVudCBpbmRleCBpbmRleGVzIGluZGV4aW5nIGluZGV4dHlwZSBpbmRpY2F0b3IgaW5kaWNlcyBpbmV0Nl9hdG9uIGluZXQ2X250b2EgaW5ldF9hdG9uIGluZXRfbnRvYSBpbmZpbGUgaW5pdGlhbCBpbml0aWFsaXplZCBpbml0aWFsbHkgaW5pdHJhbnMgaW5tZW1vcnkgaW5uZXIgaW5ub2RiIGlucHV0IGluc2VydCBpbnN0YWxsIGluc3RhbmNlIGluc3RhbnRpYWJsZSBpbnN0ciBpbnRlcmZhY2UgaW50ZXJsZWF2ZWQgaW50ZXJzZWN0IGludG8gaW52YWxpZGF0ZSBpbnZpc2libGUgaXMgaXNfZnJlZV9sb2NrIGlzX2lwdjQgaXNfaXB2NF9jb21wYXQgaXNfbm90IGlzX25vdF9udWxsIGlzX3VzZWRfbG9jayBpc2RhdGUgaXNudWxsIGlzb2xhdGlvbiBpdGVyYXRlIGphdmEgam9pbiBqc29uIGpzb25fZXhpc3RzIGtlZXAga2VlcF9kdXBsaWNhdGVzIGtleSBrZXlzIGtpbGwgbGFuZ3VhZ2UgbGFyZ2UgbGFzdCBsYXN0X2RheSBsYXN0X2luc2VydF9pZCBsYXN0X3ZhbHVlIGxheCBsY2FzZSBsZWFkIGxlYWRpbmcgbGVhc3QgbGVhdmVzIGxlZnQgbGVuIGxlbmdodCBsZW5ndGggbGVzcyBsZXZlbCBsZXZlbHMgbGlicmFyeSBsaWtlIGxpa2UyIGxpa2U0IGxpa2VjIGxpbWl0IGxpbmVzIGxpbmsgbGlzdCBsaXN0YWdnIGxpdHRsZSBsbiBsb2FkIGxvYWRfZmlsZSBsb2IgbG9icyBsb2NhbCBsb2NhbHRpbWUgbG9jYWx0aW1lc3RhbXAgbG9jYXRlIGxvY2F0b3IgbG9jayBsb2NrZWQgbG9nIGxvZzEwIGxvZzIgbG9nZmlsZSBsb2dmaWxlcyBsb2dnaW5nIGxvZ2ljYWwgbG9naWNhbF9yZWFkc19wZXJfY2FsbCBsb2dvZmYgbG9nb24gbG9ncyBsb25nIGxvb3AgbG93IGxvd19wcmlvcml0eSBsb3dlciBscGFkIGxydHJpbSBsdHJpbSBtYWluIG1ha2Vfc2V0IG1ha2VkYXRlIG1ha2V0aW1lIG1hbmFnZWQgbWFuYWdlbWVudCBtYW51YWwgbWFwIG1hcHBpbmcgbWFzayBtYXN0ZXIgbWFzdGVyX3Bvc193YWl0IG1hdGNoIG1hdGNoZWQgbWF0ZXJpYWxpemVkIG1heCBtYXhleHRlbnRzIG1heGltaXplIG1heGluc3RhbmNlcyBtYXhsZW4gbWF4bG9nZmlsZXMgbWF4bG9naGlzdG9yeSBtYXhsb2dtZW1iZXJzIG1heHNpemUgbWF4dHJhbnMgbWQ1IG1lYXN1cmVzIG1lZGlhbiBtZWRpdW0gbWVtYmVyIG1lbWNvbXByZXNzIG1lbW9yeSBtZXJnZSBtaWNyb3NlY29uZCBtaWQgbWlncmF0aW9uIG1pbiBtaW5leHRlbnRzIG1pbmltdW0gbWluaW5nIG1pbnVzIG1pbnV0ZSBtaW52YWx1ZSBtaXNzaW5nIG1vZCBtb2RlIG1vZGVsIG1vZGlmaWNhdGlvbiBtb2RpZnkgbW9kdWxlIG1vbml0b3JpbmcgbW9udGggbW9udGhzIG1vdW50IG1vdmUgbW92ZW1lbnQgbXVsdGlzZXQgbXV0ZXggbmFtZSBuYW1lX2NvbnN0IG5hbWVzIG5hbiBuYXRpb25hbCBuYXRpdmUgbmF0dXJhbCBuYXYgbmNoYXIgbmNsb2IgbmVzdGVkIG5ldmVyIG5ldyBuZXdsaW5lIG5leHQgbmV4dHZhbCBubyBub193cml0ZV90b19iaW5sb2cgbm9hcmNoaXZlbG9nIG5vYXVkaXQgbm9iYWRmaWxlIG5vY2hlY2sgbm9jb21wcmVzcyBub2NvcHkgbm9jeWNsZSBub2RlbGF5IG5vZGlzY2FyZGZpbGUgbm9lbnRpdHllc2NhcGluZyBub2d1YXJhbnRlZSBub2tlZXAgbm9sb2dmaWxlIG5vbWFwcGluZyBub21heHZhbHVlIG5vbWluaW1pemUgbm9taW52YWx1ZSBub21vbml0b3Jpbmcgbm9uZSBub25lZGl0aW9uYWJsZSBub25zY2hlbWEgbm9vcmRlciBub3ByIG5vcHJvIG5vcHJvbSBub3Byb21wIG5vcHJvbXB0IG5vcmVseSBub3Jlc2V0bG9ncyBub3JldmVyc2Ugbm9ybWFsIG5vcm93ZGVwZW5kZW5jaWVzIG5vc2NoZW1hY2hlY2sgbm9zd2l0Y2ggbm90IG5vdGhpbmcgbm90aWNlIG5vdHJpbSBub3ZhbGlkYXRlIG5vdyBub3dhaXQgbnRoX3ZhbHVlIG51bGxpZiBudWxscyBudW0gbnVtYiBudW1iZSBudmFyY2hhciBudmFyY2hhcjIgb2JqZWN0IG9jaWNvbGwgb2NpZGF0ZSBvY2lkYXRldGltZSBvY2lkdXJhdGlvbiBvY2lpbnRlcnZhbCBvY2lsb2Jsb2NhdG9yIG9jaW51bWJlciBvY2lyZWYgb2NpcmVmY3Vyc29yIG9jaXJvd2lkIG9jaXN0cmluZyBvY2l0eXBlIG9jdCBvY3RldF9sZW5ndGggb2Ygb2ZmIG9mZmxpbmUgb2Zmc2V0IG9pZCBvaWRpbmRleCBvbGQgb24gb25saW5lIG9ubHkgb3BhcXVlIG9wZW4gb3BlcmF0aW9ucyBvcGVyYXRvciBvcHRpbWFsIG9wdGltaXplIG9wdGlvbiBvcHRpb25hbGx5IG9yIG9yYWNsZSBvcmFjbGVfZGF0ZSBvcmFkYXRhIG9yZCBvcmRhdWRpbyBvcmRkaWNvbSBvcmRkb2Mgb3JkZXIgb3JkaW1hZ2Ugb3JkaW5hbGl0eSBvcmR2aWRlbyBvcmdhbml6YXRpb24gb3JsYW55IG9ybHZhcnkgb3V0IG91dGVyIG91dGZpbGUgb3V0bGluZSBvdXRwdXQgb3ZlciBvdmVyZmxvdyBvdmVycmlkaW5nIHBhY2thZ2UgcGFkIHBhcmFsbGVsIHBhcmFsbGVsX2VuYWJsZSBwYXJhbWV0ZXJzIHBhcmVudCBwYXJzZSBwYXJ0aWFsIHBhcnRpdGlvbiBwYXJ0aXRpb25zIHBhc2NhbCBwYXNzaW5nIHBhc3N3b3JkIHBhc3N3b3JkX2dyYWNlX3RpbWUgcGFzc3dvcmRfbG9ja190aW1lIHBhc3N3b3JkX3JldXNlX21heCBwYXNzd29yZF9yZXVzZV90aW1lIHBhc3N3b3JkX3ZlcmlmeV9mdW5jdGlvbiBwYXRjaCBwYXRoIHBhdGluZGV4IHBjdGluY3JlYXNlIHBjdHRocmVzaG9sZCBwY3R1c2VkIHBjdHZlcnNpb24gcGVyY2VudCBwZXJjZW50X3JhbmsgcGVyY2VudGlsZV9jb250IHBlcmNlbnRpbGVfZGlzYyBwZXJmb3JtYW5jZSBwZXJpb2QgcGVyaW9kX2FkZCBwZXJpb2RfZGlmZiBwZXJtYW5lbnQgcGh5c2ljYWwgcGkgcGlwZSBwaXBlbGluZWQgcGl2b3QgcGx1Z2dhYmxlIHBsdWdpbiBwb2xpY3kgcG9zaXRpb24gcG9zdF90cmFuc2FjdGlvbiBwb3cgcG93ZXIgcHJhZ21hIHByZWJ1aWx0IHByZWNlZGVzIHByZWNlZGluZyBwcmVjaXNpb24gcHJlZGljdGlvbiBwcmVkaWN0aW9uX2Nvc3QgcHJlZGljdGlvbl9kZXRhaWxzIHByZWRpY3Rpb25fcHJvYmFiaWxpdHkgcHJlZGljdGlvbl9zZXQgcHJlcGFyZSBwcmVzZW50IHByZXNlcnZlIHByaW9yIHByaW9yaXR5IHByaXZhdGUgcHJpdmF0ZV9zZ2EgcHJpdmlsZWdlcyBwcm9jZWR1cmFsIHByb2NlZHVyZSBwcm9jZWR1cmVfYW5hbHl6ZSBwcm9jZXNzbGlzdCBwcm9maWxlcyBwcm9qZWN0IHByb21wdCBwcm90ZWN0aW9uIHB1YmxpYyBwdWJsaXNoaW5nc2VydmVybmFtZSBwdXJnZSBxdWFydGVyIHF1ZXJ5IHF1aWNrIHF1aWVzY2UgcXVvdGEgcXVvdGVuYW1lIHJhZGlhbnMgcmFpc2UgcmFuZCByYW5nZSByYW5rIHJhdyByZWFkIHJlYWRzIHJlYWRzaXplIHJlYnVpbGQgcmVjb3JkIHJlY29yZHMgcmVjb3ZlciByZWNvdmVyeSByZWN1cnNpdmUgcmVjeWNsZSByZWRvIHJlZHVjZWQgcmVmIHJlZmVyZW5jZSByZWZlcmVuY2VkIHJlZmVyZW5jZXMgcmVmZXJlbmNpbmcgcmVmcmVzaCByZWdleHBfbGlrZSByZWdpc3RlciByZWdyX2F2Z3ggcmVncl9hdmd5IHJlZ3JfY291bnQgcmVncl9pbnRlcmNlcHQgcmVncl9yMiByZWdyX3Nsb3BlIHJlZ3Jfc3h4IHJlZ3Jfc3h5IHJlamVjdCByZWtleSByZWxhdGlvbmFsIHJlbGF0aXZlIHJlbGF5bG9nIHJlbGVhc2UgcmVsZWFzZV9sb2NrIHJlbGllc19vbiByZWxvY2F0ZSByZWx5IHJlbSByZW1haW5kZXIgcmVuYW1lIHJlcGFpciByZXBlYXQgcmVwbGFjZSByZXBsaWNhdGUgcmVwbGljYXRpb24gcmVxdWlyZWQgcmVzZXQgcmVzZXRsb2dzIHJlc2l6ZSByZXNvdXJjZSByZXNwZWN0IHJlc3RvcmUgcmVzdHJpY3RlZCByZXN1bHQgcmVzdWx0X2NhY2hlIHJlc3VtYWJsZSByZXN1bWUgcmV0ZW50aW9uIHJldHVybiByZXR1cm5pbmcgcmV0dXJucyByZXVzZSByZXZlcnNlIHJldm9rZSByaWdodCBybGlrZSByb2xlIHJvbGVzIHJvbGxiYWNrIHJvbGxpbmcgcm9sbHVwIHJvdW5kIHJvdyByb3dfY291bnQgcm93ZGVwZW5kZW5jaWVzIHJvd2lkIHJvd251bSByb3dzIHJ0cmltIHJ1bGVzIHNhZmUgc2FsdCBzYW1wbGUgc2F2ZSBzYXZlcG9pbnQgc2IxIHNiMiBzYjQgc2NhbiBzY2hlbWEgc2NoZW1hY2hlY2sgc2NuIHNjb3BlIHNjcm9sbCBzZG9fZ2VvcmFzdGVyIHNkb190b3BvX2dlb21ldHJ5IHNlYXJjaCBzZWNfdG9fdGltZSBzZWNvbmQgc2VjdGlvbiBzZWN1cmVmaWxlIHNlY3VyaXR5IHNlZWQgc2VnbWVudCBzZWxlY3Qgc2VsZiBzZXF1ZW5jZSBzZXF1ZW50aWFsIHNlcmlhbGl6YWJsZSBzZXJ2ZXIgc2VydmVyZXJyb3Igc2Vzc2lvbiBzZXNzaW9uX3VzZXIgc2Vzc2lvbnNfcGVyX3VzZXIgc2V0IHNldHMgc2V0dGluZ3Mgc2hhIHNoYTEgc2hhMiBzaGFyZSBzaGFyZWQgc2hhcmVkX3Bvb2wgc2hvcnQgc2hvdyBzaHJpbmsgc2h1dGRvd24gc2lfYXZlcmFnZWNvbG9yIHNpX2NvbG9yaGlzdG9ncmFtIHNpX2ZlYXR1cmVsaXN0IHNpX3Bvc2l0aW9uYWxjb2xvciBzaV9zdGlsbGltYWdlIHNpX3RleHR1cmUgc2libGluZ3Mgc2lkIHNpZ24gc2luIHNpemUgc2l6ZV90IHNpemVzIHNraXAgc2xhdmUgc2xlZXAgc21hbGxkYXRldGltZWZyb21wYXJ0cyBzbWFsbGZpbGUgc25hcHNob3Qgc29tZSBzb25hbWUgc29ydCBzb3VuZGV4IHNvdXJjZSBzcGFjZSBzcGFyc2Ugc3BmaWxlIHNwbGl0IHNxbCBzcWxfYmlnX3Jlc3VsdCBzcWxfYnVmZmVyX3Jlc3VsdCBzcWxfY2FjaGUgc3FsX2NhbGNfZm91bmRfcm93cyBzcWxfc21hbGxfcmVzdWx0IHNxbF92YXJpYW50X3Byb3BlcnR5IHNxbGNvZGUgc3FsZGF0YSBzcWxlcnJvciBzcWxuYW1lIHNxbHN0YXRlIHNxcnQgc3F1YXJlIHN0YW5kYWxvbmUgc3RhbmRieSBzdGFydCBzdGFydGluZyBzdGFydHVwIHN0YXRlbWVudCBzdGF0aWMgc3RhdGlzdGljcyBzdGF0c19iaW5vbWlhbF90ZXN0IHN0YXRzX2Nyb3NzdGFiIHN0YXRzX2tzX3Rlc3Qgc3RhdHNfbW9kZSBzdGF0c19td190ZXN0IHN0YXRzX29uZV93YXlfYW5vdmEgc3RhdHNfdF90ZXN0XyBzdGF0c190X3Rlc3RfaW5kZXAgc3RhdHNfdF90ZXN0X29uZSBzdGF0c190X3Rlc3RfcGFpcmVkIHN0YXRzX3dzcl90ZXN0IHN0YXR1cyBzdGQgc3RkZGV2IHN0ZGRldl9wb3Agc3RkZGV2X3NhbXAgc3RkZXYgc3RvcCBzdG9yYWdlIHN0b3JlIHN0b3JlZCBzdHIgc3RyX3RvX2RhdGUgc3RyYWlnaHRfam9pbiBzdHJjbXAgc3RyaWN0IHN0cmluZyBzdHJ1Y3Qgc3R1ZmYgc3R5bGUgc3ViZGF0ZSBzdWJwYXJ0aXRpb24gc3VicGFydGl0aW9ucyBzdWJzdGl0dXRhYmxlIHN1YnN0ciBzdWJzdHJpbmcgc3VidGltZSBzdWJ0cmluZ19pbmRleCBzdWJ0eXBlIHN1Y2Nlc3Mgc3VtIHN1c3BlbmQgc3dpdGNoIHN3aXRjaG9mZnNldCBzd2l0Y2hvdmVyIHN5bmMgc3luY2hyb25vdXMgc3lub255bSBzeXMgc3lzX3htbGFnZyBzeXNhc20gc3lzYXV4IHN5c2RhdGUgc3lzZGF0ZXRpbWVvZmZzZXQgc3lzZGJhIHN5c29wZXIgc3lzdGVtIHN5c3RlbV91c2VyIHN5c3V0Y2RhdGV0aW1lIHRhYmxlIHRhYmxlcyB0YWJsZXNwYWNlIHRhbiB0ZG8gdGVtcGxhdGUgdGVtcG9yYXJ5IHRlcm1pbmF0ZWQgdGVydGlhcnlfd2VpZ2h0cyB0ZXN0IHRoYW4gdGhlbiB0aHJlYWQgdGhyb3VnaCB0aWVyIHRpZXMgdGltZSB0aW1lX2Zvcm1hdCB0aW1lX3pvbmUgdGltZWRpZmYgdGltZWZyb21wYXJ0cyB0aW1lb3V0IHRpbWVzdGFtcCB0aW1lc3RhbXBhZGQgdGltZXN0YW1wZGlmZiB0aW1lem9uZV9hYmJyIHRpbWV6b25lX21pbnV0ZSB0aW1lem9uZV9yZWdpb24gdG8gdG9fYmFzZTY0IHRvX2RhdGUgdG9fZGF5cyB0b19zZWNvbmRzIHRvZGF0ZXRpbWVvZmZzZXQgdHJhY2UgdHJhY2tpbmcgdHJhbnNhY3Rpb24gdHJhbnNhY3Rpb25hbCB0cmFuc2xhdGUgdHJhbnNsYXRpb24gdHJlYXQgdHJpZ2dlciB0cmlnZ2VyX25lc3RsZXZlbCB0cmlnZ2VycyB0cmltIHRydW5jYXRlIHRyeV9jYXN0IHRyeV9jb252ZXJ0IHRyeV9wYXJzZSB0eXBlIHViMSB1YjIgdWI0IHVjYXNlIHVuYXJjaGl2ZWQgdW5ib3VuZGVkIHVuY29tcHJlc3MgdW5kZXIgdW5kbyB1bmhleCB1bmljb2RlIHVuaWZvcm0gdW5pbnN0YWxsIHVuaW9uIHVuaXF1ZSB1bml4X3RpbWVzdGFtcCB1bmtub3duIHVubGltaXRlZCB1bmxvY2sgdW5waXZvdCB1bnJlY292ZXJhYmxlIHVuc2FmZSB1bnNpZ25lZCB1bnRpbCB1bnRydXN0ZWQgdW51c2FibGUgdW51c2VkIHVwZGF0ZSB1cGRhdGVkIHVwZ3JhZGUgdXBwZWQgdXBwZXIgdXBzZXJ0IHVybCB1cm93aWQgdXNhYmxlIHVzYWdlIHVzZSB1c2Vfc3RvcmVkX291dGxpbmVzIHVzZXIgdXNlcl9kYXRhIHVzZXJfcmVzb3VyY2VzIHVzZXJzIHVzaW5nIHV0Y19kYXRlIHV0Y190aW1lc3RhbXAgdXVpZCB1dWlkX3Nob3J0IHZhbGlkYXRlIHZhbGlkYXRlX3Bhc3N3b3JkX3N0cmVuZ3RoIHZhbGlkYXRpb24gdmFsaXN0IHZhbHVlIHZhbHVlcyB2YXIgdmFyX3NhbXAgdmFyY2hhcmMgdmFyaSB2YXJpYSB2YXJpYWIgdmFyaWFibCB2YXJpYWJsZSB2YXJpYWJsZXMgdmFyaWFuY2UgdmFycCB2YXJyYXcgdmFycmF3YyB2YXJyYXkgdmVyaWZ5IHZlcnNpb24gdmVyc2lvbnMgdmlldyB2aXJ0dWFsIHZpc2libGUgdm9pZCB3YWl0IHdhbGxldCB3YXJuaW5nIHdhcm5pbmdzIHdlZWsgd2Vla2RheSB3ZWVrb2Z5ZWFyIHdlbGxmb3JtZWQgd2hlbiB3aGVuZSB3aGVuZXYgd2hlbmV2ZSB3aGVuZXZlciB3aGVyZSB3aGlsZSB3aGl0ZXNwYWNlIHdpdGggd2l0aGluIHdpdGhvdXQgd29yayB3cmFwcGVkIHhkYiB4bWwgeG1sYWdnIHhtbGF0dHJpYnV0ZXMgeG1sY2FzdCB4bWxjb2xhdHR2YWwgeG1sZWxlbWVudCB4bWxleGlzdHMgeG1sZm9yZXN0IHhtbGluZGV4IHhtbG5hbWVzcGFjZXMgeG1scGkgeG1scXVlcnkgeG1scm9vdCB4bWxzY2hlbWEgeG1sc2VyaWFsaXplIHhtbHRhYmxlIHhtbHR5cGUgeG9yIHllYXIgeWVhcl90b19tb250aCB5ZWFycyB5ZWFyd2VlayIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSBudWxsIixidWlsdF9pbjoiYXJyYXkgYmlnaW50IGJpbmFyeSBiaXQgYmxvYiBib29sZWFuIGNoYXIgY2hhcmFjdGVyIGRhdGUgZGVjIGRlY2ltYWwgZmxvYXQgaW50IGludDggaW50ZWdlciBpbnRlcnZhbCBudW1iZXIgbnVtZXJpYyByZWFsIHJlY29yZCBzZXJpYWwgc2VyaWFsOCBzbWFsbGludCB0ZXh0IHZhcmNoYXIgdmFyeWluZyB2b2lkIn0sYzpbe2NOOiJzdHJpbmciLGI6IiciLGU6IiciLGM6W2UuQkUse2I6IicnIn1dfSx7Y046InN0cmluZyIsYjonIicsZTonIicsYzpbZS5CRSx7YjonIiInfV19LHtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFXX0sZS5DTk0sZS5DQkNNLHRdfSxlLkNCQ00sdF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJyIixmdW5jdGlvbihlKXt2YXIgcj0iKFthLXpBLVpdfFxcLlthLXpBLVouXSlbYS16QS1aMC05Ll9dKiI7cmV0dXJue2M6W2UuSENNLHtiOnIsbDpyLGs6e2tleXdvcmQ6ImZ1bmN0aW9uIGlmIGluIGJyZWFrIG5leHQgcmVwZWF0IGVsc2UgZm9yIHJldHVybiBzd2l0Y2ggd2hpbGUgdHJ5IHRyeUNhdGNoIHN0b3Agd2FybmluZyByZXF1aXJlIGxpYnJhcnkgYXR0YWNoIGRldGFjaCBzb3VyY2Ugc2V0TWV0aG9kIHNldEdlbmVyaWMgc2V0R3JvdXBHZW5lcmljIHNldENsYXNzIC4uLiIsbGl0ZXJhbDoiTlVMTCBOQSBUUlVFIEZBTFNFIFQgRiBJbmYgTmFOIE5BX2ludGVnZXJffDEwIE5BX3JlYWxffDEwIE5BX2NoYXJhY3Rlcl98MTAgTkFfY29tcGxleF98MTAifSxyOjB9LHtjTjoibnVtYmVyIixiOiIwW3hYXVswLTlhLWZBLUZdK1tMaV0/XFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86W2VFXVsrXFwtXT9cXGQqKT9MXFxiIixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrXFwuKD8hXFxkKSg/OmlcXGIpPyIscjowfSx7Y046Im51bWJlciIsYjoiXFxkKyg/OlxcLlxcZCopPyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcLlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP2k/XFxiIixyOjB9LHtiOiJgIixlOiJgIixyOjB9LHtjTjoic3RyaW5nIixjOltlLkJFXSx2Olt7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJwZXJsIixmdW5jdGlvbihlKXt2YXIgdD0iZ2V0cHdlbnQgZ2V0c2VydmVudCBxdW90ZW1ldGEgbXNncmN2IHNjYWxhciBraWxsIGRibWNsb3NlIHVuZGVmIGxjIG1hIHN5c3dyaXRlIHRyIHNlbmQgdW1hc2sgc3lzb3BlbiBzaG13cml0ZSB2ZWMgcXggdXRpbWUgbG9jYWwgb2N0IHNlbWN0bCBsb2NhbHRpbWUgcmVhZHBpcGUgZG8gcmV0dXJuIGZvcm1hdCByZWFkIHNwcmludGYgZGJtb3BlbiBwb3AgZ2V0cGdycCBub3QgZ2V0cHduYW0gcmV3aW5kZGlyIHFxZmlsZW5vIHF3IGVuZHByb3RvZW50IHdhaXQgc2V0aG9zdGVudCBibGVzcyBzfDAgb3BlbmRpciBjb250aW51ZSBlYWNoIHNsZWVwIGVuZGdyZW50IHNodXRkb3duIGR1bXAgY2hvbXAgY29ubmVjdCBnZXRzb2NrbmFtZSBkaWUgc29ja2V0cGFpciBjbG9zZSBmbG9jayBleGlzdHMgaW5kZXggc2htZ2V0c3ViIGZvciBlbmRwd2VudCByZWRvIGxzdGF0IG1zZ2N0bCBzZXRwZ3JwIGFicyBleGl0IHNlbGVjdCBwcmludCByZWYgZ2V0aG9zdGJ5YWRkciB1bnNoaWZ0IGZjbnRsIHN5c2NhbGwgZ290byBnZXRuZXRieWFkZHIgam9pbiBnbXRpbWUgc3ltbGluayBzZW1nZXQgc3BsaWNlIHh8MCBnZXRwZWVybmFtZSByZWN2IGxvZyBzZXRzb2Nrb3B0IGNvcyBsYXN0IHJldmVyc2UgZ2V0aG9zdGJ5bmFtZSBnZXRncm5hbSBzdHVkeSBmb3JtbGluZSBlbmRob3N0ZW50IHRpbWVzIGNob3AgbGVuZ3RoIGdldGhvc3RlbnQgZ2V0bmV0ZW50IHBhY2sgZ2V0cHJvdG9lbnQgZ2V0c2VydmJ5bmFtZSByYW5kIG1rZGlyIHBvcyBjaG1vZCB5fDAgc3Vic3RyIGVuZG5ldGVudCBwcmludGYgbmV4dCBvcGVuIG1zZ3NuZCByZWFkZGlyIHVzZSB1bmxpbmsgZ2V0c29ja29wdCBnZXRwcmlvcml0eSByaW5kZXggd2FudGFycmF5IGhleCBzeXN0ZW0gZ2V0c2VydmJ5cG9ydCBlbmRzZXJ2ZW50IGludCBjaHIgdW50aWUgcm1kaXIgcHJvdG90eXBlIHRlbGwgbGlzdGVuIGZvcmsgc2htcmVhZCB1Y2ZpcnN0IHNldHByb3RvZW50IGVsc2Ugc3lzc2VlayBsaW5rIGdldGdyZ2lkIHNobWN0bCB3YWl0cGlkIHVucGFjayBnZXRuZXRieW5hbWUgcmVzZXQgY2hkaXIgZ3JlcCBzcGxpdCByZXF1aXJlIGNhbGxlciBsY2ZpcnN0IHVudGlsIHdhcm4gd2hpbGUgdmFsdWVzIHNoaWZ0IHRlbGxkaXIgZ2V0cHd1aWQgbXkgZ2V0cHJvdG9ieW51bWJlciBkZWxldGUgYW5kIHNvcnQgdWMgZGVmaW5lZCBzcmFuZCBhY2NlcHQgcGFja2FnZSBzZWVrZGlyIGdldHByb3RvYnluYW1lIHNlbW9wIG91ciByZW5hbWUgc2VlayBpZiBxfDAgY2hyb290IHN5c3JlYWQgc2V0cHdlbnQgbm8gY3J5cHQgZ2V0YyBjaG93biBzcXJ0IHdyaXRlIHNldG5ldGVudCBzZXRwcmlvcml0eSBmb3JlYWNoIHRpZSBzaW4gbXNnZ2V0IG1hcCBzdGF0IGdldGxvZ2luIHVubGVzcyBlbHNpZiB0cnVuY2F0ZSBleGVjIGtleXMgZ2xvYiB0aWVkIGNsb3NlZGlyaW9jdGwgc29ja2V0IHJlYWRsaW5rIGV2YWwgeG9yIHJlYWRsaW5lIGJpbm1vZGUgc2V0c2VydmVudCBlb2Ygb3JkIGJpbmQgYWxhcm0gcGlwZSBhdGFuMiBnZXRncmVudCBleHAgdGltZSBwdXNoIHNldGdyZW50IGd0IGx0IG9yIG5lIG18MCBicmVhayBnaXZlbiBzYXkgc3RhdGUgd2hlbiIscj17Y046InN1YnN0IixiOiJbJEBdXFx7IixlOiJcXH0iLGs6dH0scz17YjoiLT57IixlOiJ9In0sbj17djpbe2I6L1wkXGQvfSx7YjovW1wkJUBdKFxeXHdcYnwjXHcrKDo6XHcrKSp8e1x3K318XHcrKDo6XHcqKSopL30se2I6L1tcJCVAXVteXHNcd3tdLyxyOjB9XX0saT1bZS5CRSxyLG5dLG89W24sZS5IQ00sZS5DKCJeXFw9XFx3IiwiXFw9Y3V0Iix7ZVc6ITB9KSxzLHtjTjoic3RyaW5nIixjOmksdjpbe2I6InFbcXd4cl0/XFxzKlxcKCIsZToiXFwpIixyOjV9LHtiOiJxW3F3eHJdP1xccypcXFsiLGU6IlxcXSIscjo1fSx7YjoicVtxd3hyXT9cXHMqXFx7IixlOiJcXH0iLHI6NX0se2I6InFbcXd4cl0/XFxzKlxcfCIsZToiXFx8IixyOjV9LHtiOiJxW3F3eHJdP1xccypcXDwiLGU6IlxcPiIscjo1fSx7YjoicXdcXHMrcSIsZToicSIscjo1fSx7YjoiJyIsZToiJyIsYzpbZS5CRV19LHtiOiciJyxlOiciJ30se2I6ImAiLGU6ImAiLGM6W2UuQkVdfSx7Yjoie1xcdyt9IixjOltdLHI6MH0se2I6Ii0/XFx3K1xccypcXD1cXD4iLGM6W10scjowfV19LHtjTjoibnVtYmVyIixiOiIoXFxiMFswLTdfXSspfChcXGIweFswLTlhLWZBLUZfXSspfChcXGJbMS05XVswLTlfXSooXFwuWzAtOV9dKyk/KXxbMF9dXFxiIixyOjB9LHtiOiIoXFwvXFwvfCIrZS5SU1IrInxcXGIoc3BsaXR8cmV0dXJufHByaW50fHJldmVyc2V8Z3JlcClcXGIpXFxzKiIsazoic3BsaXQgcmV0dXJuIHByaW50IHJldmVyc2UgZ3JlcCIscjowLGM6W2UuSENNLHtjTjoicmVnZXhwIixiOiIoc3x0cnx5KS8oXFxcXC58W14vXSkqLyhcXFxcLnxbXi9dKSovW2Etel0qIixyOjEwfSx7Y046InJlZ2V4cCIsYjoiKG18cXIpPy8iLGU6Ii9bYS16XSoiLGM6W2UuQkVdLHI6MH1dfSx7Y046ImZ1bmN0aW9uIixiSzoic3ViIixlOiIoXFxzKlxcKC4qP1xcKSk/Wzt7XSIsZUU6ITAscjo1LGM6W2UuVE1dfSx7YjoiLVxcd1xcYiIscjowfSx7YjoiXl9fREFUQV9fJCIsZToiXl9fRU5EX18kIixzTDoibW9qb2xpY2lvdXMiLGM6W3tiOiJeQEAuKiIsZToiJCIsY046ImNvbW1lbnQifV19XTtyZXR1cm4gci5jPW8scy5jPW8se2FsaWFzZXM6WyJwbCIsInBtIl0sbDovW1x3XC5dKy8sazp0LGM6b319KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImluaSIsZnVuY3Rpb24oZSl7dmFyIGI9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOiInJyciLGU6IicnJyIscjoxMH0se2I6JyIiIicsZTonIiIiJyxyOjEwfSx7YjonIicsZTonIid9LHtiOiInIixlOiInIn1dfTtyZXR1cm57YWxpYXNlczpbInRvbWwiXSxjSTohMCxpOi9cUy8sYzpbZS5DKCI7IiwiJCIpLGUuSENNLHtjTjoic2VjdGlvbiIsYjovXlxzKlxbKy8sZTovXF0rL30se2I6L15bYS16MC05XFtcXV8tXStccyo9XHMqLyxlOiIkIixyQjohMCxjOlt7Y046ImF0dHIiLGI6L1thLXowLTlcW1xdXy1dKy99LHtiOi89LyxlVzohMCxyOjAsYzpbe2NOOiJsaXRlcmFsIixiOi9cYm9ufG9mZnx0cnVlfGZhbHNlfHllc3xub1xiL30se2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQiXVtcd1xkX10qL30se2I6L1wkXHsoLio/KX0vfV19LGIse2NOOiJudW1iZXIiLGI6LyhbXCtcLV0rKT9bXGRdK19bXGRfXSsvfSxlLk5NXX1dfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJkaWZmIixmdW5jdGlvbihlKXtyZXR1cm57YWxpYXNlczpbInBhdGNoIl0sYzpbe2NOOiJtZXRhIixyOjEwLHY6W3tiOi9eQEAgK1wtXGQrLFxkKyArXCtcZCssXGQrICtAQCQvfSx7YjovXlwqXCpcKiArXGQrLFxkKyArXCpcKlwqXCokL30se2I6L15cLVwtXC0gK1xkKyxcZCsgK1wtXC1cLVwtJC99XX0se2NOOiJjb21tZW50Iix2Olt7YjovSW5kZXg6IC8sZTovJC99LHtiOi89ezMsfS8sZTovJC99LHtiOi9eXC17M30vLGU6LyQvfSx7YjovXlwqezN9IC8sZTovJC99LHtiOi9eXCt7M30vLGU6LyQvfSx7YjovXCp7NX0vLGU6L1wqezV9JC99XX0se2NOOiJhZGRpdGlvbiIsYjoiXlxcKyIsZToiJCJ9LHtjTjoiZGVsZXRpb24iLGI6Il5cXC0iLGU6IiQifSx7Y046ImFkZGl0aW9uIixiOiJeXFwhIixlOiIkIn1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiZ28iLGZ1bmN0aW9uKGUpe3ZhciB0PXtrZXl3b3JkOiJicmVhayBkZWZhdWx0IGZ1bmMgaW50ZXJmYWNlIHNlbGVjdCBjYXNlIG1hcCBzdHJ1Y3QgY2hhbiBlbHNlIGdvdG8gcGFja2FnZSBzd2l0Y2ggY29uc3QgZmFsbHRocm91Z2ggaWYgcmFuZ2UgdHlwZSBjb250aW51ZSBmb3IgaW1wb3J0IHJldHVybiB2YXIgZ28gZGVmZXIgYm9vbCBieXRlIGNvbXBsZXg2NCBjb21wbGV4MTI4IGZsb2F0MzIgZmxvYXQ2NCBpbnQ4IGludDE2IGludDMyIGludDY0IHN0cmluZyB1aW50OCB1aW50MTYgdWludDMyIHVpbnQ2NCBpbnQgdWludCB1aW50cHRyIHJ1bmUiLGxpdGVyYWw6InRydWUgZmFsc2UgaW90YSBuaWwiLGJ1aWx0X2luOiJhcHBlbmQgY2FwIGNsb3NlIGNvbXBsZXggY29weSBpbWFnIGxlbiBtYWtlIG5ldyBwYW5pYyBwcmludCBwcmludGxuIHJlYWwgcmVjb3ZlciBkZWxldGUifTtyZXR1cm57YWxpYXNlczpbImdvbGFuZyJdLGs6dCxpOiI8LyIsYzpbZS5DTENNLGUuQ0JDTSx7Y046InN0cmluZyIsdjpbZS5RU00se2I6IiciLGU6IlteXFxcXF0nIn0se2I6ImAiLGU6ImAifV19LHtjTjoibnVtYmVyIix2Olt7YjplLkNOUisiW2RmbHNpXSIscjoxfSxlLkNOTV19LHtiOi86PS99LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jIixlOi9ccypcey8sZUU6ITAsYzpbZS5UTSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnQsaTovWyInXS99XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiYmFzaCIsZnVuY3Rpb24oZSl7dmFyIHQ9e2NOOiJ2YXJpYWJsZSIsdjpbe2I6L1wkW1x3XGQjQF1bXHdcZF9dKi99LHtiOi9cJFx7KC4qPyl9L31dfSxzPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLHQse2NOOiJ2YXJpYWJsZSIsYjovXCRcKC8sZTovXCkvLGM6W2UuQkVdfV19LGE9e2NOOiJzdHJpbmciLGI6LycvLGU6LycvfTtyZXR1cm57YWxpYXNlczpbInNoIiwienNoIl0sbDovXGItP1thLXpcLl9dK1xiLyxrOntrZXl3b3JkOiJpZiB0aGVuIGVsc2UgZWxpZiBmaSBmb3Igd2hpbGUgaW4gZG8gZG9uZSBjYXNlIGVzYWMgZnVuY3Rpb24iLGxpdGVyYWw6InRydWUgZmFsc2UiLGJ1aWx0X2luOiJicmVhayBjZCBjb250aW51ZSBldmFsIGV4ZWMgZXhpdCBleHBvcnQgZ2V0b3B0cyBoYXNoIHB3ZCByZWFkb25seSByZXR1cm4gc2hpZnQgdGVzdCB0aW1lcyB0cmFwIHVtYXNrIHVuc2V0IGFsaWFzIGJpbmQgYnVpbHRpbiBjYWxsZXIgY29tbWFuZCBkZWNsYXJlIGVjaG8gZW5hYmxlIGhlbHAgbGV0IGxvY2FsIGxvZ291dCBtYXBmaWxlIHByaW50ZiByZWFkIHJlYWRhcnJheSBzb3VyY2UgdHlwZSB0eXBlc2V0IHVsaW1pdCB1bmFsaWFzIHNldCBzaG9wdCBhdXRvbG9hZCBiZyBiaW5ka2V5IGJ5ZSBjYXAgY2hkaXIgY2xvbmUgY29tcGFyZ3VtZW50cyBjb21wY2FsbCBjb21wY3RsIGNvbXBkZXNjcmliZSBjb21wZmlsZXMgY29tcGdyb3VwcyBjb21wcXVvdGUgY29tcHRhZ3MgY29tcHRyeSBjb21wdmFsdWVzIGRpcnMgZGlzYWJsZSBkaXNvd24gZWNob3RjIGVjaG90aSBlbXVsYXRlIGZjIGZnIGZsb2F0IGZ1bmN0aW9ucyBnZXRjYXAgZ2V0bG4gaGlzdG9yeSBpbnRlZ2VyIGpvYnMga2lsbCBsaW1pdCBsb2cgbm9nbG9iIHBvcGQgcHJpbnQgcHVzaGQgcHVzaGxuIHJlaGFzaCBzY2hlZCBzZXRjYXAgc2V0b3B0IHN0YXQgc3VzcGVuZCB0dHljdGwgdW5mdW5jdGlvbiB1bmhhc2ggdW5saW1pdCB1bnNldG9wdCB2YXJlZCB3YWl0IHdoZW5jZSB3aGVyZSB3aGljaCB6Y29tcGlsZSB6Zm9ybWF0IHpmdHAgemxlIHptb2Rsb2FkIHpwYXJzZW9wdHMgenByb2YgenB0eSB6cmVnZXhwYXJzZSB6c29ja2V0IHpzdHlsZSB6dGNwIixfOiItbmUgLWVxIC1sdCAtZ3QgLWYgLWQgLWUgLXMgLWwgLWEifSxjOlt7Y046Im1ldGEiLGI6L14jIVteXG5dK3NoXHMqJC8scjoxMH0se2NOOiJmdW5jdGlvbiIsYjovXHdbXHdcZF9dKlxzKlwoXHMqXClccypcey8sckI6ITAsYzpbZS5pbmhlcml0KGUuVE0se2I6L1x3W1x3XGRfXSovfSldLHI6MH0sZS5IQ00scyxhLHRdfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicHl0aG9uIixmdW5jdGlvbihlKXt2YXIgcj17a2V5d29yZDoiYW5kIGVsaWYgaXMgZ2xvYmFsIGFzIGluIGlmIGZyb20gcmFpc2UgZm9yIGV4Y2VwdCBmaW5hbGx5IHByaW50IGltcG9ydCBwYXNzIHJldHVybiBleGVjIGVsc2UgYnJlYWsgbm90IHdpdGggY2xhc3MgYXNzZXJ0IHlpZWxkIHRyeSB3aGlsZSBjb250aW51ZSBkZWwgb3IgZGVmIGxhbWJkYSBhc3luYyBhd2FpdCBub25sb2NhbHwxMCBOb25lIFRydWUgRmFsc2UiLGJ1aWx0X2luOiJFbGxpcHNpcyBOb3RJbXBsZW1lbnRlZCJ9LGI9e2NOOiJtZXRhIixiOi9eKD4+PnxcLlwuXC4pIC99LGM9e2NOOiJzdWJzdCIsYjovXHsvLGU6L1x9LyxrOnIsaTovIy99LGE9e2NOOiJzdHJpbmciLGM6W2UuQkVdLHY6W3tiOi8odXxiKT9yPycnJy8sZTovJycnLyxjOltiXSxyOjEwfSx7YjovKHV8Yik/cj8iIiIvLGU6LyIiIi8sYzpbYl0scjoxMH0se2I6LyhmcnxyZnxmKScnJy8sZTovJycnLyxjOltiLGNdfSx7YjovKGZyfHJmfGYpIiIiLyxlOi8iIiIvLGM6W2IsY119LHtiOi8odXxyfHVyKScvLGU6LycvLHI6MTB9LHtiOi8odXxyfHVyKSIvLGU6LyIvLHI6MTB9LHtiOi8oYnxiciknLyxlOi8nL30se2I6LyhifGJyKSIvLGU6LyIvfSx7YjovKGZyfHJmfGYpJy8sZTovJy8sYzpbY119LHtiOi8oZnJ8cmZ8ZikiLyxlOi8iLyxjOltjXX0sZS5BU00sZS5RU01dfSxzPXtjTjoibnVtYmVyIixyOjAsdjpbe2I6ZS5CTlIrIltsTGpKXT8ifSx7YjoiXFxiKDBvWzAtN10rKVtsTGpKXT8ifSx7YjplLkNOUisiW2xMakpdPyJ9XX0saT17Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxjOlsic2VsZiIsYixzLGFdfTtyZXR1cm4gYy5jPVthLHMsYl0se2FsaWFzZXM6WyJweSIsImd5cCJdLGs6cixpOi8oPFwvfC0+fFw/KXw9Pi8sYzpbYixzLGEsZS5IQ00se3Y6W3tjTjoiZnVuY3Rpb24iLGJLOiJkZWYifSx7Y046ImNsYXNzIixiSzoiY2xhc3MifV0sZTovOi8saTovWyR7PTtcbixdLyxjOltlLlVUTSxpLHtiOi8tPi8sZVc6ITAsazoiTm9uZSJ9XX0se2NOOiJtZXRhIixiOi9eW1x0IF0qQC8sZTovJC99LHtiOi9cYihwcmludHxleGVjKVwoL31dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianVsaWEiLGZ1bmN0aW9uKGUpe3ZhciByPXtrZXl3b3JkOiJpbiBpc2Egd2hlcmUgYmFyZW1vZHVsZSBiZWdpbiBicmVhayBjYXRjaCBjY2FsbCBjb25zdCBjb250aW51ZSBkbyBlbHNlIGVsc2VpZiBlbmQgZXhwb3J0IGZhbHNlIGZpbmFsbHkgZm9yIGZ1bmN0aW9uIGdsb2JhbCBpZiBpbXBvcnQgaW1wb3J0YWxsIGxldCBsb2NhbCBtYWNybyBtb2R1bGUgcXVvdGUgcmV0dXJuIHRydWUgdHJ5IHVzaW5nIHdoaWxlIHR5cGUgaW1tdXRhYmxlIGFic3RyYWN0IGJpdHN0eXBlIHR5cGVhbGlhcyAiLGxpdGVyYWw6InRydWUgZmFsc2UgQVJHUyBDX05VTEwgRGV2TnVsbCBFTkRJQU5fQk9NIEVOViBJIEluZiBJbmYxNiBJbmYzMiBJbmY2NCBJbnNlcnRpb25Tb3J0IEpVTElBX0hPTUUgTE9BRF9QQVRIIE1lcmdlU29ydCBOYU4gTmFOMTYgTmFOMzIgTmFONjQgUFJPR1JBTV9GSUxFIFF1aWNrU29ydCBSb3VuZERvd24gUm91bmRGcm9tWmVybyBSb3VuZE5lYXJlc3QgUm91bmROZWFyZXN0VGllc0F3YXkgUm91bmROZWFyZXN0VGllc1VwIFJvdW5kVG9aZXJvIFJvdW5kVXAgU1RERVJSIFNURElOIFNURE9VVCBWRVJTSU9OIGNhdGFsYW4gZXwwIGV1fDAgZXVsZXJnYW1tYSBnb2xkZW4gaW0gbm90aGluZyBwaSDOsyDPgCDPhiAiLGJ1aWx0X2luOiJBTlkgQWJzdHJhY3RBcnJheSBBYnN0cmFjdENoYW5uZWwgQWJzdHJhY3RGbG9hdCBBYnN0cmFjdE1hdHJpeCBBYnN0cmFjdFJORyBBYnN0cmFjdFNlcmlhbGl6ZXIgQWJzdHJhY3RTZXQgQWJzdHJhY3RTcGFyc2VBcnJheSBBYnN0cmFjdFNwYXJzZU1hdHJpeCBBYnN0cmFjdFNwYXJzZVZlY3RvciBBYnN0cmFjdFN0cmluZyBBYnN0cmFjdFVuaXRSYW5nZSBBYnN0cmFjdFZlY09yTWF0IEFic3RyYWN0VmVjdG9yIEFueSBBcmd1bWVudEVycm9yIEFycmF5IEFzc2VydGlvbkVycm9yIEFzc29jaWF0aXZlIEJhc2U2NERlY29kZVBpcGUgQmFzZTY0RW5jb2RlUGlwZSBCaWRpYWdvbmFsIEJpZ0Zsb2F0IEJpZ0ludCBCaXRBcnJheSBCaXRNYXRyaXggQml0VmVjdG9yIEJvb2wgQm91bmRzRXJyb3IgQnVmZmVyU3RyZWFtIENhY2hpbmdQb29sIENhcHR1cmVkRXhjZXB0aW9uIENhcnRlc2lhbkluZGV4IENhcnRlc2lhblJhbmdlIENjaGFyIENkb3VibGUgQ2Zsb2F0IENoYW5uZWwgQ2hhciBDaW50IENpbnRtYXhfdCBDbG9uZyBDbG9uZ2xvbmcgQ2x1c3Rlck1hbmFnZXIgQ21kIENvZGVJbmZvIENvbG9uIENvbXBsZXggQ29tcGxleDEyOCBDb21wbGV4MzIgQ29tcGxleDY0IENvbXBvc2l0ZUV4Y2VwdGlvbiBDb25kaXRpb24gQ29uakFycmF5IENvbmpNYXRyaXggQ29ualZlY3RvciBDcHRyZGlmZl90IENzaG9ydCBDc2l6ZV90IENzc2l6ZV90IENzdHJpbmcgQ3VjaGFyIEN1aW50IEN1aW50bWF4X3QgQ3Vsb25nIEN1bG9uZ2xvbmcgQ3VzaG9ydCBDd2NoYXJfdCBDd3N0cmluZyBEYXRhVHlwZSBEYXRlIERhdGVGb3JtYXQgRGF0ZVRpbWUgRGVuc2VBcnJheSBEZW5zZU1hdHJpeCBEZW5zZVZlY09yTWF0IERlbnNlVmVjdG9yIERpYWdvbmFsIERpY3QgRGltZW5zaW9uTWlzbWF0Y2ggRGltcyBEaXJlY3RJbmRleFN0cmluZyBEaXNwbGF5IERpdmlkZUVycm9yIERvbWFpbkVycm9yIEVPRkVycm9yIEVhY2hMaW5lIEVudW0gRW51bWVyYXRlIEVycm9yRXhjZXB0aW9uIEV4Y2VwdGlvbiBFeHBvbmVudGlhbEJhY2tPZmYgRXhwciBGYWN0b3JpemF0aW9uIEZpbGVNb25pdG9yIEZsb2F0MTYgRmxvYXQzMiBGbG9hdDY0IEZ1bmN0aW9uIEZ1dHVyZSBHbG9iYWxSZWYgR290b05vZGUgSFRNTCBIZXJtaXRpYW4gSU8gSU9CdWZmZXIgSU9Db250ZXh0IElPU3RyZWFtIElQQWRkciBJUHY0IElQdjYgSW5kZXhDYXJ0ZXNpYW4gSW5kZXhMaW5lYXIgSW5kZXhTdHlsZSBJbmV4YWN0RXJyb3IgSW5pdEVycm9yIEludCBJbnQxMjggSW50MTYgSW50MzIgSW50NjQgSW50OCBJbnRTZXQgSW50ZWdlciBJbnRlcnJ1cHRFeGNlcHRpb24gSW52YWxpZFN0YXRlRXhjZXB0aW9uIElycmF0aW9uYWwgS2V5RXJyb3IgTGFiZWxOb2RlIExpblNwYWNlIExpbmVOdW1iZXJOb2RlIExvYWRFcnJvciBMb3dlclRyaWFuZ3VsYXIgTUlNRSBNYXRyaXggTWVyc2VubmVUd2lzdGVyIE1ldGhvZCBNZXRob2RFcnJvciBNZXRob2RUYWJsZSBNb2R1bGUgTlR1cGxlIE5ld3Zhck5vZGUgTnVsbEV4Y2VwdGlvbiBOdWxsYWJsZSBOdW1iZXIgT2JqZWN0SWREaWN0IE9yZGluYWxSYW5nZSBPdXRPZk1lbW9yeUVycm9yIE92ZXJmbG93RXJyb3IgUGFpciBQYXJzZUVycm9yIFBhcnRpYWxRdWlja1NvcnQgUGVybXV0ZWREaW1zQXJyYXkgUGlwZSBQb2xsaW5nRmlsZVdhdGNoZXIgUHJvY2Vzc0V4aXRlZEV4Y2VwdGlvbiBQdHIgUXVvdGVOb2RlIFJhbmRvbURldmljZSBSYW5nZSBSYW5nZUluZGV4IFJhdGlvbmFsIFJhd0ZEIFJlYWRPbmx5TWVtb3J5RXJyb3IgUmVhbCBSZWVudHJhbnRMb2NrIFJlZiBSZWdleCBSZWdleE1hdGNoIFJlbW90ZUNoYW5uZWwgUmVtb3RlRXhjZXB0aW9uIFJldlN0cmluZyBSb3VuZGluZ01vZGUgUm93VmVjdG9yIFNTQVZhbHVlIFNlZ21lbnRhdGlvbkZhdWx0IFNlcmlhbGl6YXRpb25TdGF0ZSBTZXQgU2hhcmVkQXJyYXkgU2hhcmVkTWF0cml4IFNoYXJlZFZlY3RvciBTaWduZWQgU2ltcGxlVmVjdG9yIFNsb3QgU2xvdE51bWJlciBTcGFyc2VNYXRyaXhDU0MgU3BhcnNlVmVjdG9yIFN0YWNrRnJhbWUgU3RhY2tPdmVyZmxvd0Vycm9yIFN0YWNrVHJhY2UgU3RlcFJhbmdlIFN0ZXBSYW5nZUxlbiBTdHJpZGVkQXJyYXkgU3RyaWRlZE1hdHJpeCBTdHJpZGVkVmVjT3JNYXQgU3RyaWRlZFZlY3RvciBTdHJpbmcgU3ViQXJyYXkgU3ViU3RyaW5nIFN5bVRyaWRpYWdvbmFsIFN5bWJvbCBTeW1tZXRyaWMgU3lzdGVtRXJyb3IgVENQU29ja2V0IFRhc2sgVGV4dCBUZXh0RGlzcGxheSBUaW1lciBUcmlkaWFnb25hbCBUdXBsZSBUeXBlIFR5cGVFcnJvciBUeXBlTWFwRW50cnkgVHlwZU1hcExldmVsIFR5cGVOYW1lIFR5cGVWYXIgVHlwZWRTbG90IFVEUFNvY2tldCBVSW50IFVJbnQxMjggVUludDE2IFVJbnQzMiBVSW50NjQgVUludDggVW5kZWZSZWZFcnJvciBVbmRlZlZhckVycm9yIFVuaWNvZGVFcnJvciBVbmlmb3JtU2NhbGluZyBVbmlvbiBVbmlvbkFsbCBVbml0UmFuZ2UgVW5zaWduZWQgVXBwZXJUcmlhbmd1bGFyIFZhbCBWYXJhcmcgVmVjRWxlbWVudCBWZWNPck1hdCBWZWN0b3IgVmVyc2lvbk51bWJlciBWb2lkIFdlYWtLZXlEaWN0IFdlYWtSZWYgV29ya2VyQ29uZmlnIFdvcmtlclBvb2wgIn0sdD0iW0EtWmEtel9cXHUwMEExLVxcdUZGRkZdW0EtWmEtel8wLTlcXHUwMEExLVxcdUZGRkZdKiIsYT17bDp0LGs6cixpOi88XC8vfSxuPXtjTjoibnVtYmVyIixiOi8oXGIweFtcZF9dKihcLltcZF9dKik/fDB4XC5cZFtcZF9dKilwWy0rXT9cZCt8XGIwW2JveF1bYS1mQS1GMC05XVthLWZBLUYwLTlfXSp8KFxiXGRbXGRfXSooXC5bXGRfXSopP3xcLlxkW1xkX10qKShbZUVmRl1bLStdP1xkKyk/LyxyOjB9LG89e2NOOiJzdHJpbmciLGI6LycoLnxcXFt4WHVVXVthLXpBLVowLTldKyknL30saT17Y046InN1YnN0IixiOi9cJFwoLyxlOi9cKS8sazpyfSxsPXtjTjoidmFyaWFibGUiLGI6IlxcJCIrdH0sYz17Y046InN0cmluZyIsYzpbZS5CRSxpLGxdLHY6W3tiOi9cdyoiIiIvLGU6LyIiIlx3Ki8scjoxMH0se2I6L1x3KiIvLGU6LyJcdyovfV19LHM9e2NOOiJzdHJpbmciLGM6W2UuQkUsaSxsXSxiOiJgIixlOiJgIn0sZD17Y046Im1ldGEiLGI6IkAiK3R9LHU9e2NOOiJjb21tZW50Iix2Olt7YjoiIz0iLGU6Ij0jIixyOjEwfSx7YjoiIyIsZToiJCJ9XX07cmV0dXJuIGEuYz1bbixvLGMscyxkLHUsZS5IQ00se2NOOiJrZXl3b3JkIixiOiJcXGIoKChhYnN0cmFjdHxwcmltaXRpdmUpXFxzKyl0eXBlfChtdXRhYmxlXFxzKyk/c3RydWN0KVxcYiJ9LHtiOi88Oi99XSxpLmM9YS5jLGF9KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImNvZmZlZXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIGM9e2tleXdvcmQ6ImluIGlmIGZvciB3aGlsZSBmaW5hbGx5IG5ldyBkbyByZXR1cm4gZWxzZSBicmVhayBjYXRjaCBpbnN0YW5jZW9mIHRocm93IHRyeSB0aGlzIHN3aXRjaCBjb250aW51ZSB0eXBlb2YgZGVsZXRlIGRlYnVnZ2VyIHN1cGVyIHlpZWxkIGltcG9ydCBleHBvcnQgZnJvbSBhcyBkZWZhdWx0IGF3YWl0IHRoZW4gdW5sZXNzIHVudGlsIGxvb3Agb2YgYnkgd2hlbiBhbmQgb3IgaXMgaXNudCBub3QiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgeWVzIG5vIG9uIG9mZiIsYnVpbHRfaW46Im5wbSByZXF1aXJlIGNvbnNvbGUgcHJpbnQgbW9kdWxlIGdsb2JhbCB3aW5kb3cgZG9jdW1lbnQifSxuPSJbQS1aYS16JF9dWzAtOUEtWmEteiRfXSoiLHI9e2NOOiJzdWJzdCIsYjovI1x7LyxlOi99LyxrOmN9LGk9W2UuQk5NLGUuaW5oZXJpdChlLkNOTSx7c3RhcnRzOntlOiIoXFxzKi8pPyIscjowfX0pLHtjTjoic3RyaW5nIix2Olt7YjovJycnLyxlOi8nJycvLGM6W2UuQkVdfSx7YjovJy8sZTovJy8sYzpbZS5CRV19LHtiOi8iIiIvLGU6LyIiIi8sYzpbZS5CRSxyXX0se2I6LyIvLGU6LyIvLGM6W2UuQkUscl19XX0se2NOOiJyZWdleHAiLHY6W3tiOiIvLy8iLGU6Ii8vLyIsYzpbcixlLkhDTV19LHtiOiIvL1tnaW1dKiIscjowfSx7YjovXC8oPyFbICpdKShcXFwvfC4pKj9cL1tnaW1dKig/PVxXfCQpL31dfSx7YjoiQCIrbn0se3NMOiJqYXZhc2NyaXB0IixlQjohMCxlRTohMCx2Olt7YjoiYGBgIixlOiJgYGAifSx7YjoiYCIsZToiYCJ9XX1dO3IuYz1pO3ZhciBzPWUuaW5oZXJpdChlLlRNLHtiOm59KSx0PSIoXFwoLipcXCkpP1xccypcXEJbLT1dPiIsbz17Y046InBhcmFtcyIsYjoiXFwoW15cXChdIixyQjohMCxjOlt7YjovXCgvLGU6L1wpLyxrOmMsYzpbInNlbGYiXS5jb25jYXQoaSl9XX07cmV0dXJue2FsaWFzZXM6WyJjb2ZmZWUiLCJjc29uIiwiaWNlZCJdLGs6YyxpOi9cL1wqLyxjOmkuY29uY2F0KFtlLkMoIiMjIyIsIiMjIyIpLGUuSENNLHtjTjoiZnVuY3Rpb24iLGI6Il5cXHMqIituKyJcXHMqPVxccyoiK3QsZToiWy09XT4iLHJCOiEwLGM6W3Msb119LHtiOi9bOlwoLD1dXHMqLyxyOjAsYzpbe2NOOiJmdW5jdGlvbiIsYjp0LGU6IlstPV0+IixyQjohMCxjOltvXX1dfSx7Y046ImNsYXNzIixiSzoiY2xhc3MiLGU6IiQiLGk6L1s6PSJcW1xdXS8sYzpbe2JLOiJleHRlbmRzIixlVzohMCxpOi9bOj0iXFtcXV0vLGM6W3NdfSxzXX0se2I6bisiOiIsZToiOiIsckI6ITAsckU6ITAscjowfV0pfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiY3BwIixmdW5jdGlvbih0KXt2YXIgZT17Y046ImtleXdvcmQiLGI6IlxcYlthLXpcXGRfXSpfdFxcYiJ9LHI9e2NOOiJzdHJpbmciLHY6W3tiOicodTg/fFUpP0w/IicsZTonIicsaToiXFxuIixjOlt0LkJFXX0se2I6Jyh1OD98VSk/UiInLGU6JyInLGM6W3QuQkVdfSx7YjoiJ1xcXFw/LiIsZToiJyIsaToiLiJ9XX0scz17Y046Im51bWJlciIsdjpbe2I6IlxcYigwYlswMSddKykifSx7YjoiKC0/KVxcYihbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKSh1fFV8bHxMfHVsfFVMfGZ8RnxifEIpIn0se2I6IigtPykoXFxiMFt4WF1bYS1mQS1GMC05J10rfChcXGJbXFxkJ10rKFxcLltcXGQnXSopP3xcXC5bXFxkJ10rKShbZUVdWy0rXT9bXFxkJ10rKT8pIn1dLHI6MH0saT17Y046Im1ldGEiLGI6LyNccypbYS16XStcYi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6ImlmIGVsc2UgZWxpZiBlbmRpZiBkZWZpbmUgdW5kZWYgd2FybmluZyBlcnJvciBsaW5lIHByYWdtYSBpZmRlZiBpZm5kZWYgaW5jbHVkZSJ9LGM6W3tiOi9cXFxuLyxyOjB9LHQuaW5oZXJpdChyLHtjTjoibWV0YS1zdHJpbmcifSkse2NOOiJtZXRhLXN0cmluZyIsYjovPFteXG4+XSo+LyxlOi8kLyxpOiJcXG4ifSx0LkNMQ00sdC5DQkNNXX0sYT10LklSKyJcXHMqXFwoIixjPXtrZXl3b3JkOiJpbnQgZmxvYXQgd2hpbGUgcHJpdmF0ZSBjaGFyIGNhdGNoIGltcG9ydCBtb2R1bGUgZXhwb3J0IHZpcnR1YWwgb3BlcmF0b3Igc2l6ZW9mIGR5bmFtaWNfY2FzdHwxMCB0eXBlZGVmIGNvbnN0X2Nhc3R8MTAgY29uc3QgZm9yIHN0YXRpY19jYXN0fDEwIHVuaW9uIG5hbWVzcGFjZSB1bnNpZ25lZCBsb25nIHZvbGF0aWxlIHN0YXRpYyBwcm90ZWN0ZWQgYm9vbCB0ZW1wbGF0ZSBtdXRhYmxlIGlmIHB1YmxpYyBmcmllbmQgZG8gZ290byBhdXRvIHZvaWQgZW51bSBlbHNlIGJyZWFrIGV4dGVybiB1c2luZyBhc20gY2FzZSB0eXBlaWQgc2hvcnQgcmVpbnRlcnByZXRfY2FzdHwxMCBkZWZhdWx0IGRvdWJsZSByZWdpc3RlciBleHBsaWNpdCBzaWduZWQgdHlwZW5hbWUgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIGlubGluZSBkZWxldGUgYWxpZ25vZiBjb25zdGV4cHIgZGVjbHR5cGUgbm9leGNlcHQgc3RhdGljX2Fzc2VydCB0aHJlYWRfbG9jYWwgcmVzdHJpY3QgX0Jvb2wgY29tcGxleCBfQ29tcGxleCBfSW1hZ2luYXJ5IGF0b21pY19ib29sIGF0b21pY19jaGFyIGF0b21pY19zY2hhciBhdG9taWNfdWNoYXIgYXRvbWljX3Nob3J0IGF0b21pY191c2hvcnQgYXRvbWljX2ludCBhdG9taWNfdWludCBhdG9taWNfbG9uZyBhdG9taWNfdWxvbmcgYXRvbWljX2xsb25nIGF0b21pY191bGxvbmcgbmV3IHRocm93IHJldHVybiBhbmQgb3Igbm90IixidWlsdF9pbjoic3RkIHN0cmluZyBjaW4gY291dCBjZXJyIGNsb2cgc3RkaW4gc3Rkb3V0IHN0ZGVyciBzdHJpbmdzdHJlYW0gaXN0cmluZ3N0cmVhbSBvc3RyaW5nc3RyZWFtIGF1dG9fcHRyIGRlcXVlIGxpc3QgcXVldWUgc3RhY2sgdmVjdG9yIG1hcCBzZXQgYml0c2V0IG11bHRpc2V0IG11bHRpbWFwIHVub3JkZXJlZF9zZXQgdW5vcmRlcmVkX21hcCB1bm9yZGVyZWRfbXVsdGlzZXQgdW5vcmRlcmVkX211bHRpbWFwIGFycmF5IHNoYXJlZF9wdHIgYWJvcnQgYWJzIGFjb3MgYXNpbiBhdGFuMiBhdGFuIGNhbGxvYyBjZWlsIGNvc2ggY29zIGV4aXQgZXhwIGZhYnMgZmxvb3IgZm1vZCBmcHJpbnRmIGZwdXRzIGZyZWUgZnJleHAgZnNjYW5mIGlzYWxudW0gaXNhbHBoYSBpc2NudHJsIGlzZGlnaXQgaXNncmFwaCBpc2xvd2VyIGlzcHJpbnQgaXNwdW5jdCBpc3NwYWNlIGlzdXBwZXIgaXN4ZGlnaXQgdG9sb3dlciB0b3VwcGVyIGxhYnMgbGRleHAgbG9nMTAgbG9nIG1hbGxvYyByZWFsbG9jIG1lbWNociBtZW1jbXAgbWVtY3B5IG1lbXNldCBtb2RmIHBvdyBwcmludGYgcHV0Y2hhciBwdXRzIHNjYW5mIHNpbmggc2luIHNucHJpbnRmIHNwcmludGYgc3FydCBzc2NhbmYgc3RyY2F0IHN0cmNociBzdHJjbXAgc3RyY3B5IHN0cmNzcG4gc3RybGVuIHN0cm5jYXQgc3RybmNtcCBzdHJuY3B5IHN0cnBicmsgc3RycmNociBzdHJzcG4gc3Ryc3RyIHRhbmggdGFuIHZmcHJpbnRmIHZwcmludGYgdnNwcmludGYgZW5kbCBpbml0aWFsaXplcl9saXN0IHVuaXF1ZV9wdHIiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbHB0ciBOVUxMIn0sbj1bZSx0LkNMQ00sdC5DQkNNLHMscl07cmV0dXJue2FsaWFzZXM6WyJjIiwiY2MiLCJoIiwiYysrIiwiaCsrIiwiaHBwIl0sazpjLGk6IjwvIixjOm4uY29uY2F0KFtpLHtiOiJcXGIoZGVxdWV8bGlzdHxxdWV1ZXxzdGFja3x2ZWN0b3J8bWFwfHNldHxiaXRzZXR8bXVsdGlzZXR8bXVsdGltYXB8dW5vcmRlcmVkX21hcHx1bm9yZGVyZWRfc2V0fHVub3JkZXJlZF9tdWx0aXNldHx1bm9yZGVyZWRfbXVsdGltYXB8YXJyYXkpXFxzKjwiLGU6Ij4iLGs6YyxjOlsic2VsZiIsZV19LHtiOnQuSVIrIjo6IixrOmN9LHt2Olt7YjovPS8sZTovOy99LHtiOi9cKC8sZTovXCkvfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIsZTovOy99XSxrOmMsYzpuLmNvbmNhdChbe2I6L1woLyxlOi9cKS8sazpjLGM6bi5jb25jYXQoWyJzZWxmIl0pLHI6MH1dKSxyOjB9LHtjTjoiZnVuY3Rpb24iLGI6IigiK3QuSVIrIltcXComXFxzXSspKyIrYSxyQjohMCxlOi9bezs9XS8sZUU6ITAsazpjLGk6L1teXHdcc1wqJl0vLGM6W3tiOmEsckI6ITAsYzpbdC5UTV0scjowfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOmMscjowLGM6W3QuQ0xDTSx0LkNCQ00scixzLGVdfSx0LkNMQ00sdC5DQkNNLGldfSx7Y046ImNsYXNzIixiSzoiY2xhc3Mgc3RydWN0IixlOi9bezs6XS8sYzpbe2I6LzwvLGU6Lz4vLGM6WyJzZWxmIl19LHQuVE1dfV0pLGV4cG9ydHM6e3ByZXByb2Nlc3NvcjppLHN0cmluZ3M6cixrOmN9fX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgicnVieSIsZnVuY3Rpb24oZSl7dmFyIGI9IlthLXpBLVpfXVxcdypbIT89XT98Wy0rfl1cXEB8PDx8Pj58PX58PT09P3w8PT58Wzw+XT0/fFxcKlxcKnxbLS8rJV4mKn5gfF18XFxbXFxdPT8iLHI9e2tleXdvcmQ6ImFuZCB0aGVuIGRlZmluZWQgbW9kdWxlIGluIHJldHVybiByZWRvIGlmIEJFR0lOIHJldHJ5IGVuZCBmb3Igc2VsZiB3aGVuIG5leHQgdW50aWwgZG8gYmVnaW4gdW5sZXNzIEVORCByZXNjdWUgZWxzZSBicmVhayB1bmRlZiBub3Qgc3VwZXIgY2xhc3MgY2FzZSByZXF1aXJlIHlpZWxkIGFsaWFzIHdoaWxlIGVuc3VyZSBlbHNpZiBvciBpbmNsdWRlIGF0dHJfcmVhZGVyIGF0dHJfd3JpdGVyIGF0dHJfYWNjZXNzb3IiLGxpdGVyYWw6InRydWUgZmFsc2UgbmlsIn0sYz17Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9LGE9e2I6IiM8IixlOiI+In0scz1bZS5DKCIjIiwiJCIse2M6W2NdfSksZS5DKCJeXFw9YmVnaW4iLCJeXFw9ZW5kIix7YzpbY10scjoxMH0pLGUuQygiXl9fRU5EX18iLCJcXG4kIildLG49e2NOOiJzdWJzdCIsYjoiI1xceyIsZToifSIsazpyfSx0PXtjTjoic3RyaW5nIixjOltlLkJFLG5dLHY6W3tiOi8nLyxlOi8nL30se2I6LyIvLGU6LyIvfSx7YjovYC8sZTovYC99LHtiOiIlW3FRd1d4XT9cXCgiLGU6IlxcKSJ9LHtiOiIlW3FRd1d4XT9cXFsiLGU6IlxcXSJ9LHtiOiIlW3FRd1d4XT97IixlOiJ9In0se2I6IiVbcVF3V3hdPzwiLGU6Ij4ifSx7YjoiJVtxUXdXeF0/LyIsZToiLyJ9LHtiOiIlW3FRd1d4XT8lIixlOiIlIn0se2I6IiVbcVF3V3hdPy0iLGU6Ii0ifSx7YjoiJVtxUXdXeF0/XFx8IixlOiJcXHwifSx7YjovXEJcPyhcXFxkezEsM318XFx4W0EtRmEtZjAtOV17MSwyfXxcXHVbQS1GYS1mMC05XXs0fXxcXD9cUylcYi99LHtiOi88PCgtPylcdyskLyxlOi9eXHMqXHcrJC99XX0saT17Y046InBhcmFtcyIsYjoiXFwoIixlOiJcXCkiLGVuZHNQYXJlbnQ6ITAsazpyfSxkPVt0LGEse2NOOiJjbGFzcyIsYks6ImNsYXNzIG1vZHVsZSIsZToiJHw7IixpOi89LyxjOltlLmluaGVyaXQoZS5UTSx7YjoiW0EtWmEtel9dXFx3Kig6OlxcdyspKihcXD98XFwhKT8ifSkse2I6IjxcXHMqIixjOlt7YjoiKCIrZS5JUisiOjopPyIrZS5JUn1dfV0uY29uY2F0KHMpfSx7Y046ImZ1bmN0aW9uIixiSzoiZGVmIixlOiIkfDsiLGM6W2UuaW5oZXJpdChlLlRNLHtiOmJ9KSxpXS5jb25jYXQocyl9LHtiOmUuSVIrIjo6In0se2NOOiJzeW1ib2wiLGI6ZS5VSVIrIihcXCF8XFw/KT86IixyOjB9LHtjTjoic3ltYm9sIixiOiI6KD8hXFxzKSIsYzpbdCx7YjpifV0scjowfSx7Y046Im51bWJlciIsYjoiKFxcYjBbMC03X10rKXwoXFxiMHhbMC05YS1mQS1GX10rKXwoXFxiWzEtOV1bMC05X10qKFxcLlswLTlfXSspPyl8WzBfXVxcYiIscjowfSx7YjoiKFxcJFxcVyl8KChcXCR8XFxAXFxAPykoXFx3KykpIn0se2NOOiJwYXJhbXMiLGI6L1x8LyxlOi9cfC8sazpyfSx7YjoiKCIrZS5SU1IrInx1bmxlc3MpXFxzKiIsazoidW5sZXNzIixjOlthLHtjTjoicmVnZXhwIixjOltlLkJFLG5dLGk6L1xuLyx2Olt7YjoiLyIsZToiL1thLXpdKiJ9LHtiOiIlcnsiLGU6In1bYS16XSoifSx7YjoiJXJcXCgiLGU6IlxcKVthLXpdKiJ9LHtiOiIlciEiLGU6IiFbYS16XSoifSx7YjoiJXJcXFsiLGU6IlxcXVthLXpdKiJ9XX1dLmNvbmNhdChzKSxyOjB9XS5jb25jYXQocyk7bi5jPWQsaS5jPWQ7dmFyIGw9Ils+P10+IixvPSJbXFx3I10rXFwoXFx3K1xcKTpcXGQrOlxcZCs+Iix1PSIoXFx3Ky0pP1xcZCtcXC5cXGQrXFwuXFxkKHBcXGQrKT9bXj5dKz4iLHc9W3tiOi9eXHMqPT4vLHN0YXJ0czp7ZToiJCIsYzpkfX0se2NOOiJtZXRhIixiOiJeKCIrbCsifCIrbysifCIrdSsiKSIsc3RhcnRzOntlOiIkIixjOmR9fV07cmV0dXJue2FsaWFzZXM6WyJyYiIsImdlbXNwZWMiLCJwb2RzcGVjIiwidGhvciIsImlyYiJdLGs6cixpOi9cL1wqLyxjOnMuY29uY2F0KHcpLmNvbmNhdChkKX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInlhbWwiLGZ1bmN0aW9uKGUpe3ZhciBiPSJ0cnVlIGZhbHNlIHllcyBubyBudWxsIixhPSJeWyBcXC1dKiIscj0iW2EtekEtWl9dW1xcd1xcLV0qIix0PXtjTjoiYXR0ciIsdjpbe2I6YStyKyI6In0se2I6YSsnIicrcisnIjonfSx7YjphKyInIityKyInOiJ9XX0sYz17Y046InRlbXBsYXRlLXZhcmlhYmxlIix2Olt7Yjoie3siLGU6In19In0se2I6IiV7IixlOiJ9In1dfSxsPXtjTjoic3RyaW5nIixyOjAsdjpbe2I6LycvLGU6LycvfSx7YjovIi8sZTovIi99LHtiOi9cUysvfV0sYzpbZS5CRSxjXX07cmV0dXJue2NJOiEwLGFsaWFzZXM6WyJ5bWwiLCJZQU1MIiwieWFtbCJdLGM6W3Qse2NOOiJtZXRhIixiOiJeLS0tcyokIixyOjEwfSx7Y046InN0cmluZyIsYjoiW1xcfD5dICokIixyRTohMCxjOmwuYyxlOnQudlswXS5ifSx7YjoiPCVbJT0tXT8iLGU6IlslLV0/JT4iLHNMOiJydWJ5IixlQjohMCxlRTohMCxyOjB9LHtjTjoidHlwZSIsYjoiISEiK2UuVUlSfSx7Y046Im1ldGEiLGI6IiYiK2UuVUlSKyIkIn0se2NOOiJtZXRhIixiOiJcXCoiK2UuVUlSKyIkIn0se2NOOiJidWxsZXQiLGI6Il4gKi0iLHI6MH0sZS5IQ00se2JLOmIsazp7bGl0ZXJhbDpifX0sZS5DTk0sbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJjc3MiLGZ1bmN0aW9uKGUpe3ZhciBjPSJbYS16QS1aLV1bYS16QS1aMC05Xy1dKiIsdD17YjovW0EtWlxfXC5cLV0rXHMqOi8sckI6ITAsZToiOyIsZVc6ITAsYzpbe2NOOiJhdHRyaWJ1dGUiLGI6L1xTLyxlOiI6IixlRTohMCxzdGFydHM6e2VXOiEwLGVFOiEwLGM6W3tiOi9bXHctXStcKC8sckI6ITAsYzpbe2NOOiJidWlsdF9pbiIsYjovW1x3LV0rL30se2I6L1woLyxlOi9cKS8sYzpbZS5BU00sZS5RU01dfV19LGUuQ1NTTk0sZS5RU00sZS5BU00sZS5DQkNNLHtjTjoibnVtYmVyIixiOiIjWzAtOUEtRmEtZl0rIn0se2NOOiJtZXRhIixiOiIhaW1wb3J0YW50In1dfX1dfTtyZXR1cm57Y0k6ITAsaTovWz1cL3wnXCRdLyxjOltlLkNCQ00se2NOOiJzZWxlY3Rvci1pZCIsYjovI1tBLVphLXowLTlfLV0rL30se2NOOiJzZWxlY3Rvci1jbGFzcyIsYjovXC5bQS1aYS16MC05Xy1dKy99LHtjTjoic2VsZWN0b3ItYXR0ciIsYjovXFsvLGU6L1xdLyxpOiIkIn0se2NOOiJzZWxlY3Rvci1wc2V1ZG8iLGI6LzooOik/W2EtekEtWjAtOVxfXC1cK1woXCkiJy5dKy99LHtiOiJAKGZvbnQtZmFjZXxwYWdlKSIsbDoiW2Etei1dKyIsazoiZm9udC1mYWNlIHBhZ2UifSx7YjoiQCIsZToiW3s7XSIsaTovOi8sYzpbe2NOOiJrZXl3b3JkIixiOi9cdysvfSx7YjovXHMvLGVXOiEwLGVFOiEwLHI6MCxjOltlLkFTTSxlLlFTTSxlLkNTU05NXX1dfSx7Y046InNlbGVjdG9yLXRhZyIsYjpjLHI6MH0se2I6InsiLGU6In0iLGk6L1xTLyxjOltlLkNCQ00sdF19XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoImZvcnRyYW4iLGZ1bmN0aW9uKGUpe3ZhciB0PXtjTjoicGFyYW1zIixiOiJcXCgiLGU6IlxcKSJ9LG49e2xpdGVyYWw6Ii5GYWxzZS4gLlRydWUuIixrZXl3b3JkOiJraW5kIGRvIHdoaWxlIHByaXZhdGUgY2FsbCBpbnRyaW5zaWMgd2hlcmUgZWxzZXdoZXJlIHR5cGUgZW5kdHlwZSBlbmRtb2R1bGUgZW5kc2VsZWN0IGVuZGludGVyZmFjZSBlbmQgZW5kZG8gZW5kaWYgaWYgZm9yYWxsIGVuZGZvcmFsbCBvbmx5IGNvbnRhaW5zIGRlZmF1bHQgcmV0dXJuIHN0b3AgdGhlbiBwdWJsaWMgc3Vicm91dGluZXwxMCBmdW5jdGlvbiBwcm9ncmFtIC5hbmQuIC5vci4gLm5vdC4gLmxlLiAuZXEuIC5nZS4gLmd0LiAubHQuIGdvdG8gc2F2ZSBlbHNlIHVzZSBtb2R1bGUgc2VsZWN0IGNhc2UgYWNjZXNzIGJsYW5rIGRpcmVjdCBleGlzdCBmaWxlIGZtdCBmb3JtIGZvcm1hdHRlZCBpb3N0YXQgbmFtZSBuYW1lZCBuZXh0cmVjIG51bWJlciBvcGVuZWQgcmVjIHJlY2wgc2VxdWVudGlhbCBzdGF0dXMgdW5mb3JtYXR0ZWQgdW5pdCBjb250aW51ZSBmb3JtYXQgcGF1c2UgY3ljbGUgZXhpdCBjX251bGxfY2hhciBjX2FsZXJ0IGNfYmFja3NwYWNlIGNfZm9ybV9mZWVkIGZsdXNoIHdhaXQgZGVjaW1hbCByb3VuZCBpb21zZyBzeW5jaHJvbm91cyBub3Bhc3Mgbm9uX292ZXJyaWRhYmxlIHBhc3MgcHJvdGVjdGVkIHZvbGF0aWxlIGFic3RyYWN0IGV4dGVuZHMgaW1wb3J0IG5vbl9pbnRyaW5zaWMgdmFsdWUgZGVmZXJyZWQgZ2VuZXJpYyBmaW5hbCBlbnVtZXJhdG9yIGNsYXNzIGFzc29jaWF0ZSBiaW5kIGVudW0gY19pbnQgY19zaG9ydCBjX2xvbmcgY19sb25nX2xvbmcgY19zaWduZWRfY2hhciBjX3NpemVfdCBjX2ludDhfdCBjX2ludDE2X3QgY19pbnQzMl90IGNfaW50NjRfdCBjX2ludF9sZWFzdDhfdCBjX2ludF9sZWFzdDE2X3QgY19pbnRfbGVhc3QzMl90IGNfaW50X2xlYXN0NjRfdCBjX2ludF9mYXN0OF90IGNfaW50X2Zhc3QxNl90IGNfaW50X2Zhc3QzMl90IGNfaW50X2Zhc3Q2NF90IGNfaW50bWF4X3QgQ19pbnRwdHJfdCBjX2Zsb2F0IGNfZG91YmxlIGNfbG9uZ19kb3VibGUgY19mbG9hdF9jb21wbGV4IGNfZG91YmxlX2NvbXBsZXggY19sb25nX2RvdWJsZV9jb21wbGV4IGNfYm9vbCBjX2NoYXIgY19udWxsX3B0ciBjX251bGxfZnVucHRyIGNfbmV3X2xpbmUgY19jYXJyaWFnZV9yZXR1cm4gY19ob3Jpem9udGFsX3RhYiBjX3ZlcnRpY2FsX3RhYiBpc29fY19iaW5kaW5nIGNfbG9jIGNfZnVubG9jIGNfYXNzb2NpYXRlZCAgY19mX3BvaW50ZXIgY19wdHIgY19mdW5wdHIgaXNvX2ZvcnRyYW5fZW52IGNoYXJhY3Rlcl9zdG9yYWdlX3NpemUgZXJyb3JfdW5pdCBmaWxlX3N0b3JhZ2Vfc2l6ZSBpbnB1dF91bml0IGlvc3RhdF9lbmQgaW9zdGF0X2VvciBudW1lcmljX3N0b3JhZ2Vfc2l6ZSBvdXRwdXRfdW5pdCBjX2ZfcHJvY3BvaW50ZXIgaWVlZV9hcml0aG1ldGljIGllZWVfc3VwcG9ydF91bmRlcmZsb3dfY29udHJvbCBpZWVlX2dldF91bmRlcmZsb3dfbW9kZSBpZWVlX3NldF91bmRlcmZsb3dfbW9kZSBuZXd1bml0IGNvbnRpZ3VvdXMgcmVjdXJzaXZlIHBhZCBwb3NpdGlvbiBhY3Rpb24gZGVsaW0gcmVhZHdyaXRlIGVvciBhZHZhbmNlIG5tbCBpbnRlcmZhY2UgcHJvY2VkdXJlIG5hbWVsaXN0IGluY2x1ZGUgc2VxdWVuY2UgZWxlbWVudGFsIHB1cmUgaW50ZWdlciByZWFsIGNoYXJhY3RlciBjb21wbGV4IGxvZ2ljYWwgZGltZW5zaW9uIGFsbG9jYXRhYmxlfDEwIHBhcmFtZXRlciBleHRlcm5hbCBpbXBsaWNpdHwxMCBub25lIGRvdWJsZSBwcmVjaXNpb24gYXNzaWduIGludGVudCBvcHRpb25hbCBwb2ludGVyIHRhcmdldCBpbiBvdXQgY29tbW9uIGVxdWl2YWxlbmNlIGRhdGEiLGJ1aWx0X2luOiJhbG9nIGFsb2cxMCBhbWF4MCBhbWF4MSBhbWluMCBhbWluMSBhbW9kIGNhYnMgY2NvcyBjZXhwIGNsb2cgY3NpbiBjc3FydCBkYWJzIGRhY29zIGRhc2luIGRhdGFuIGRhdGFuMiBkY29zIGRjb3NoIGRkaW0gZGV4cCBkaW50IGRsb2cgZGxvZzEwIGRtYXgxIGRtaW4xIGRtb2QgZG5pbnQgZHNpZ24gZHNpbiBkc2luaCBkc3FydCBkdGFuIGR0YW5oIGZsb2F0IGlhYnMgaWRpbSBpZGludCBpZG5pbnQgaWZpeCBpc2lnbiBtYXgwIG1heDEgbWluMCBtaW4xIHNuZ2wgYWxnYW1hIGNkYWJzIGNkY29zIGNkZXhwIGNkbG9nIGNkc2luIGNkc3FydCBjcWFicyBjcWNvcyBjcWV4cCBjcWxvZyBjcXNpbiBjcXNxcnQgZGNtcGx4IGRjb25qZyBkZXJmIGRlcmZjIGRmbG9hdCBkZ2FtbWEgZGltYWcgZGxnYW1hIGlxaW50IHFhYnMgcWFjb3MgcWFzaW4gcWF0YW4gcWF0YW4yIHFjbXBseCBxY29uamcgcWNvcyBxY29zaCBxZGltIHFlcmYgcWVyZmMgcWV4cCBxZ2FtbWEgcWltYWcgcWxnYW1hIHFsb2cgcWxvZzEwIHFtYXgxIHFtaW4xIHFtb2QgcW5pbnQgcXNpZ24gcXNpbiBxc2luaCBxc3FydCBxdGFuIHF0YW5oIGFicyBhY29zIGFpbWFnIGFpbnQgYW5pbnQgYXNpbiBhdGFuIGF0YW4yIGNoYXIgY21wbHggY29uamcgY29zIGNvc2ggZXhwIGljaGFyIGluZGV4IGludCBsb2cgbG9nMTAgbWF4IG1pbiBuaW50IHNpZ24gc2luIHNpbmggc3FydCB0YW4gdGFuaCBwcmludCB3cml0ZSBkaW0gbGdlIGxndCBsbGUgbGx0IG1vZCBudWxsaWZ5IGFsbG9jYXRlIGRlYWxsb2NhdGUgYWRqdXN0bCBhZGp1c3RyIGFsbCBhbGxvY2F0ZWQgYW55IGFzc29jaWF0ZWQgYml0X3NpemUgYnRlc3QgY2VpbGluZyBjb3VudCBjc2hpZnQgZGF0ZV9hbmRfdGltZSBkaWdpdHMgZG90X3Byb2R1Y3QgZW9zaGlmdCBlcHNpbG9uIGV4cG9uZW50IGZsb29yIGZyYWN0aW9uIGh1Z2UgaWFuZCBpYmNsciBpYml0cyBpYnNldCBpZW9yIGlvciBpc2hmdCBpc2hmdGMgbGJvdW5kIGxlbl90cmltIG1hdG11bCBtYXhleHBvbmVudCBtYXhsb2MgbWF4dmFsIG1lcmdlIG1pbmV4cG9uZW50IG1pbmxvYyBtaW52YWwgbW9kdWxvIG12Yml0cyBuZWFyZXN0IHBhY2sgcHJlc2VudCBwcm9kdWN0IHJhZGl4IHJhbmRvbV9udW1iZXIgcmFuZG9tX3NlZWQgcmFuZ2UgcmVwZWF0IHJlc2hhcGUgcnJzcGFjaW5nIHNjYWxlIHNjYW4gc2VsZWN0ZWRfaW50X2tpbmQgc2VsZWN0ZWRfcmVhbF9raW5kIHNldF9leHBvbmVudCBzaGFwZSBzaXplIHNwYWNpbmcgc3ByZWFkIHN1bSBzeXN0ZW1fY2xvY2sgdGlueSB0cmFuc3Bvc2UgdHJpbSB1Ym91bmQgdW5wYWNrIHZlcmlmeSBhY2hhciBpYWNoYXIgdHJhbnNmZXIgZGJsZSBlbnRyeSBkcHJvZCBjcHVfdGltZSBjb21tYW5kX2FyZ3VtZW50X2NvdW50IGdldF9jb21tYW5kIGdldF9jb21tYW5kX2FyZ3VtZW50IGdldF9lbnZpcm9ubWVudF92YXJpYWJsZSBpc19pb3N0YXRfZW5kIGllZWVfYXJpdGhtZXRpYyBpZWVlX3N1cHBvcnRfdW5kZXJmbG93X2NvbnRyb2wgaWVlZV9nZXRfdW5kZXJmbG93X21vZGUgaWVlZV9zZXRfdW5kZXJmbG93X21vZGUgaXNfaW9zdGF0X2VvciBtb3ZlX2FsbG9jIG5ld19saW5lIHNlbGVjdGVkX2NoYXJfa2luZCBzYW1lX3R5cGVfYXMgZXh0ZW5kc190eXBlX29mYWNvc2ggYXNpbmggYXRhbmggYmVzc2VsX2owIGJlc3NlbF9qMSBiZXNzZWxfam4gYmVzc2VsX3kwIGJlc3NlbF95MSBiZXNzZWxfeW4gZXJmIGVyZmMgZXJmY19zY2FsZWQgZ2FtbWEgbG9nX2dhbW1hIGh5cG90IG5vcm0yIGF0b21pY19kZWZpbmUgYXRvbWljX3JlZiBleGVjdXRlX2NvbW1hbmRfbGluZSBsZWFkeiB0cmFpbHogc3RvcmFnZV9zaXplIG1lcmdlX2JpdHMgYmdlIGJndCBibGUgYmx0IGRzaGlmdGwgZHNoaWZ0ciBmaW5kbG9jIGlhbGwgaWFueSBpcGFyaXR5IGltYWdlX2luZGV4IGxjb2JvdW5kIHVjb2JvdW5kIG1hc2tsIG1hc2tyIG51bV9pbWFnZXMgcGFyaXR5IHBvcGNudCBwb3BwYXIgc2hpZnRhIHNoaWZ0bCBzaGlmdHIgdGhpc19pbWFnZSJ9O3JldHVybntjSTohMCxhbGlhc2VzOlsiZjkwIiwiZjk1Il0sazpuLGk6L1wvXCovLGM6W2UuaW5oZXJpdChlLkFTTSx7Y046InN0cmluZyIscjowfSksZS5pbmhlcml0KGUuUVNNLHtjTjoic3RyaW5nIixyOjB9KSx7Y046ImZ1bmN0aW9uIixiSzoic3Vicm91dGluZSBmdW5jdGlvbiBwcm9ncmFtIixpOiJbJHs9XFxuXSIsYzpbZS5VVE0sdF19LGUuQygiISIsIiQiLHtyOjB9KSx7Y046Im51bWJlciIsYjoiKD89XFxifFxcK3xcXC18XFwuKSg/PVxcLlxcZHxcXGQpKD86XFxkKyk/KD86XFwuP1xcZCopKD86W2RlXVsrLV0/XFxkKyk/XFxiXFwuPyIscjowfV19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJhd2siLGZ1bmN0aW9uKGUpe3ZhciByPXtjTjoidmFyaWFibGUiLHY6W3tiOi9cJFtcd1xkI0BdW1x3XGRfXSovfSx7YjovXCRceyguKj8pfS99XX0sYj0iQkVHSU4gRU5EIGlmIGVsc2Ugd2hpbGUgZG8gZm9yIGluIGJyZWFrIGNvbnRpbnVlIGRlbGV0ZSBuZXh0IG5leHRmaWxlIGZ1bmN0aW9uIGZ1bmMgZXhpdHwxMCIsbj17Y046InN0cmluZyIsYzpbZS5CRV0sdjpbe2I6Lyh1fGIpP3I/JycnLyxlOi8nJycvLHI6MTB9LHtiOi8odXxiKT9yPyIiIi8sZTovIiIiLyxyOjEwfSx7YjovKHV8cnx1ciknLyxlOi8nLyxyOjEwfSx7YjovKHV8cnx1cikiLyxlOi8iLyxyOjEwfSx7YjovKGJ8YnIpJy8sZTovJy99LHtiOi8oYnxicikiLyxlOi8iL30sZS5BU00sZS5RU01dfTtyZXR1cm57azp7a2V5d29yZDpifSxjOltyLG4sZS5STSxlLkhDTSxlLk5NXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoIm1ha2VmaWxlIixmdW5jdGlvbihlKXt2YXIgaT17Y046InZhcmlhYmxlIix2Olt7YjoiXFwkXFwoIitlLlVJUisiXFwpIixjOltlLkJFXX0se2I6L1wkW0AlPD9cXlwrXCpdL31dfSxyPXtjTjoic3RyaW5nIixiOi8iLyxlOi8iLyxjOltlLkJFLGldfSxhPXtjTjoidmFyaWFibGUiLGI6L1wkXChbXHctXStccy8sZTovXCkvLGs6e2J1aWx0X2luOiJzdWJzdCBwYXRzdWJzdCBzdHJpcCBmaW5kc3RyaW5nIGZpbHRlciBmaWx0ZXItb3V0IHNvcnQgd29yZCB3b3JkbGlzdCBmaXJzdHdvcmQgbGFzdHdvcmQgZGlyIG5vdGRpciBzdWZmaXggYmFzZW5hbWUgYWRkc3VmZml4IGFkZHByZWZpeCBqb2luIHdpbGRjYXJkIHJlYWxwYXRoIGFic3BhdGggZXJyb3Igd2FybmluZyBzaGVsbCBvcmlnaW4gZmxhdm9yIGZvcmVhY2ggaWYgb3IgYW5kIGNhbGwgZXZhbCBmaWxlIHZhbHVlIn0sYzpbaV19LG49e2I6Il4iK2UuVUlSKyJcXHMqWzorP10/PSIsaToiXFxuIixyQjohMCxjOlt7YjoiXiIrZS5VSVIsZToiWzorP10/PSIsZUU6ITB9XX0sdD17Y046Im1ldGEiLGI6L15cLlBIT05ZOi8sZTovJC8sazp7Im1ldGEta2V5d29yZCI6Ii5QSE9OWSJ9LGw6L1tcLlx3XSsvfSxsPXtjTjoic2VjdGlvbiIsYjovXlteXHNdKzovLGU6LyQvLGM6W2ldfTtyZXR1cm57YWxpYXNlczpbIm1rIiwibWFrIl0sazoiZGVmaW5lIGVuZGVmIHVuZGVmaW5lIGlmZGVmIGlmbmRlZiBpZmVxIGlmbmVxIGVsc2UgZW5kaWYgaW5jbHVkZSAtaW5jbHVkZSBzaW5jbHVkZSBvdmVycmlkZSBleHBvcnQgdW5leHBvcnQgcHJpdmF0ZSB2cGF0aCIsbDovW1x3LV0rLyxjOltlLkhDTSxpLHIsYSxuLHQsbF19fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJqYXZhIixmdW5jdGlvbihlKXt2YXIgYT0iW8OALcq4YS16QS1aXyRdW8OALcq4YS16QS1aXyQwLTldKiIsdD1hKyIoPCIrYSsiKFxccyosXFxzKiIrYSsiKSo+KT8iLHI9ImZhbHNlIHN5bmNocm9uaXplZCBpbnQgYWJzdHJhY3QgZmxvYXQgcHJpdmF0ZSBjaGFyIGJvb2xlYW4gc3RhdGljIG51bGwgaWYgY29uc3QgZm9yIHRydWUgd2hpbGUgbG9uZyBzdHJpY3RmcCBmaW5hbGx5IHByb3RlY3RlZCBpbXBvcnQgbmF0aXZlIGZpbmFsIHZvaWQgZW51bSBlbHNlIGJyZWFrIHRyYW5zaWVudCBjYXRjaCBpbnN0YW5jZW9mIGJ5dGUgc3VwZXIgdm9sYXRpbGUgY2FzZSBhc3NlcnQgc2hvcnQgcGFja2FnZSBkZWZhdWx0IGRvdWJsZSBwdWJsaWMgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHRocm93cyBwcm90ZWN0ZWQgcHVibGljIHByaXZhdGUgbW9kdWxlIHJlcXVpcmVzIGV4cG9ydHMgZG8iLHM9IlxcYigwW2JCXShbMDFdK1swMV9dK1swMV0rfFswMV0rKXwwW3hYXShbYS1mQS1GMC05XStbYS1mQS1GMC05X10rW2EtZkEtRjAtOV0rfFthLWZBLUYwLTldKyl8KChbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykoXFwuKFtcXGRdK1tcXGRfXStbXFxkXSt8W1xcZF0rKSk/fFxcLihbXFxkXStbXFxkX10rW1xcZF0rfFtcXGRdKykpKFtlRV1bLStdP1xcZCspPylbbExmRl0/IixjPXtjTjoibnVtYmVyIixiOnMscjowfTtyZXR1cm57YWxpYXNlczpbImpzcCJdLGs6cixpOi88XC98Iy8sYzpbZS5DKCIvXFwqXFwqIiwiXFwqLyIse3I6MCxjOlt7YjovXHcrQC8scjowfSx7Y046ImRvY3RhZyIsYjoiQFtBLVphLXpdKyJ9XX0pLGUuQ0xDTSxlLkNCQ00sZS5BU00sZS5RU00se2NOOiJjbGFzcyIsYks6ImNsYXNzIGludGVyZmFjZSIsZTovW3s7PV0vLGVFOiEwLGs6ImNsYXNzIGludGVyZmFjZSIsaTovWzoiXFtcXV0vLGM6W3tiSzoiZXh0ZW5kcyBpbXBsZW1lbnRzIn0sZS5VVE1dfSx7Yks6Im5ldyB0aHJvdyByZXR1cm4gZWxzZSIscjowfSx7Y046ImZ1bmN0aW9uIixiOiIoIit0KyJcXHMrKSsiK2UuVUlSKyJcXHMqXFwoIixyQjohMCxlOi9bezs9XS8sZUU6ITAsazpyLGM6W3tiOmUuVUlSKyJcXHMqXFwoIixyQjohMCxyOjAsYzpbZS5VVE1dfSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxrOnIscjowLGM6W2UuQVNNLGUuUVNNLGUuQ05NLGUuQ0JDTV19LGUuQ0xDTSxlLkNCQ01dfSxjLHtjTjoibWV0YSIsYjoiQFtBLVphLXpdKyJ9XX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInN0YW4iLGZ1bmN0aW9uKGUpe3JldHVybntjOltlLkhDTSxlLkNMQ00sZS5DQkNNLHtiOmUuVUlSLGw6ZS5VSVIsazp7bmFtZToiZm9yIGluIHdoaWxlIHJlcGVhdCB1bnRpbCBpZiB0aGVuIGVsc2UiLHN5bWJvbDoiYmVybm91bGxpIGJlcm5vdWxsaV9sb2dpdCBiaW5vbWlhbCBiaW5vbWlhbF9sb2dpdCBiZXRhX2Jpbm9taWFsIGh5cGVyZ2VvbWV0cmljIGNhdGVnb3JpY2FsIGNhdGVnb3JpY2FsX2xvZ2l0IG9yZGVyZWRfbG9naXN0aWMgbmVnX2Jpbm9taWFsIG5lZ19iaW5vbWlhbF8yIG5lZ19iaW5vbWlhbF8yX2xvZyBwb2lzc29uIHBvaXNzb25fbG9nIG11bHRpbm9taWFsIG5vcm1hbCBleHBfbW9kX25vcm1hbCBza2V3X25vcm1hbCBzdHVkZW50X3QgY2F1Y2h5IGRvdWJsZV9leHBvbmVudGlhbCBsb2dpc3RpYyBndW1iZWwgbG9nbm9ybWFsIGNoaV9zcXVhcmUgaW52X2NoaV9zcXVhcmUgc2NhbGVkX2ludl9jaGlfc3F1YXJlIGV4cG9uZW50aWFsIGludl9nYW1tYSB3ZWlidWxsIGZyZWNoZXQgcmF5bGVpZ2ggd2llbmVyIHBhcmV0byBwYXJldG9fdHlwZV8yIHZvbl9taXNlcyB1bmlmb3JtIG11bHRpX25vcm1hbCBtdWx0aV9ub3JtYWxfcHJlYyBtdWx0aV9ub3JtYWxfY2hvbGVza3kgbXVsdGlfZ3AgbXVsdGlfZ3BfY2hvbGVza3kgbXVsdGlfc3R1ZGVudF90IGdhdXNzaWFuX2RsbV9vYnMgZGlyaWNobGV0IGxral9jb3JyIGxral9jb3JyX2Nob2xlc2t5IHdpc2hhcnQgaW52X3dpc2hhcnQiLCJzZWxlY3Rvci10YWciOiJpbnQgcmVhbCB2ZWN0b3Igc2ltcGxleCB1bml0X3ZlY3RvciBvcmRlcmVkIHBvc2l0aXZlX29yZGVyZWQgcm93X3ZlY3RvciBtYXRyaXggY2hvbGVza3lfZmFjdG9yX2NvcnIgY2hvbGVza3lfZmFjdG9yX2NvdiBjb3JyX21hdHJpeCBjb3ZfbWF0cml4Iix0aXRsZToiZnVuY3Rpb25zIG1vZGVsIGRhdGEgcGFyYW1ldGVycyBxdWFudGl0aWVzIHRyYW5zZm9ybWVkIGdlbmVyYXRlZCIsbGl0ZXJhbDoidHJ1ZSBmYWxzZSJ9LHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IjBbeFhdWzAtOWEtZkEtRl0rW0xpXT9cXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCsoPzpbZUVdWytcXC1dP1xcZCopP0xcXGIiLHI6MH0se2NOOiJudW1iZXIiLGI6IlxcZCtcXC4oPyFcXGQpKD86aVxcYik/IixyOjB9LHtjTjoibnVtYmVyIixiOiJcXGQrKD86XFwuXFxkKik/KD86W2VFXVsrXFwtXT9cXGQqKT9pP1xcYiIscjowfSx7Y046Im51bWJlciIsYjoiXFwuXFxkKyg/OltlRV1bK1xcLV0/XFxkKik/aT9cXGIiLHI6MH1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgiamF2YXNjcmlwdCIsZnVuY3Rpb24oZSl7dmFyIHI9IltBLVphLXokX11bMC05QS1aYS16JF9dKiIsdD17a2V5d29yZDoiaW4gb2YgaWYgZm9yIHdoaWxlIGZpbmFsbHkgdmFyIG5ldyBmdW5jdGlvbiBkbyByZXR1cm4gdm9pZCBlbHNlIGJyZWFrIGNhdGNoIGluc3RhbmNlb2Ygd2l0aCB0aHJvdyBjYXNlIGRlZmF1bHQgdHJ5IHRoaXMgc3dpdGNoIGNvbnRpbnVlIHR5cGVvZiBkZWxldGUgbGV0IHlpZWxkIGNvbnN0IGV4cG9ydCBzdXBlciBkZWJ1Z2dlciBhcyBhc3luYyBhd2FpdCBzdGF0aWMgaW1wb3J0IGZyb20gYXMiLGxpdGVyYWw6InRydWUgZmFsc2UgbnVsbCB1bmRlZmluZWQgTmFOIEluZmluaXR5IixidWlsdF9pbjoiZXZhbCBpc0Zpbml0ZSBpc05hTiBwYXJzZUZsb2F0IHBhcnNlSW50IGRlY29kZVVSSSBkZWNvZGVVUklDb21wb25lbnQgZW5jb2RlVVJJIGVuY29kZVVSSUNvbXBvbmVudCBlc2NhcGUgdW5lc2NhcGUgT2JqZWN0IEZ1bmN0aW9uIEJvb2xlYW4gRXJyb3IgRXZhbEVycm9yIEludGVybmFsRXJyb3IgUmFuZ2VFcnJvciBSZWZlcmVuY2VFcnJvciBTdG9wSXRlcmF0aW9uIFN5bnRheEVycm9yIFR5cGVFcnJvciBVUklFcnJvciBOdW1iZXIgTWF0aCBEYXRlIFN0cmluZyBSZWdFeHAgQXJyYXkgRmxvYXQzMkFycmF5IEZsb2F0NjRBcnJheSBJbnQxNkFycmF5IEludDMyQXJyYXkgSW50OEFycmF5IFVpbnQxNkFycmF5IFVpbnQzMkFycmF5IFVpbnQ4QXJyYXkgVWludDhDbGFtcGVkQXJyYXkgQXJyYXlCdWZmZXIgRGF0YVZpZXcgSlNPTiBJbnRsIGFyZ3VtZW50cyByZXF1aXJlIG1vZHVsZSBjb25zb2xlIHdpbmRvdyBkb2N1bWVudCBTeW1ib2wgU2V0IE1hcCBXZWFrU2V0IFdlYWtNYXAgUHJveHkgUmVmbGVjdCBQcm9taXNlIn0sYT17Y046Im51bWJlciIsdjpbe2I6IlxcYigwW2JCXVswMV0rKSJ9LHtiOiJcXGIoMFtvT11bMC03XSspIn0se2I6ZS5DTlJ9XSxyOjB9LG49e2NOOiJzdWJzdCIsYjoiXFwkXFx7IixlOiJcXH0iLGs6dCxjOltdfSxjPXtjTjoic3RyaW5nIixiOiJgIixlOiJgIixjOltlLkJFLG5dfTtuLmM9W2UuQVNNLGUuUVNNLGMsYSxlLlJNXTt2YXIgcz1uLmMuY29uY2F0KFtlLkNCQ00sZS5DTENNXSk7cmV0dXJue2FsaWFzZXM6WyJqcyIsImpzeCJdLGs6dCxjOlt7Y046Im1ldGEiLHI6MTAsYjovXlxzKlsnIl11c2UgKHN0cmljdHxhc20pWyciXS99LHtjTjoibWV0YSIsYjovXiMhLyxlOi8kL30sZS5BU00sZS5RU00sYyxlLkNMQ00sZS5DQkNNLGEse2I6L1t7LF1ccyovLHI6MCxjOlt7YjpyKyJcXHMqOiIsckI6ITAscjowLGM6W3tjTjoiYXR0ciIsYjpyLHI6MH1dfV19LHtiOiIoIitlLlJTUisifFxcYihjYXNlfHJldHVybnx0aHJvdylcXGIpXFxzKiIsazoicmV0dXJuIHRocm93IGNhc2UiLGM6W2UuQ0xDTSxlLkNCQ00sZS5STSx7Y046ImZ1bmN0aW9uIixiOiIoXFwoLio/XFwpfCIrcisiKVxccyo9PiIsckI6ITAsZToiXFxzKj0+IixjOlt7Y046InBhcmFtcyIsdjpbe2I6cn0se2I6L1woXHMqXCkvfSx7YjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxrOnQsYzpzfV19XX0se2I6LzwvLGU6LyhcL1x3K3xcdytcLyk+LyxzTDoieG1sIixjOlt7YjovPFx3K1xzKlwvPi8sc2tpcDohMH0se2I6LzxcdysvLGU6LyhcL1x3K3xcdytcLyk+Lyxza2lwOiEwLGM6W3tiOi88XHcrXHMqXC8+Lyxza2lwOiEwfSwic2VsZiJdfV19XSxyOjB9LHtjTjoiZnVuY3Rpb24iLGJLOiJmdW5jdGlvbiIsZTovXHsvLGVFOiEwLGM6W2UuaW5oZXJpdChlLlRNLHtiOnJ9KSx7Y046InBhcmFtcyIsYjovXCgvLGU6L1wpLyxlQjohMCxlRTohMCxjOnN9XSxpOi9cW3wlL30se2I6L1wkWyguXS99LGUuTUVUSE9EX0dVQVJELHtjTjoiY2xhc3MiLGJLOiJjbGFzcyIsZTovW3s7PV0vLGVFOiEwLGk6L1s6IlxbXF1dLyxjOlt7Yks6ImV4dGVuZHMifSxlLlVUTV19LHtiSzoiY29uc3RydWN0b3IiLGU6L1x7LyxlRTohMH1dLGk6LyMoPyEhKS99fSk7aGxqcy5yZWdpc3Rlckxhbmd1YWdlKCJ0ZXgiLGZ1bmN0aW9uKGMpe3ZhciBlPXtjTjoidGFnIixiOi9cXC8scjowLGM6W3tjTjoibmFtZSIsdjpbe2I6L1thLXpBLVrQsC3Rj9CQLdGPXStbKl0/L30se2I6L1teYS16QS1a0LAt0Y/QkC3RjzAtOV0vfV0sc3RhcnRzOntlVzohMCxyOjAsYzpbe2NOOiJzdHJpbmciLHY6W3tiOi9cWy8sZTovXF0vfSx7YjovXHsvLGU6L1x9L31dfSx7YjovXHMqPVxzKi8sZVc6ITAscjowLGM6W3tjTjoibnVtYmVyIixiOi8tP1xkKlwuP1xkKyhwdHxwY3xtbXxjbXxpbnxkZHxjY3xleHxlbSk/L31dfV19fV19O3JldHVybntjOltlLHtjTjoiZm9ybXVsYSIsYzpbZV0scjowLHY6W3tiOi9cJFwkLyxlOi9cJFwkL30se2I6L1wkLyxlOi9cJC99XX0sYy5DKCIlIiwiJCIse3I6MH0pXX19KTtobGpzLnJlZ2lzdGVyTGFuZ3VhZ2UoInhtbCIsZnVuY3Rpb24ocyl7dmFyIGU9IltBLVphLXowLTlcXC5fOi1dKyIsdD17ZVc6ITAsaTovPC8scjowLGM6W3tjTjoiYXR0ciIsYjplLHI6MH0se2I6Lz1ccyovLHI6MCxjOlt7Y046InN0cmluZyIsZW5kc1BhcmVudDohMCx2Olt7YjovIi8sZTovIi99LHtiOi8nLyxlOi8nL30se2I6L1teXHMiJz08PmBdKy99XX1dfV19O3JldHVybnthbGlhc2VzOlsiaHRtbCIsInhodG1sIiwicnNzIiwiYXRvbSIsInhqYiIsInhzZCIsInhzbCIsInBsaXN0Il0sY0k6ITAsYzpbe2NOOiJtZXRhIixiOiI8IURPQ1RZUEUiLGU6Ij4iLHI6MTAsYzpbe2I6IlxcWyIsZToiXFxdIn1dfSxzLkMoIjwhLS0iLCItLT4iLHtyOjEwfSkse2I6IjxcXCFcXFtDREFUQVxcWyIsZToiXFxdXFxdPiIscjoxMH0se2I6LzxcPyhwaHApPy8sZTovXD8+LyxzTDoicGhwIixjOlt7YjoiL1xcKiIsZToiXFwqLyIsc2tpcDohMH1dfSx7Y046InRhZyIsYjoiPHN0eWxlKD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InN0eWxlIn0sYzpbdF0sc3RhcnRzOntlOiI8L3N0eWxlPiIsckU6ITAsc0w6WyJjc3MiLCJ4bWwiXX19LHtjTjoidGFnIixiOiI8c2NyaXB0KD89XFxzfD58JCkiLGU6Ij4iLGs6e25hbWU6InNjcmlwdCJ9LGM6W3RdLHN0YXJ0czp7ZToiPC9zY3JpcHQ+IixyRTohMCxzTDpbImFjdGlvbnNjcmlwdCIsImphdmFzY3JpcHQiLCJoYW5kbGViYXJzIiwieG1sIl19fSx7Y046Im1ldGEiLHY6W3tiOi88XD94bWwvLGU6L1w/Pi8scjoxMH0se2I6LzxcP1x3Ky8sZTovXD8+L31dfSx7Y046InRhZyIsYjoiPC8/IixlOiIvPz4iLGM6W3tjTjoibmFtZSIsYjovW15cLz48XHNdKy8scjowfSx0XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgibWFya2Rvd24iLGZ1bmN0aW9uKGUpe3JldHVybnthbGlhc2VzOlsibWQiLCJta2Rvd24iLCJta2QiXSxjOlt7Y046InNlY3Rpb24iLHY6W3tiOiJeI3sxLDZ9IixlOiIkIn0se2I6Il4uKz9cXG5bPS1dezIsfSQifV19LHtiOiI8IixlOiI+IixzTDoieG1sIixyOjB9LHtjTjoiYnVsbGV0IixiOiJeKFsqKy1dfChcXGQrXFwuKSlcXHMrIn0se2NOOiJzdHJvbmciLGI6IlsqX117Mn0uKz9bKl9dezJ9In0se2NOOiJlbXBoYXNpcyIsdjpbe2I6IlxcKi4rP1xcKiJ9LHtiOiJfLis/XyIscjowfV19LHtjTjoicXVvdGUiLGI6Il4+XFxzKyIsZToiJCJ9LHtjTjoiY29kZSIsdjpbe2I6Il5gYGB3KnMqJCIsZToiXmBgYHMqJCJ9LHtiOiJgLis/YCJ9LHtiOiJeKCB7NH18CSkiLGU6IiQiLHI6MH1dfSx7YjoiXlstXFwqXXszLH0iLGU6IiQifSx7YjoiXFxbLis/XFxdW1xcKFxcW10uKj9bXFwpXFxdXSIsckI6ITAsYzpbe2NOOiJzdHJpbmciLGI6IlxcWyIsZToiXFxdIixlQjohMCxyRTohMCxyOjB9LHtjTjoibGluayIsYjoiXFxdXFwoIixlOiJcXCkiLGVCOiEwLGVFOiEwfSx7Y046InN5bWJvbCIsYjoiXFxdXFxbIixlOiJcXF0iLGVCOiEwLGVFOiEwfV0scjoxMH0se2I6L15cW1teXG5dK1xdOi8sckI6ITAsYzpbe2NOOiJzeW1ib2wiLGI6L1xbLyxlOi9cXS8sZUI6ITAsZUU6ITB9LHtjTjoibGluayIsYjovOlxzKi8sZTovJC8sZUI6ITB9XX1dfX0pO2hsanMucmVnaXN0ZXJMYW5ndWFnZSgianNvbiIsZnVuY3Rpb24oZSl7dmFyIGk9e2xpdGVyYWw6InRydWUgZmFsc2UgbnVsbCJ9LG49W2UuUVNNLGUuQ05NXSxyPXtlOiIsIixlVzohMCxlRTohMCxjOm4sazppfSx0PXtiOiJ7IixlOiJ9IixjOlt7Y046ImF0dHIiLGI6LyIvLGU6LyIvLGM6W2UuQkVdLGk6IlxcbiJ9LGUuaW5oZXJpdChyLHtiOi86L30pXSxpOiJcXFMifSxjPXtiOiJcXFsiLGU6IlxcXSIsYzpbZS5pbmhlcml0KHIpXSxpOiJcXFMifTtyZXR1cm4gbi5zcGxpY2Uobi5sZW5ndGgsMCx0LGMpLHtjOm4sazppLGk6IlxcUyJ9fSk7"></script> <style type="text/css">code{white-space: pre;}</style> <style type="text/css"> @@ -35,10 +35,12 @@ } </style> <script type="text/javascript"> -if (window.hljs && document.readyState && document.readyState === "complete") { - window.setTimeout(function() { - hljs.initHighlighting(); - }, 0); +if (window.hljs) { + hljs.configure({languages: []}); + hljs.initHighlightingOnLoad(); + if (document.readyState && document.readyState === "complete") { + window.setTimeout(function() { hljs.initHighlighting(); }, 0); + } } </script> @@ -257,7 +259,7 @@ <h2>Isoform abundances for a given gene</h2> <p>When there are many replicates or many isoforms, it may be preferable to group abundances by isoform, making individual comparisons easier:</p> <pre class="r"><code># Grouping by isoform: plot_gene(mydtu, "MIX6", style="byisoform")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> </div> <div id="overview-plots" class="section level2"> <h2>Overview plots</h2> @@ -290,7 +292,7 @@ <h2>Diagnostic plots</h2> <p>Currently there is only one plot type in this category.</p> <pre class="r"><code># Matrix of pairwise Pearson's correlations among samples. plot_diagnostics(mydtu, type='cormat') # Default type.</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>What you want to see here, is a nice separation between the samples of different conditions. Anomalies in this plot may indicate batch effects or mislabelled samples.</p> </div> <div id="interactive-plots" class="section level2"> @@ -314,7 +316,7 @@ <h3>Change information layers</h3> <p>The <code>fillby</code>, <code>colourby</code> and <code>shapeby</code> parameters can be respectively used to control which information layers are encoded as fill, line/point colour, and point shape. Possible values are <code>c("isoform", "condition", "DTU", "none", "replicate")</code>. Be aware that some combinations of plot style and information layers are not possible. If safe to do so these will be silently ignored, otherwise an error message will appear.</p> <pre class="r"><code># For a less busy look, any of the information layers can be disabled. plot_gene(mydtu, "MIX6", style="byisoform", colourby="none", shapeby="none")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The following command will approximate the older version of the gene plot (where DTU determined the fill colour):</p> <pre class="r"><code>plot_gene(mydtu, "MIX6", fillby="DTU", shapeby="none")</code></pre> <p><img src="" /><!-- --></p> diff --git a/man/calculate_DTU.Rd b/man/calculate_DTU.Rd index dfcf270..d974a32 100644 --- a/man/calculate_DTU.Rd +++ b/man/calculate_DTU.Rd @@ -20,7 +20,7 @@ calculate_DTU(counts_A, counts_B, tx_filter, test_transc, test_genes, full, \item{full}{Either "full" (for complete output structure) or "short" (for bootstrapping).} -\item{count_thresh}{Minimum number of counts per replicate.} +\item{count_thresh}{Minimum average count across replicates.} \item{p_thresh}{The p-value threshold.} diff --git a/man/call_DTU.Rd b/man/call_DTU.Rd index 7634778..16fa9ed 100644 --- a/man/call_DTU.Rd +++ b/man/call_DTU.Rd @@ -36,7 +36,7 @@ call_DTU(annot = NULL, TARGET_COL = "target_id", PARENT_COL = "parent_id", \item{p_thresh}{The p-value threshold. (Default 0.05)} -\item{abund_thresh}{Noise threshold. Minimum mean abundance for transcripts to be eligible for testing. (Default 5)} +\item{abund_thresh}{Noise threshold. Minimum mean (across replicates) abundance for transcripts (and genes) to be eligible for testing. (Default 5)} \item{dprop_thresh}{Effect size threshold. Minimum change in proportion of a transcript for it to be considered meaningful. (Default 0.20)} diff --git a/man/sim_sleuth_data.Rd b/man/sim_sleuth_data.Rd deleted file mode 100644 index b408b07..0000000 --- a/man/sim_sleuth_data.Rd +++ /dev/null @@ -1,39 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data_simulators.R -\name{sim_sleuth_data} -\alias{sim_sleuth_data} -\title{Generate an artificial minimal sleuth-like structure, for code-testing or examples.} -\usage{ -sim_sleuth_data(varname = "condition", COUNTS_COL = "est_counts", - TARGET_COL = "target_id", PARENT_COL = "parent_id", - BS_TARGET_COL = "target_id", cnames = c("A", "B"), - errannot_inconsistent = FALSE, cv_dt = FALSE) -} -\arguments{ -\item{varname}{Name for the variables by which to compare.} - -\item{COUNTS_COL}{Name for the bootdtraps column containing counts.} - -\item{TARGET_COL}{Name for annotation column containing transcript identification.} - -\item{PARENT_COL}{Name for annotation column containing respective gene identification.} - -\item{BS_TARGET_COL}{Name for bootstraps column containing transcript identification.} - -\item{cnames}{A vector of (two) name values for the comparison variable.} - -\item{errannot_inconsistent}{Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE)} - -\item{cv_dt}{Logical. Whether covariates table should be a data.table (FALSE).} -} -\value{ -A list with \code{slo} a minimal sleuth-like object, \code{annot} a corresponding annotation data.frame, - \code{isx} a vector of trancripts common between generated annotation and bootstraps (useful for code testing). - -The simulated data will have non-uniform number of bootstraps per sample and non-uniform order of -transcript id's among samples and bootstraps. These conditions are unlikely to occur in real data, -but this allows testing that the code can handle it. -} -\description{ -The default values here should match the default values expected by calculate_DTU(). -} diff --git a/tests/testthat/test_2_data-munging.R b/tests/testthat/test_2_data-munging.R index f9940d5..f95001a 100644 --- a/tests/testthat/test_2_data-munging.R +++ b/tests/testthat/test_2_data-munging.R @@ -2,80 +2,6 @@ #============================================================================== context("DTU Internal data munging") -#============================================================================== -test_that("Samples are grouped correctly", { - sim <- sim_sleuth_data(cv_dt=FALSE) - expect_silent(r <- group_samples(sim$slo$sample_to_covariates)) - # number of covariates - expect_equal(length(r), length(sim$slo$sample_to_covariates)) - # names of covariates - expect_named(r, names(sim$slo$sample_to_covariates)) - # number of values of each covariate - expect_equal(length(r[[1]]), length(levels(as.factor(sim$slo$sample_to_covariates[[1]])))) - expect_equal(length(r[[2]]), length(levels(as.factor(sim$slo$sample_to_covariates[[2]])))) - # total number of samples - expect_equal(sum(sapply(r[[1]],length)), length(sim$slo$sample_to_covariates[[1]])) - expect_equal(sum(sapply(r[[2]],length)), length(sim$slo$sample_to_covariates[[2]])) - - # Repeat tests with data.table covariate - sim <- sim_sleuth_data(cv_dt=TRUE) - expect_silent(r <- group_samples(sim$slo$sample_to_covariates)) - # number of covariates - expect_equal(length(r), length(sim$slo$sample_to_covariates)) - # names of covariates - expect_named(r, names(sim$slo$sample_to_covariates)) - # number of values of each covariate - expect_equal(length(r[[1]]), length(levels(as.factor(sim$slo$sample_to_covariates[[1]])))) - expect_equal(length(r[[2]]), length(levels(as.factor(sim$slo$sample_to_covariates[[2]])))) - # total number of samples - expect_equal(sum(sapply(r[[1]],length)), length(sim$slo$sample_to_covariates[[1]])) - expect_equal(sum(sapply(r[[2]],length)), length(sim$slo$sample_to_covariates[[2]])) - -}) - - -#============================================================================== -test_that("Bootstrapped counts are extracted correctly", { - samples <- c(1,3) - bst <- "id" - cnt <- "counts" - sim <- sim_sleuth_data(COUNTS_COL = cnt, BS_TARGET_COL = bst) - lr <- denest_sleuth_boots(sim$slo, sim$annot, samples, cnt, bst) - - for (i in 1:length(lr)) { - # The transcripts supposed to be there are there. - expect_true(all(sim$isx %in% as.character(lr[[i]]$target_id))) - # No NA. - expect_false(any(is.na(lr[[i]]))) - - # Number of bootstraps per sample. - expect_equal(length(lr[[i]]) - 1, length(sim$slo$kal[[samples[i]]]$bootstrap)) # one column in lr[[i]] is IDs. - - # All target counts pulled from the correct bootstraps and the correct transcripts. - fltr2 <- match(sim$isx, lr[[i]][["target_id"]]) # Where in the extracted counts are the expected IDs. - counts_ok <- sapply(2:(length(lr[[i]])), function(j) { - fltr1 <- match(sim$isx, sim$slo$kal[[samples[i]]]$bootstrap[[j-1]][[bst]]) # Where in the boot are the expected IDs. - all(sim$slo$kal[[samples[i]]]$bootstrap[[j-1]][[cnt]][fltr1] == lr[[i]][[j]][fltr2]) # Both vectors' elements are ordered by the same IDs. - }) - expect_true(all(counts_ok)) - - # IDs in annotation, but not in bootstraps, should be 0. - missing_from_boots_ok <- sapply(2:(length(lr[[i]])), function(j) { - nib <- setdiff(sim$annot$target_id, sim$isx) - nib <- match(nib, lr[[i]][["target_id"]]) - all(lr[[i]][[j]][nib] == 0) - }) - expect_true(all(missing_from_boots_ok)) - - # IDs in bootstrap, but not in annotation, should be absent. - missing_from_annot_ok <- sapply(1:(length(lr[[i]]) - 1), function(j) { - nia <- setdiff(sim$slo$kal[[i]]$bootstrap[[j]], sim$isx) - any(nia %in% lr[[i]][["target_id"]]) - }) - expect_false(any(missing_from_annot_ok)) - } -}) - #============================================================================== test_that("The number of iterations is detected correctly", { diff --git a/tests/testthat/test_4_steps.R b/tests/testthat/test_4_steps.R index c4e18e8..a1c064e 100644 --- a/tests/testthat/test_4_steps.R +++ b/tests/testthat/test_4_steps.R @@ -87,7 +87,7 @@ test_that("Parameters are recorded", { expect_equal(c(param$var_name, param$cond_A, param$cond_B), c('testing', 'cA', 'cB')) expect_equal(c(param$data_type, param$tests), c("bootstrapped abundance estimates", 'genes')) expect_equal(c(param$num_replic_A, param$num_replic_B), c(2, 2)) - expect_equal(c(param$num_genes, param$num_transc), c(10, 21)) + expect_equal(c(param$num_genes, param$num_transc), c(11, 23)) expect_equal(list(param$p_thresh, param$abund_thresh, param$dprop_thresh, param$correction, param$abund_scaling), list(0.001, 1, 0.15, 'bonferroni', c(1,2,3,4))) expect_equal(list(param$quant_boot, param$quant_bootnum, param$quant_reprod_thresh), list(TRUE, 99, 0.8)) expect_equal(list(param$rep_boot, param$rep_bootnum, param$rep_reprod_thresh), list(TRUE, NA_integer_, 0.6)) diff --git a/tests/testthat/test_5_output.R b/tests/testthat/test_5_output.R index c812b5b..2ddccfc 100644 --- a/tests/testthat/test_5_output.R +++ b/tests/testthat/test_5_output.R @@ -118,13 +118,13 @@ test_that("The output structure is correct", { #============================================================================== test_that("The output content is complete", { - sim <- sim_sleuth_data(cnames=c("ONE","TWO")) + sim <- sim_boot_data() # Emulate non-sleuth bootstrap data. - data_A <- denest_sleuth_boots(sim$slo, sim$annot, c(1,3), "est_counts", "target_id") - data_B <- denest_sleuth_boots(sim$slo, sim$annot, c(2,4), "est_counts", "target_id") + data_A <- sim$boots_A + data_B <- sim$boots_B # Emulate non-bootstrap data. - counts_A <- data_A[[1]] - counts_B <- data_B[[2]] + counts_A <- data_A[[2]] + counts_B <- data_B[[1]] mydtu <- list(call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE, description="test"), call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=TRUE, qboot=TRUE, qbootnum=2, verbose = FALSE, description="test") @@ -227,13 +227,12 @@ test_that("The output content is complete", { #============================================================================== test_that("The result is consistent across input data formats", { - sim <- sim_sleuth_data(cnames=c("ONE","TWO")) - # Emulate non-sleuth bootstrap data. - data_A <- denest_sleuth_boots(sim$slo, sim$annot, c(1,3), "est_counts", "target_id") - data_B <- denest_sleuth_boots(sim$slo, sim$annot, c(2,4), "est_counts", "target_id") + sim <- sim_boot_data() + data_A <- sim$boots_A + data_B <- sim$boots_B # Emulate non-bootstrap data. - counts_A <- data_A[[1]] - counts_B <- data_B[[2]] + counts_A <- data_A[[2]] + counts_B <- data_B[[1]] mydtu <- list(call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=FALSE, qboot=FALSE, verbose = FALSE), call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE)) @@ -245,12 +244,14 @@ test_that("The result is consistent across input data formats", { #============================================================================== test_that("Filters work correctly", { - # !!! This test is tightly dependent on the data used for the test and the default parameter values, in order to + # !!! This test is tightly dependent on the data used for the test and the parameter values, in order to # !!! ensure correct response to specific scenarios. sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A=sim$boots_A, boot_data_B=sim$boots_B, name_A= "ONE", name_B= "TWO", abund_thresh=10, dprop_thresh=0.1, verbose = FALSE, rboot=FALSE, qboot = FALSE, seed=666) + mydtu <- call_DTU(annot= sim$annot, boot_data_A=sim$boots_A, boot_data_B=sim$boots_B, name_A= "ONE", name_B= "TWO", abund_thresh=8, dprop_thresh=0.1, verbose = FALSE, rboot=FALSE, qboot = FALSE, seed=666) + expect_equivalent(as.list(mydtu$Genes["1A1B", list(known_transc, detect_transc, elig_transc, elig, elig_fx)]), + list(2, 2, 2, TRUE, TRUE)) expect_equivalent(as.list(mydtu$Genes["1A1N", list(known_transc, detect_transc, elig_transc, elig, elig_fx)]), list(1, 1, 0, FALSE, FALSE)) expect_equivalent(as.list(mydtu$Genes["1B1C", list(known_transc, detect_transc, elig_transc, elig, elig_fx)]), @@ -273,6 +274,10 @@ test_that("Filters work correctly", { list(2, 2, 2, TRUE, FALSE)) setkey(mydtu$Transcripts, target_id) + expect_equivalent(as.list(mydtu$Transcripts["1A1B.a", list(elig_xp, elig, elig_fx)]), + list(TRUE, TRUE, TRUE)) + expect_equivalent(as.list(mydtu$Transcripts["1A1B.b", list(elig_xp, elig, elig_fx)]), + list(TRUE, TRUE, TRUE)) expect_equivalent(as.list(mydtu$Transcripts["1A1N-2", list(elig_xp, elig, elig_fx)]), list(TRUE, FALSE, FALSE)) expect_equivalent(as.list(mydtu$Transcripts["1B1C.1", list(elig_xp, elig, elig_fx)]), diff --git a/tests/testthat/test_6_reports.R b/tests/testthat/test_6_reports.R index a2e6958..4ab0f39 100644 --- a/tests/testthat/test_6_reports.R +++ b/tests/testthat/test_6_reports.R @@ -16,16 +16,16 @@ test_that("The summaries work", { for (v in ids) { expect_false(any(is.na(v))) } - expect_equal(ids[[1]], c("MIX6")) + expect_equal(ids[[1]], c("1A1B", "MIX6")) expect_equal(ids[[2]], c("CC", "NN")) expect_equal(ids[[3]], c("LC", "1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[4]], c("MIX6")) + expect_equal(ids[[4]], c("1A1B", "MIX6")) expect_equal(ids[[5]], c("LC", "CC", "NN")) expect_equal(ids[[6]], c("1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[7]], c("MIX6")) + expect_equal(ids[[7]], c("1A1B", "MIX6")) expect_equal(ids[[8]], c("CC", "NN")) expect_equal(ids[[9]], c("LC", "1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[10]], c("MIX6.c1", "MIX6.c2")) + expect_equal(ids[[10]], c("1A1B.a", "1A1B.b", "MIX6.c1", "MIX6.c2")) expect_equal(ids[[11]], c("MIX6.c4", "LC2", "CC_a", "CC_b", "MIX6.c3", "2NN", "1NN", "MIX6.nc")) expect_equal(ids[[12]], c("LC1", "1A1N-2", "1B1C.1", "1B1C.2", "1D1C:one", "1D1C:two", "MIX6.d", "ALLA1", "ALLB1", "ALLB2", "NIB.1")) @@ -36,29 +36,29 @@ test_that("The summaries work", { "DTU genes (both tests)", "non-DTU genes (both tests)", "ineligible genes (both tests)", "DTU transcripts", "non-DTU transcripts", "ineligible transcripts")) expect_equal(tally[[2]], as.vector(sapply(ids, length))) - expect_equal(tally[[2]], c(1, 2, 7, 1, 3, 6, 1, 2, 7, 2, 8, 11)) + expect_equal(tally[[2]], c(2, 2, 7, 2, 3, 6, 2, 2, 7, 4, 8, 11)) expect_false(any(is.na(tally))) # Lower effect size threshold to verify that DTU changes accordingly. mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1) expect_silent(ids <- get_dtu_ids(mydtu)) - expect_equal(ids[[1]], c("MIX6", "CC")) + expect_equal(ids[[1]], c("1A1B", "MIX6", "CC")) expect_equal(ids[[2]], c("NN")) expect_equal(ids[[3]], c("LC", "1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[4]], c("MIX6", "CC")) + expect_equal(ids[[4]], c("1A1B", "MIX6", "CC")) expect_equal(ids[[5]], c("LC", "NN")) expect_equal(ids[[6]], c("1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[7]], c("MIX6", "CC")) + expect_equal(ids[[7]], c("1A1B", "MIX6", "CC")) expect_equal(ids[[8]], c("NN")) expect_equal(ids[[9]], c("LC", "1A1N", "1B1C", "1D1C", "ALLA", "ALLB", "NIB")) - expect_equal(ids[[10]], c("MIX6.c1", "MIX6.c2", "MIX6.c4", "CC_a", "CC_b")) + expect_equal(ids[[10]], c("1A1B.a", "1A1B.b", "MIX6.c1", "MIX6.c2", "MIX6.c4", "CC_a", "CC_b")) expect_equal(ids[[11]], c("LC2", "MIX6.c3", "2NN", "1NN", "MIX6.nc")) expect_equal(ids[[12]], c("LC1", "1A1N-2", "1B1C.1", "1B1C.2", "1D1C:one", "1D1C:two", "MIX6.d", "ALLA1", "ALLB1", "ALLB2", "NIB.1")) expect_silent(tally <- dtu_summary(mydtu)) expect_equal(tally[[2]], as.vector(sapply(ids, length))) - expect_equal(tally[[2]], c(2, 1, 7, 2, 2, 6, 2, 1, 7, 5, 5, 11)) + expect_equal(tally[[2]], c(3, 1, 7, 3, 2, 6, 3, 1, 7, 7, 5, 11)) }) #============================================================================== @@ -74,7 +74,7 @@ test_that("The isoform switching summaries work", { for (v in ids) { expect_false(any(is.na(v))) } - expect_equal(as.vector(unlist(ids)), c("MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6")) + expect_equal(as.vector(unlist(ids)), c("1A1B", "MIX6", "MIX6", "1A1B", "MIX6", "MIX6", "1A1B", "MIX6", "MIX6")) expect_silent(tally <- dtu_switch_summary(mydtu)) expect_true(is.data.frame(tally)) @@ -82,7 +82,7 @@ test_that("The isoform switching summaries work", { "Primary switch (transc. test)", "Non-primary switch (transc. test)", "Primary switch (both tests)", "Non-primary switch (both tests)")) expect_false(any(is.na(tally))) - expect_equal(tally[[2]], c(1, 1, 1, 1, 1, 1)) + expect_equal(tally[[2]], c(2, 1, 2, 1, 2, 1)) expect_equal(tally[[2]], as.vector(sapply(ids, length))) }) @@ -98,21 +98,21 @@ test_that("The plurality summaries work", { for (v in ids) { expect_false(any(is.na(v))) } - expect_equal(as.vector(unlist(ids)), c("CC", "MIX6")) + expect_equal(as.vector(unlist(ids)), c("1A1B", "CC", "MIX6")) expect_silent(tally <- dtu_plurality_summary(mydtu)) expect_true(is.data.frame(tally)) expect_equal(tally[[1]], c("2", "3")) expect_false(any(is.na(tally))) - expect_equal(tally[[2]], c(1, 1)) + expect_equal(tally[[2]], c(2, 1)) expect_equal(tally[[2]], as.vector(sapply(ids, length))) mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.3) expect_silent(ids <- get_plurality_ids(mydtu)) expect_silent(tally <- dtu_plurality_summary(mydtu)) - expect_named(ids, c("1")) - expect_equal(as.vector(unlist(ids)), c("MIX6")) - expect_equal(tally[[2]], c(1)) + expect_named(ids, c("2", "1")) + expect_equal(as.vector(unlist(ids)), c("1A1B", "MIX6")) + expect_equal(tally[[2]], c(1, 1)) }) diff --git a/vignettes/input.Rmd b/vignettes/input.Rmd index 3a383a5..8bbba78 100644 --- a/vignettes/input.Rmd +++ b/vignettes/input.Rmd @@ -1,7 +1,7 @@ --- title: 'RATs: Input and Settings' author: "Kimon Froussios" -date: "19 SEP 2017" +date: "08 MAR 2018" output: html_document: keep_md: yes @@ -273,14 +273,16 @@ The following three main thresholds are used in RATs: # Calling DTU with custom thresholds. mydtu <- call_DTU(annot= myannot, boot_data_A= mycond_A, boot_data_B= mycond_B, - p_thresh= 0.01, abund_thresh= 10, dprop_thres = 0.25) + p_thresh= 0.01, dprop_thres = 0.15, abund_thresh= 10) ``` -1. `p_thresh` - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter. (Default 0.05) -2. `abund_thresh` - Noise threshold. Transcripts with abundance below that value in both conditions are ignored. Higher threshold values are stricter. (Default 5, assumes abundances scaled to library size) -3. `dprop_thresh` - Effect size threshold. Transcripts whose proportion changes between conditions by less than the threshold are considered non-DTU, regardless of their statistical significance. Higher threshold values are stricter. (Default 0.20) +1. `p_thresh` - Statistical significance level. P-values below this will be considered significant. Lower threshold values are stricter, and help reduce low-count low-confidence calls. (Default 0.05, very permissive) +2. `dprop_thresh` - Effect size threshold. Transcripts whose proportion changes between conditions by less than this threshold are considered uninteresting, regardless of their statistical significance. (Default 0.20, quite strict) +3. `abund_thresh` - Noise threshold. Minimum mean (across replicates) abundance for a transcript to be considered expressed. Transcripts with mean abundances below this will be ignored. Mean total gene count must also meet this value in both conditions, a.k.a. at least one expressed isoform must exist in each condition. (Default 5, very permissive) + +The default values for these thresholds have been chosen such that they achieve a *median* FDR <5% for a high quality dataset from *Arabidopsis thaliana*, even with only 3 replicates per condition. +Your mileage may vary and you should give some consideration to selecting appropriate values. -The default values for these thresholds have been chosen such that they achieve a *median* FDR <5% for a high quality dataset from *Arabidopsis thaliana*, even with only 3 replicates per condition. Your mileage may vary and you should give some consideration to selecting appropriate values. Depending on the settings, *additional thresholds* are available and will be discussed in their respective sections below. @@ -378,7 +380,7 @@ mydtu <- call_DTU(annot = myannot, 1. `threads` - The number of threads to use. (Default 1) -Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems. +Due to core R implementation limitations, the type of multi-threading used in RATs works only in POSIX-compliant systems (Linux, Mac, not Windows). Refer to the `parallel` package for details. @@ -447,14 +449,14 @@ such as those employed by RATs, and reduces the statistical power of the method. To counter this, RATs provides the option to scale abundaces either equally by a single factor (such as average library size among samples) or by a vector of factors (one per sample). The former maintains any pre-existing library-size normalisation among samples. This is necessary for fold-change based methods, but RATs does not require it. Instead, using the respective actual library sizes of the samples allows the -higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have dissimilar +higher-throughput samples to have a bigger influence than the lower-throughput samples. This is particularly relevant if your samples have very dissimilar library sizes. For flexibility with different types of input, these scaling options can be applied in either of two stages: The data import step by `fish4rodents()`, or the actual testing step by `call_DTU()`. In the example examined previously, `fish4rodents()` was instructed to create TPM abundances, -by normalising to 10000000 reads. Such values are useful with certain other tools that a user may also intend to use. +by normalising to `1000000` reads. Such values are useful with certain other tools that a user may also intend to use. Subsequently, these TPMs were re-scaled to meet the library size of each sample, thus providing RATs with count-like abundance values that retain -the TPM's normalisation by isoform length. However, it is not necessary to scale in two separate steps. +the normalisation by isoform length. However, it is not necessary to scale in two separate steps. Both `fish4rodents()` and `call_DTU()` support scaling by a single value or a vector of values. If you don't need the TPMs, you can scale directly to the desired library size(s), as in the examples below: @@ -495,7 +497,7 @@ mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, ``` You can mix and match scaling options as per your needs, so take care to ensure that the scaling you apply is appropriate. -It is important to note, that if you simply run both methods with their respective defaults, you'll effectively run RATs +*It is important to note*, that if you simply run both methods with their respective defaults, you'll effectively run RATs on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data. @@ -510,10 +512,10 @@ in a meaningful way. All internal operations and the output of RATs are based on the annotation provided: -* Any transcripts present in the data but missing from the annotation will be ignored completely and -will not show up in the output, as there is no reliable way to match them to gene IDs. -* Any transcript/gene present in the annotation but missing from the data will be included in the output as zero expression. -* If the samples appear to use different annotations from one another, RATs will abort. +* Any transcript IDs present in the data but missing from the annotation will be silently ignored and +will not show up in the output, as they cannot be matched to the gene IDs. +* Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression. +* If the samples appear to have been quantified with different annotations from one another, RATs will abort. *** From bb7c95f2cfd6b265694cfd5ee05debebd26ff478 Mon Sep 17 00:00:00 2001 From: fruce-ki <jack_ohara_097@hotmail.com> Date: Fri, 9 Mar 2018 17:53:41 +0000 Subject: [PATCH 2/5] fixes #49 and closes #52 - Explicitly check the transcript IDs in the annotation and quantifications for inconsistencies, and abort if any are found. - Add abort override option for special use cases. - Update docs and tests - Tidy up the input check tests, break them into smaller tests - Get rid of obsolete and almost certainly broken functions for data simulation. --- R/data_simulators.R | 198 +++++------------ R/func.R | 60 +++-- R/rats.R | 23 +- inst/doc/input.R | 9 +- inst/doc/input.Rmd | 33 +-- inst/doc/input.html | 27 ++- inst/doc/output.R | 2 +- inst/doc/output.Rmd | 9 +- inst/doc/output.html | 51 ++--- inst/doc/plots.R | 2 +- inst/doc/plots.Rmd | 2 +- inst/doc/plots.html | 8 +- man/call_DTU.Rd | 6 +- man/combine_sim_dtu.Rd | 19 -- man/countrange_sim.Rd | 26 --- man/parameters_are_good.Rd | 4 +- man/plot_sim.Rd | 16 -- man/sim_boot_data.Rd | 4 +- man/sim_count_data.Rd | 4 +- tests/testthat/test_1_internal-structures.R | 4 +- tests/testthat/test_3_input-checks.R | 232 ++++++++++++-------- tests/testthat/test_4_steps.R | 20 +- tests/testthat/test_5_output.R | 18 +- tests/testthat/test_6_reports.R | 32 ++- vignettes/input.Rmd | 33 +-- vignettes/output.Rmd | 9 +- vignettes/plots.Rmd | 2 +- 27 files changed, 428 insertions(+), 425 deletions(-) delete mode 100644 man/combine_sim_dtu.Rd delete mode 100644 man/countrange_sim.Rd delete mode 100644 man/plot_sim.Rd diff --git a/R/data_simulators.R b/R/data_simulators.R index d7d8a8a..7e7334c 100644 --- a/R/data_simulators.R +++ b/R/data_simulators.R @@ -4,6 +4,7 @@ #' @param TARGET_COL Name for annotation column containing transcript identification. #' @param PARENT_COL Name for the bootdtraps column containing counts. #' @param errannot_inconsistent Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE) +#' @param clean Logical. Remove the intentional inconsistency of IDs between annotation and abundances. #' @return A list with 3 elements. First a data.frame with the corresponding annotation. #' Then, 2 lists of data.tables. One list per condition. Each data table represents a sample and contains the estimates from the bootstrap iterations. #' @@ -11,38 +12,63 @@ #' #' @export #' -sim_boot_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", TARGET_COL="target_id") { +sim_boot_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", TARGET_COL="target_id", clean=FALSE) { tx <- data.frame(target_id= c("1A1B.a", "1A1B.b", "NIB.1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.1", "1B1C.2", "CC_a", "CC_b", "1NN", "2NN", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "LC1", "LC2", "ALLA1", "ALLB1", "ALLB2"), - parent_id= c("1A1B", "1A1B", "NIB", "1A1N", "1D1C", "1D1C", "1B1C", "1B1C", "CC", "CC", "NN", "NN", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "LC", "LC", "ALLA", "ALLB", "ALLB"), + parent_id= c("1A1B", "1A1B", "NIB", "1A1N", "1D1C", "1D1C", "1B1C", "1B1C", "CC", "CC", "NN", "NN", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "MIX6", "LC", "LC", "ALLA", "ALLB", "ALLB"), stringsAsFactors=FALSE) names(tx) <- c(TARGET_COL, PARENT_COL) a <- list() - a[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 69, 0, 3, 333, 666, 10, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0), - "V2"= c( 96, 0, 2, 310, 680, 11, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0), - "V3"= c( 88, 0, 0, 340, 610, 7, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0), - stringsAsFactors=FALSE) - - a[[2]] <- data.table("target"= c("NIA1", "1A1B.a", "1A1B.b", "1A1N-2", "LC1", "NIA2", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "1A1N-1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 333, 121, 0, 20, 3, 666, 0, 76, 52, 100, 10, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0), - "V2"= c( 330, 144, 0, 11, 4, 560, 0, 80, 55, 90, 11, 380, 0, 80, 0, 240, 23, 55, 10, 31, 2, 55, 0, 0), - stringsAsFactors=FALSE) - b <- list() - b[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), - "V1"= c( 0, 91, 333, 6, 666, 12, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200), - "V2"= c( 0, 100, 323, 1, 606, 15, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250), - stringsAsFactors=FALSE) - b[[2]] <- data.table("target"= c("NIA2", "1A1N-1", "NIA1", "1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1A1B.b", "1A1B.a"), - "V1"= c( 666, 12, 333, 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210, 76, 0), - "V2"= c( 656, 15, 323, 22, 0, 23, 2, 160, 120, 35, 280, 0, 95, 0, 119, 18, 19, 58, 7, 0, 150, 220, 69, 0), - "V3"= c( 676, 13, 343, 21, 0, 20, 3, 145, 133, 30, 270, 0, 55, 0, 80, 23, 17, 50, 14, 0, 130, 200, 36, 0), - stringsAsFactors=FALSE) + if (clean) { + a[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "LC1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1B1C.1", "NIB.1"), + "V1"= c( 69, 0, 3, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0, 0, 0), + "V2"= c( 96, 0, 2, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0, 0, 0), + "V3"= c( 88, 0, 0, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0, 0, 0), + stringsAsFactors=FALSE) + + a[[2]] <- data.table("target"= c("1A1B.a", "1A1B.b", "1A1N-2", "LC1", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1B1C.1", "NIB.1"), + "V1"= c( 121, 0, 20, 3, 0, 76, 52, 100, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0, 0, 0), + "V2"= c( 144, 0, 11, 4, 0, 80, 55, 90, 380, 0, 80, 0, 240, 23, 55, 10, 31, 2, 55, 0, 0, 0, 0), + stringsAsFactors=FALSE) + + b[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "LC1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1B1C.1", "NIB.1"), + "V1"= c( 0, 91, 6, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200, 0, 0), + "V2"= c( 0, 100, 1, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250, 0, 0), + stringsAsFactors=FALSE) + + b[[2]] <- data.table("target"= c("1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1A1B.b", "1A1B.a", "1B1C.1", "NIB.1"), + "V1"= c( 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210, 76, 0, 0, 0), + "V2"= c( 22, 0, 23, 2, 160, 120, 35, 280, 0, 95, 0, 119, 18, 19, 58, 7, 0, 150, 220, 69, 0, 0, 0), + "V3"= c( 21, 0, 20, 3, 145, 133, 30, 270, 0, 55, 0, 80, 23, 17, 50, 14, 0, 130, 200, 36, 0, 0, 0), + stringsAsFactors=FALSE) + } else { + a[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "LC1", "NIA1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 69, 0, 3, 333, 666, 10, 20, 0, 76, 52, 20, 50, 103, 321, 0, 100, 90, 0, 10, 30, 4, 50, 0, 0), + "V2"= c( 96, 0, 2, 310, 680, 11, 21, 0, 80, 55, 22, 52, 165, 320, 0, 130, 80, 0, 11, 29, 5, 40, 0, 0), + "V3"= c( 88, 0, 0, 340, 610, 7, 18, 0, 72, 50, 21, 49, 150, 325, 0, 120, 70, 0, 9, 28, 4, 60, 0, 0), + stringsAsFactors=FALSE) + + a[[2]] <- data.table("target"= c("NIA1", "1A1B.a", "1A1B.b", "1A1N-2", "LC1", "NIA2", "1D1C:one", "1D1C:two", "1B1C.2", "MIX6.c1", "1A1N-1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.d", "MIX6.nc", "CC_a", "CC_b", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 333, 121, 0, 20, 3, 666, 0, 76, 52, 100, 10, 360, 0, 100, 0, 180, 25, 60, 7, 27, 13, 35, 0, 0), + "V2"= c( 330, 144, 0, 11, 4, 560, 0, 80, 55, 90, 11, 380, 0, 80, 0, 240, 23, 55, 10, 31, 2, 55, 0, 0), + stringsAsFactors=FALSE) + + b[[1]] <- data.table("target"= c("1A1B.a", "1A1B.b", "NIA1", "LC1", "NIA2", "1A1N-1", "1A1N-2", "1D1C:one", "1D1C:two", "1B1C.2", "CC_a", "CC_b", "MIX6.c1", "MIX6.c2", "MIX6.c3", "MIX6.c4", "MIX6.nc", "MIX6.d", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2"), + "V1"= c( 0, 91, 333, 6, 666, 12, 23, 0, 25, 150, 15, 80, 325, 105, 40, 0, 200, 0, 15, 45, 12, 0, 80, 200), + "V2"= c( 0, 100, 323, 1, 606, 15, 22, 0, 23, 190, 20, 90, 270, 115, 30, 0, 150, 0, 20, 60, 15, 0, 120, 250), + stringsAsFactors=FALSE) + + b[[2]] <- data.table("target"= c("NIA2", "1A1N-1", "NIA1", "1A1N-2", "1D1C:one", "1D1C:two", "LC1", "1B1C.2", "MIX6.c2", "MIX6.c3", "MIX6.c1", "MIX6.c4", "MIX6.nc", "MIX6.d", "CC_b", "CC_a", "1NN", "2NN", "LC2", "ALLA1", "ALLB1", "ALLB2", "1A1B.b", "1A1B.a"), + "V1"= c( 666, 12, 333, 23, 0, 25, 0, 150, 155, 40, 300, 0, 33, 0, 93, 22, 22, 61, 11, 0, 110, 210, 76, 0), + "V2"= c( 656, 15, 323, 22, 0, 23, 2, 160, 120, 35, 280, 0, 95, 0, 119, 18, 19, 58, 7, 0, 150, 220, 69, 0), + "V3"= c( 676, 13, 343, 21, 0, 20, 3, 145, 133, 30, 270, 0, 55, 0, 80, 23, 17, 50, 14, 0, 130, 200, 36, 0), + stringsAsFactors=FALSE) + } if (errannot_inconsistent) - a[[2]][14, 1] <- "Unexpected-name" + b[[1]][14, 1] <- "Unexpected-name" return(list('annot'= tx, 'boots_A'= a, 'boots_B'= b)) } @@ -53,134 +79,14 @@ sim_boot_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", T #' @param PARENT_COL Name for the bootdtraps column containing counts. #' @param TARGET_COL Name for annotation column containing transcript identification. #' @param errannot_inconsistent Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE) +#' @param clean Logical. Remove the intentional inconsistency of IDs between annotation and abundances. #' @return A list with 3 elements. First, a data.frame with the corresponding annotation table. #' Then, 2 data.tables, one per condition. Each data table contains the abundance estimates for all the samples for the respective condition. #' #' @export #' -sim_count_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", TARGET_COL="target_id") { - sim <- sim_boot_data(errannot_inconsistent=errannot_inconsistent, PARENT_COL=PARENT_COL, TARGET_COL=TARGET_COL) +sim_count_data <- function(errannot_inconsistent=FALSE, PARENT_COL="parent_id", TARGET_COL="target_id", clean=FALSE) { + sim <- sim_boot_data(errannot_inconsistent=errannot_inconsistent, PARENT_COL=PARENT_COL, TARGET_COL=TARGET_COL, clean=clean) return(list('annot'=sim$annot, 'counts_A'= sim$boots_A[[1]], 'counts_B'= sim$boots_B[[1]])) } - - -#=============================================================================== -#' Generate artificial read-count data for simulated 2-transcript genes, -#' systematically covering a broad range of proportions and magnitudes. -#' -#' For each level of transcript proportions in condition A, all proportion levels are -#' generated for condition B as possible new states. Therefore the number of transcripts -#' generated is 2 * N^2 * M, where 2 is the number of gene isoforms per paramater combination, -#' N is the number of proportion levels and M the number of magnitude levels. -#' -#' @param proportions Range and step of proportions for 1st transcript. Sibling transcript complemented from these. -#' @param magnitudes vector of read-count sizes to use. -#' @return list containing: \code{data} a minimal sleuth-like object. -#' \code{anno} a dataframe matching \code{target_id} to \code{parent_id}. -#' \code{sim} a dataframe with the simulation parameters per transcript. -#' -# @export -countrange_sim <- function(proportions= seq(0, 1, 0.01), - magnitudes= c(1,5,10,30,100,500,1000)) { - # Combine proportions and magnitudes. - # Start by grid-ing the values for easier visualization and naming, instead of computing the outer products directly. - grd <- expand.grid(c("t1", "t2"), proportions, proportions, magnitudes) - names(grd) <- c("sibl", "propA", "propB", "mag") - # Name the "transcripts". - opts <- options() - options(scipen=0, digits=3) - grd["parent_id"] <- paste(grd$mag, "_a", grd$propA,"_b", grd$propB, sep="") - grd["target_id"] <- paste(grd$parent_id, grd$sibl, sep="_") - options(scipen=opts$scipen, digits=opts$digits) - # Complementary proportions - grd[grd$sibl == "t2", c("propA", "propB")] <- c(1-grd$propA[grd$sibl == "t2"], 1-grd$propB[grd$sibl == "t2"]) - - # Make a sleuth-like object. - sl <- list() - sl["kal"] <- list() - sl[["sample_to_covariates"]] <- data.frame("sample"=c("A-1", "B-1"), "condition"=c("A", "B")) - # condition A - sl$kal[[1]] <- list() - sl$kal[[1]]["bootstrap"] <- list() - sl$kal[[1]]$bootstrap[[1]] <- data.frame("target_id"=grd$target_id, "est_counts"=grd$propA * grd$mag) - # condition B - sl$kal[[2]] <- list() - sl$kal[[2]]["bootstrap"] <- list() - sl$kal[[2]]$bootstrap[[1]] <- data.frame("target_id"=grd$target_id, "est_counts"=grd$propB * grd$mag) - - # Create annotation: - anno <- data.frame("target_id"=grd$target_id, "parent_id"=grd$parent_id) - - # Store simulation for ease. - results <- list("data"=sl, "anno"=anno, "sim"=grd) - - return(results) -} - - -#=============================================================================== -#' Combine simulation details with DTU calls, in preparation for plotting. -#' -#' @param sim An object generated with countrange_sim(), containing the simulated data details with which the \code{dtu} object was calculated. -#' @param dtuo The object with the DTU results corresponding to the \code{sim} object's data. -#' @return dataframe -#' -#' @import data.table -# @export -combine_sim_dtu <- function(sim, dtuo) { - with(dtuo, { - results <- data.table(Genes[, list(parent_id, pval_AB, pval_BA, dtu_AB, dtu_BA, dtu, pval_prop_min, dtu_prop)]) - setkey(results, parent_id) - tmp <- data.table(sim$sim[sim$sim["sibl"]=="t2", c("parent_id", "propA", "mag", "propB")]) - setkey(tmp, parent_id) - results <- merge(results, tmp, by="parent_id") - return(results) - }) -} - - -#=============================================================================== -#' Plot relationship of parameters. -#' -#' @param data the output from combine_sim_dtu() -#' @param type (str) "AvBvM", "B/AvM", "AvBvMprop", "B/AvMprop", "B-AvM" -#' -#' @import ggplot2 -#' @import data.table -# @export -plot_sim <- function(data, type = "AvBvM") { - with(data, { - if(type =="AvBvM"){ - return( - ggplot(data[order(dtu, propA, propB), ], aes(x=propA, y=propB, color=dtu)) + - labs(x="Prop t1 in A", y = "Prop t1 in B") + - scale_color_manual(values=c("lightblue","red")) + - geom_point() + - facet_grid(. ~ mag) - ) - } else if(type == "B/AvM") { - return( - ggplot(data[order(dtu, mag), ], aes(x=propB/propA, y=mag, color=dtu)) + - labs(x="Prop t1 in B / Prop t1 in A", y = "Gene magnitude") + - scale_color_manual(values=c("lightblue","red")) + - geom_point() - ) - } else if(type =="AvBvMprop"){ - return( - ggplot(data[order(dtu_prop, propA, propB), ], aes(x=propA, y=propB, color=dtu_prop)) + - labs(x="Prop t1 in A", y = "Prop t1 in B") + - scale_color_manual(values=c("lightblue","red")) + - geom_point() + - facet_grid(. ~ mag) - ) - } else if(type == "B/AvMprop") { - return( - ggplot(data[order(dtu_prop, mag), ], aes(x=propB/propA, y=mag, color=dtu_prop)) + - labs(x="Prop t1 in B / Prop t1 in A", y = "Gene magnitude") + - scale_color_manual(values=c("lightblue","red")) + - geom_point() - ) - } - }) -} diff --git a/R/func.R b/R/func.R index a674b27..bca65ba 100644 --- a/R/func.R +++ b/R/func.R @@ -21,6 +21,7 @@ #' @param threads Number of threads. #' @param seed Seed for random engine. #' @param scaling Abundance scaling factor. +#' @param reckless whether to ignore detected annotation discrepancies #' #' @return List: \itemize{ #' \item{"error"}{logical} @@ -36,7 +37,7 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, TARGET_COL, PARENT_COL, correction, testmode, scaling, threads, seed, p_thresh, abund_thresh, dprop_thresh, - qboot, qbootnum, qrep_thresh, rboot, rrep_thresh) { + qboot, qbootnum, qrep_thresh, rboot, rrep_thresh, reckless) { warnmsg <- list() # Input format. @@ -48,14 +49,16 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, return(list("error"=TRUE, "message"="You must specify (the same type of) data for both conditions!")) # Annotation. + if (!is.logical(reckless) || is.na(reckless)) + return(list("error"=TRUE, "message"="Invalid value to reckless!")) if (!is.data.frame(annot)) return(list("error"=TRUE, "message"="The provided annot is not a data.frame!")) if (any(!c(TARGET_COL, PARENT_COL) %in% names(annot))) return(list("error"=TRUE, "message"="The specified target and/or parent IDs field names do not exist in annot!")) - if (length(annot$target_id) != length(unique(annot$target_id))) + if (length(annot[[TARGET_COL]]) != length(unique(annot[[TARGET_COL]]))) return(list("error"=TRUE, "message"="Some transcript identifiers are not unique!")) - - # Parameters. + + # Simple parameters. if (!correction %in% p.adjust.methods) return(list("error"=TRUE, "message"="Invalid p-value correction method name. Refer to stats::p.adjust.methods .")) if (!testmode %in% c("genes", "transc", "both")) @@ -80,6 +83,8 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, return(list("error"=TRUE, "message"="Invalid number of threads! Must be positive integer.")) if (threads > parallel::detectCores(logical= TRUE)) return(list("error"=TRUE, "message"="Number of threads exceeds system's reported capacity.")) + + # Scaling nsmpl <- NULL if (!is.null(count_data_A)){ nsmpl <- dim(count_data_A)[2] + dim(count_data_B)[2] @@ -103,8 +108,20 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, if(is.null(boot_data_A)) { if (!is.data.table(count_data_A) | !is.data.table(count_data_B)) return(list("error"=TRUE, "message"="The counts data are not data.tables!")) - if (!all( count_data_A[[1]][order(count_data_A[[1]])] == count_data_B[[1]][order(count_data_B[[1]])] )) - return(list("error"=TRUE, "message"="Inconsistent set of transcript IDs between conditions!")) + if ( !all(count_data_A[[1]] %in% annot[[TARGET_COL]]) && !all(annot[[TARGET_COL]] %in% count_data_A[[1]]) ) { + if(reckless){ + warnmsg["annotation-mismatch"] <- "The transcript IDs in the quantifications and the annotation do not match completely! Did you use different annotations? Reckless mode enabled, continuing at your own risk..." + } else { + return(list("error"=TRUE, "message"="The transcript IDs in the quantifications and the annotation do not match completely! Did you use different annotations?")) + } + } + if (!all( count_data_A[[1]][order(count_data_A[[1]])] == count_data_B[[1]][order(count_data_B[[1]])] )) { + if (reckless) { + warnmsg["countIDs"] <- "Transcript IDs do not match completely between conditions! Did you use different annotations? Reckless mode enabled, continuing at your own risk..." + } else { + return(list("error"=TRUE, "message"="Transcript IDs do not match completely between conditions! Did you use different annotations?")) + } + } } else { warnmsg["cnts&boots"] <- "Received multiple input formats! Only the bootstrapped data will be used." } @@ -119,17 +136,33 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, } maxmatrix <- 2^31 - 1 if (qboot) { - # Consistency, if (!is.null(boot_data_A)) { - # Direct data. + # Compared to annotation. + if ( !all(boot_data_A[[1]][[1]] %in% annot[[TARGET_COL]]) && !all(annot[[TARGET_COL]] %in% boot_data_A[[1]][[1]]) ) { + if(reckless){ + warnmsg["annotation-mismatch"] <- "The transcript IDs in the quantifications and the annotation do not match completely! Did you use different annotations? Reckless mode enabled, continuing at your own risk..." + } else { + return(list("error"=TRUE, "message"="The transcript IDs in the quantifications and the annotation do not match completely! Did you use different annotations?")) + } + } + # Among samples tx <- boot_data_A[[1]][[1]][order(boot_data_A[[1]][[1]])] for (k in 2:length(boot_data_A)){ - if (!all( tx == boot_data_A[[k]][[1]][order(boot_data_A[[k]][[1]])] )) - return(list("error"=TRUE, "message"="Inconsistent set of transcript IDs across samples!")) + if (!all( tx == boot_data_A[[k]][[1]][order(boot_data_A[[k]][[1]])] )) { + if (reckless) { + warnmsg[paste0("bootIDs-A", k)] <- paste0("Inconsistent set of transcript IDs across samples (A", k, ")! Did you use different annotations? Reckless mode enabled, continuing at your own risk...") + } else { + return(list("error"=TRUE, "message"="Inconsistent set of transcript IDs across samples! Did you use different annotations?")) + } + } } for (k in 1:length(boot_data_B)){ if (!all( tx == boot_data_B[[k]][[1]][order(boot_data_B[[k]][[1]])] )) - return(list("error"=TRUE, "message"="Inconsistent set of transcript IDs across samples!")) + if (reckless) { + warnmsg[paste0("bootIDs-B", k)] <- paste0("Inconsistent set of transcript IDs across samples (B", k, ")! Did you use different annotations? Reckless mode enabled, continuing at your own risk...") + } else { + return(list("error"=TRUE, "message"="Inconsistent set of transcript IDs across samples! Did you use different annotations?")) + } } # Number of iterations. @@ -156,7 +189,7 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, if (rboot & any( length(samples_by_condition[[1]]) * length(samples_by_condition[[2]]) > maxmatrix/dim(annot)[1], length(boot_data_A) * length(boot_data_B) > maxmatrix/dim(annot)[1] ) ) warnmsg["toomanyreplicates"] <- "The number of replicates is too high. Exhaustive 1vs1 would exceed maximum capacity of an R matrix." - + return(list("error"=FALSE, "message"="All good!", "maxboots"=minboots, "warn"=(length(warnmsg) > 0), "warnings"= warnmsg)) } @@ -205,7 +238,7 @@ alloc_out <- function(annot, full, n=1){ "abund_scaling"=numeric(length=n), "quant_boot"=NA,"quant_reprod_thresh"=NA_real_, "quant_bootnum"=NA_integer_, "rep_boot"=NA, "rep_reprod_thresh"=NA_real_, "rep_bootnum"=NA_integer_, - "seed"=NA_integer_) + "seed"=NA_integer_, "reckless"=NA) Genes <- data.table("parent_id"=as.vector(unique(annot$parent_id)), "elig"=NA, "sig"=NA, "elig_fx"=NA, "quant_reprod"=NA, "rep_reprod"=NA, "DTU"=NA, "transc_DTU"=NA, "known_transc"=NA_integer_, "detect_transc"=NA_integer_, "elig_transc"=NA_integer_, "maxDprop"=NA_real_, @@ -497,3 +530,4 @@ group_samples <- function(covariates) { } +#EOF diff --git a/R/rats.R b/R/rats.R index eb5d327..bce8e9e 100644 --- a/R/rats.R +++ b/R/rats.R @@ -33,7 +33,8 @@ #' @param verbose Display progress updates and warnings. (Default \code{TRUE}) #' @param threads Number of threads to use. (Default 1) Multi-threading will be ignored on non-POSIX systems. #' @param seed A numeric integer used to initialise the random number engine. Use this only if reproducible bootstrap selections are required. (Default NA) -#' @param dbg Debugging mode. Interrupt execution at the specified flag-point. Used to speed up code-tests by avoiding irrelevant downstream processing. (Default 0: do not interrupt) +#' @param reckless RATs normally aborts if any inconsistency is detected among the transcript IDs found in the annotation and the quantifications. Enabling reckless mode will downgrade this error to a warning and allow RATs to continue the run. Not recommended unless you know why the inconsistency exists and how it will affect the results. (Default FALSE) +#' @param dbg Debugging mode only. Interrupt execution at the specified flag-point. Used to speed up code-tests by avoiding irrelevant downstream processing. (Default 0: do not interrupt) #' @return List of mixed types. Contains a list of runtime settings, a table of gene-level results, a table of transcript-level results, and a list of two tables with the transcript abundaces. #' #' @import utils @@ -46,7 +47,7 @@ call_DTU <- function(annot= NULL, TARGET_COL= "target_id", PARENT_COL= "parent_i name_A= "Condition-A", name_B= "Condition-B", varname= "condition", p_thresh= 0.05, abund_thresh= 5, dprop_thresh= 0.2, correction= "BH", scaling= 1, testmode= "both", qboot= TRUE, qbootnum= 0L, qrep_thresh= 0.95, rboot=TRUE, rrep_thresh= 0.85, - description= NA_character_, verbose= TRUE, threads= 1L, seed=NA_integer_, dbg= "0") + description= NA_character_, verbose= TRUE, threads= 1L, seed=NA_integer_, reckless=FALSE, dbg= "0") { #---------- PREP @@ -60,7 +61,7 @@ call_DTU <- function(annot= NULL, TARGET_COL= "target_id", PARENT_COL= "parent_i TARGET_COL, PARENT_COL, correction, testmode, scaling, threads, seed, p_thresh, abund_thresh, dprop_thresh, - qboot, qbootnum, qrep_thresh, rboot, rrep_thresh) + qboot, qbootnum, qrep_thresh, rboot, rrep_thresh, reckless) if (paramcheck$error) stop(paramcheck$message) if (verbose) @@ -243,6 +244,7 @@ call_DTU <- function(annot= NULL, TARGET_COL= "target_id", PARENT_COL= "parent_i resobj$Parameters[["quant_reprod_thresh"]] <- qrep_thresh resobj$Parameters[["quant_bootnum"]] <- qbootnum resobj$Parameters[["rep_reprod_thresh"]] <- rrep_thresh + resobj$Parameters[["reckless"]] <- reckless if (dbg == "info") return(resobj) @@ -469,6 +471,19 @@ call_DTU <- function(annot= NULL, TARGET_COL= "target_id", PARENT_COL= "parent_i Transcripts[is.na(rep_reprod), rep_reprod := c(FALSE)] Transcripts[is.na(DTU), DTU := c(FALSE)] Transcripts[is.na(gene_DTU), gene_DTU := c(FALSE)] + # Eradicate NAs from count columns, as they mess up plotting. These would be caused by inconsistencies between annotation and quantifications, and would only exist in "reckless" mode. + for (i in 1:Parameters$num_replic_A){ + idx <- is.na(Abundances[[1]][[paste0('V',i)]]) + Abundances[[1]][idx, paste0('V',i) := 0] + } + for (i in 1:Parameters$num_replic_B){ + idx <- is.na(Abundances[[2]][[paste0('V',i)]]) + Abundances[[2]][idx, paste0('V',i) := 0] + } + Transcripts[is.na(meanA), meanA := c(0)] + Transcripts[is.na(meanB), meanB := c(0)] + Transcripts[is.na(propA), propA := c(0)] + Transcripts[is.na(propB), propB := c(0)] # Drop the bootstrap columns, if unused. if (!qboot || !test_transc) @@ -495,4 +510,4 @@ call_DTU <- function(annot= NULL, TARGET_COL= "target_id", PARENT_COL= "parent_i return(resobj) } - +#EOF diff --git a/inst/doc/input.R b/inst/doc/input.R index 1c840cb..8296540 100644 --- a/inst/doc/input.R +++ b/inst/doc/input.R @@ -21,7 +21,7 @@ head(sim_count_data()[[1]]) ## ---- eval=FALSE--------------------------------------------------------- # # Simulate some data. -# simdat <- sim_count_data() +# simdat <- sim_count_data(clean=TRUE) # # For convenience let's assign the contents of the list to separate variables # mycond_A <- simdat[[2]] # Simulated abundances for one condition. # mycond_B <- simdat[[3]] # Simulated abundances for other condition. @@ -39,7 +39,7 @@ head(sim_count_data()[[1]]) ## ------------------------------------------------------------------------ # Simulate some data. (Notice it is a different function than before.) -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. @@ -169,3 +169,8 @@ myannot <- simdat[[1]] # Transcript and gene IDs for the above data. # boot_data_B= mydata$boot_data_B, # scaling=c(25, 26.7, 23, 50.0, 45, 48.46, 52.36)) +## ---- eval=FALSE--------------------------------------------------------- +# mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, +# boot_data_B= mydata$boot_data_B, +# reckless=TRUE, verbose=TRUE) + diff --git a/inst/doc/input.Rmd b/inst/doc/input.Rmd index 8bbba78..be59177 100644 --- a/inst/doc/input.Rmd +++ b/inst/doc/input.Rmd @@ -103,8 +103,8 @@ RATs comes with data emulators, intended to be used for testing the code. Howeve use for showcasing how RATs works. By default, RATs reports on its progress and produces a summary report. These can be suppressed using the -`verbose = FALSE` parameter to the call. To prevent cluttering this tutorial with verbose output, we will use this -option in all the examples. +`verbose = FALSE` parameter. This also suppresses some warnings generated by RATs when checking the sanity of its input, +so we do not recommend it for general use. However, to prevent cluttering this tutorial with verbose output, we will use this option in our examples. If you choose to allow verbose output when trying out the examples below using the emulated data, you will get some **warnings** about the number of bootstraps. The warning is triggered because the emulated dataset used in the examples immitates only the structure of @@ -120,7 +120,7 @@ First, let's emulate some data to work with: ```{r, eval=FALSE} # Simulate some data. -simdat <- sim_count_data() +simdat <- sim_count_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated abundances for one condition. mycond_B <- simdat[[3]] # Simulated abundances for other condition. @@ -162,7 +162,7 @@ First, let's emulate some data, as we did before. ```{r} # Simulate some data. (Notice it is a different function than before.) -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. @@ -501,22 +501,29 @@ You can mix and match scaling options as per your needs, so take care to ensure on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data. -*** - - -# Annotation discrepancies +## Annotation discrepancies Different annotation versions often preserve transcript IDs, despite altering the details of the transcript model. +They also tend to include more or fewer transcripts, affecting the result of quantification. It is important to use the same annotation throughout the workflow, otherwise the abundances will not be comparable in a meaningful way. -All internal operations and the output of RATs are based on the annotation provided: +RATs will abort the run if the set of feature IDs in the provided annotation does not match fully the set of IDs in the quantifications. +If this happens, ensure you are using the exact same annotation throughout your workflow. + +For special use cases, RATs provides the option to ignore the discrepancy and pretend everything is OK. Do this at your own risk. + +```{r, eval=FALSE} +mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, + boot_data_B= mydata$boot_data_B, + reckless=TRUE, verbose=TRUE) +``` + -* Any transcript IDs present in the data but missing from the annotation will be silently ignored and -will not show up in the output, as they cannot be matched to the gene IDs. -* Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression. -* If the samples appear to have been quantified with different annotations from one another, RATs will abort. +In reckless mode, all internal operations and the output of RATs are based on the annotation provided: +* Any transcript IDs present in the data but missing from the annotation will be ignored and will not show up in the output at all, as they cannot be matched to the gene IDs. +* Any transcript ID present in the annotation but missing from the data will be included in the output as zero expression. They can be identified later as `NA` values in `$Transcripts[, .(stdevA, stdevB)]` as these fields are not used downstream by RATs. `NA` values in other numeric fields are explicitly overwritten with `0` to allow downstream interoperability. *** diff --git a/inst/doc/input.html b/inst/doc/input.html index 6d5aa38..65d0336 100644 --- a/inst/doc/input.html +++ b/inst/doc/input.html @@ -276,14 +276,14 @@ <h2>Annotation</h2> <div id="calling-dtu" class="section level1"> <h1>Calling DTU</h1> <p>To bypass the complexity of involving third-party tools in this tutorial, we will instead use <strong>emulated data</strong>. RATs comes with data emulators, intended to be used for testing the code. However, they are also convenient to use for showcasing how RATs works.</p> -<p>By default, RATs reports on its progress and produces a summary report. These can be suppressed using the <code>verbose = FALSE</code> parameter to the call. To prevent cluttering this tutorial with verbose output, we will use this option in all the examples.</p> +<p>By default, RATs reports on its progress and produces a summary report. These can be suppressed using the <code>verbose = FALSE</code> parameter. This also suppresses some warnings generated by RATs when checking the sanity of its input, so we do not recommend it for general use. However, to prevent cluttering this tutorial with verbose output, we will use this option in our examples.</p> <p>If you choose to allow verbose output when trying out the examples below using the emulated data, you will get some <strong>warnings</strong> about the number of bootstraps. The warning is triggered because the emulated dataset used in the examples immitates only the structure of real data, not the actual volume of it, and as such it contains unrealistically few bootstrap iterations. Simply ignore these warnings for these examples.</p> <div id="dtu-from-abundance-estimates-without-bootstraps" class="section level3"> <h3>DTU from abundance estimates, without bootstraps</h3> <p>This is the simplest usage case, and your likely input type if you use quantifications methods other than Kallisto and Salmon.</p> <p>First, let’s emulate some data to work with:</p> <pre class="r"><code># Simulate some data. -simdat <- sim_count_data() +simdat <- sim_count_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated abundances for one condition. mycond_B <- simdat[[3]] # Simulated abundances for other condition. @@ -321,7 +321,7 @@ <h4>Advanced options</h4> <h3>DTU from bootstrapped abundance estimates</h3> <p>First, let’s emulate some data, as we did before.</p> <pre class="r"><code># Simulate some data. (Notice it is a different function than before.) -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. @@ -564,20 +564,23 @@ <h2>Abundance scaling</h2> boot_data_B= mydata$boot_data_B, scaling=c(25, 26.7, 23, 50.0, 45, 48.46, 52.36))</code></pre> <p>You can mix and match scaling options as per your needs, so take care to ensure that the scaling you apply is appropriate. <em>It is important to note</em>, that if you simply run both methods with their respective defaults, you’ll effectively run RATs on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data.</p> -<hr /> -</div> </div> -<div id="annotation-discrepancies" class="section level1"> -<h1>Annotation discrepancies</h1> -<p>Different annotation versions often preserve transcript IDs, despite altering the details of the transcript model. It is important to use the same annotation throughout the workflow, otherwise the abundances will not be comparable in a meaningful way.</p> -<p>All internal operations and the output of RATs are based on the annotation provided:</p> +<div id="annotation-discrepancies" class="section level2"> +<h2>Annotation discrepancies</h2> +<p>Different annotation versions often preserve transcript IDs, despite altering the details of the transcript model. They also tend to include more or fewer transcripts, affecting the result of quantification. It is important to use the same annotation throughout the workflow, otherwise the abundances will not be comparable in a meaningful way.</p> +<p>RATs will abort the run if the set of feature IDs in the provided annotation does not match fully the set of IDs in the quantifications. If this happens, ensure you are using the exact same annotation throughout your workflow.</p> +<p>For special use cases, RATs provides the option to ignore the discrepancy and pretend everything is OK. Do this at your own risk.</p> +<pre class="r"><code>mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, + boot_data_B= mydata$boot_data_B, + reckless=TRUE, verbose=TRUE)</code></pre> +<p>In reckless mode, all internal operations and the output of RATs are based on the annotation provided:</p> <ul> -<li>Any transcript IDs present in the data but missing from the annotation will be silently ignored and will not show up in the output, as they cannot be matched to the gene IDs.</li> -<li>Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression.</li> -<li>If the samples appear to have been quantified with different annotations from one another, RATs will abort.</li> +<li>Any transcript IDs present in the data but missing from the annotation will be ignored and will not show up in the output at all, as they cannot be matched to the gene IDs.</li> +<li>Any transcript ID present in the annotation but missing from the data will be included in the output as zero expression. They can be identified later as <code>NA</code> values in <code>$Transcripts[, .(stdevA, stdevB)]</code> as these fields are not used downstream by RATs. <code>NA</code> values in other numeric fields are explicitly overwritten with <code>0</code> to allow downstream interoperability.</li> </ul> <hr /> </div> +</div> <div id="contact-information" class="section level1"> <h1>Contact information</h1> <p>The <code>rats</code> R package was developed within <a href="http://www.compbio.dundee.ac.uk">The Barton Group</a> at <a href="http://www.dundee.ac.uk">The University of Dundee</a> by Dr. Kimon Froussios, Dr. Kira Mourão and Dr. Nick Schurch.</p> diff --git a/inst/doc/output.R b/inst/doc/output.R index 2980c01..02841ce 100644 --- a/inst/doc/output.R +++ b/inst/doc/output.R @@ -6,7 +6,7 @@ library(rats) ## ------------------------------------------------------------------------ # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. diff --git a/inst/doc/output.Rmd b/inst/doc/output.Rmd index 2d91416..16f6b28 100644 --- a/inst/doc/output.Rmd +++ b/inst/doc/output.Rmd @@ -1,7 +1,7 @@ --- title: 'RATs: Raw Output' author: "Kimon Froussios" -date: "05 JAN 2018" +date: "09 MAR 2018" output: html_document: keep_md: yes @@ -31,7 +31,7 @@ Set up an example. ```{r} # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. @@ -168,9 +168,10 @@ print( names(mydtu$Parameters) ) * `rep_reprod_thresh` - (num) The value passed to the `rrep_thresh` parameter, if `rboot==TRUE`.. * `rep_boot` - (bool) The value passed to the `rboot` parameter. * `rep_bootnum` - (int) The number of replicate bootstrapping iterations (currently M*N, where M and N are the numbers of samples in the two conditions), if `rboot==TRUE`. -* `seed` - (int) Custom seed for the random generator. +* `seed` - (int) Custom seed for the random generator. `NA` if none was specified. +* `reckless` - (bool) The value passed to the `reckless` parameter. -**Note:** If bootstraps are disabled, the bootstrap-related fields may have `NA` values despite any values that were passed to their respective parameters. +**Note:** If bootstraps are disabled, the bootstrap-related fields may be `NA`, regardless of supplied values, to reflect the fact that they were not used. ## Genes diff --git a/inst/doc/output.html b/inst/doc/output.html index e2ad2cb..3ff92f1 100644 --- a/inst/doc/output.html +++ b/inst/doc/output.html @@ -11,7 +11,7 @@ <meta name="author" content="Kimon Froussios" /> -<meta name="date" content="2018-01-05" /> +<meta name="date" content="2018-03-09" /> <title>RATs: Raw Output</title> @@ -219,7 +219,7 @@ <h1 class="title toc-ignore">RATs: Raw Output</h1> <h4 class="author"><em>Kimon Froussios</em></h4> -<h4 class="date"><em>05 JAN 2018</em></h4> +<h4 class="date"><em>09 MAR 2018</em></h4> </div> @@ -228,7 +228,7 @@ <h4 class="date"><em>05 JAN 2018</em></h4> <pre class="r"><code>library(rats)</code></pre> <p>Set up an example.</p> <pre class="r"><code># Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. @@ -253,17 +253,17 @@ <h2>Summary of DTU</h2> <pre class="r"><code># A really simple tally of the outcome. print( dtu_summary(mydtu) )</code></pre> <pre><code>## category tally -## 1 DTU genes (gene test) 3 -## 2 non-DTU genes (gene test) 1 +## 1 DTU genes (gene test) 2 +## 2 non-DTU genes (gene test) 2 ## 3 ineligible genes (gene test) 7 -## 4 DTU genes (transc. test) 3 -## 5 non-DTU genes (transc. test) 2 +## 4 DTU genes (transc. test) 2 +## 5 non-DTU genes (transc. test) 3 ## 6 ineligible genes (transc. test) 6 -## 7 DTU genes (both tests) 3 -## 8 non-DTU genes (both tests) 1 +## 7 DTU genes (both tests) 2 +## 8 non-DTU genes (both tests) 2 ## 9 ineligible genes (both tests) 7 -## 10 DTU transcripts 7 -## 11 non-DTU transcripts 5 +## 10 DTU transcripts 5 +## 11 non-DTU transcripts 7 ## 12 ineligible transcripts 11</code></pre> <p>RATs tests for DTU at both the gene level and the transcript level. Therefore, as of v0.4.2, <code>dtu_summury()</code> will display the DTU genes according to either method as well as the intersection of the two.</p> <p>The <code>get_dtu_ids()</code> function lists the coresponding identifiers per category. As of <code>v0.4.2</code> it uses the same category names as <code>dtu_summury()</code> for consistency and clarity.</p> @@ -271,37 +271,37 @@ <h2>Summary of DTU</h2> ids <- get_dtu_ids(mydtu) print( ids )</code></pre> <pre><code>## $`DTU genes (gene test)` -## [1] "1A1B" "MIX6" "CC" +## [1] "1A1B" "MIX6" ## ## $`non-DTU genes (gene test)` -## [1] "NN" +## [1] "CC" "NN" ## ## $`ineligible genes (gene test)` ## [1] "LC" "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU genes (transc. test)` -## [1] "1A1B" "MIX6" "CC" +## [1] "1A1B" "MIX6" ## ## $`non-DTU genes (transc. test)` -## [1] "LC" "NN" +## [1] "LC" "CC" "NN" ## ## $`ineligible genes (transc. test)` ## [1] "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU genes (both tests)` -## [1] "1A1B" "MIX6" "CC" +## [1] "1A1B" "MIX6" ## ## $`non-DTU genes (both tests)` -## [1] "NN" +## [1] "CC" "NN" ## ## $`ineligible genes (both tests)` ## [1] "LC" "1A1N" "1B1C" "1D1C" "ALLA" "ALLB" "NIB" ## ## $`DTU transcripts` -## [1] "1A1B.a" "1A1B.b" "MIX6.c1" "MIX6.c2" "MIX6.c4" "CC_a" "CC_b" +## [1] "1A1B.a" "1A1B.b" "MIX6.c1" "MIX6.c2" "MIX6.c4" ## ## $`non-DTU transcripts` -## [1] "LC2" "MIX6.c3" "2NN" "1NN" "MIX6.nc" +## [1] "LC2" "CC_a" "CC_b" "MIX6.c3" "2NN" "1NN" "MIX6.nc" ## ## $`ineligible transcripts` ## [1] "LC1" "1A1N-2" "1B1C.1" "1B1C.2" "1D1C:one" "1D1C:two" @@ -351,13 +351,13 @@ <h2>Summary of DTU plurality</h2> <pre class="r"><code># A tally of genes switching isoform ranks. print( dtu_plurality_summary(mydtu) )</code></pre> <pre><code>## isof_affected num_of_genes -## 1 2 2 +## 1 2 1 ## 2 3 1</code></pre> <pre class="r"><code># The gene IDs displaying isoform switching. ids <- get_plurality_ids(mydtu) print( ids )</code></pre> <pre><code>## $`2` -## [1] "1A1B" "CC" +## [1] "1A1B" ## ## $`3` ## [1] "MIX6"</code></pre> @@ -384,7 +384,7 @@ <h2>Parameters</h2> ## [16] "dprop_thresh" "correction" "abund_scaling" ## [19] "quant_boot" "quant_reprod_thresh" "quant_bootnum" ## [22] "rep_boot" "rep_reprod_thresh" "rep_bootnum" -## [25] "seed"</code></pre> +## [25] "seed" "reckless"</code></pre> <ul> <li><code>description</code> - (str) Free-text description of the run. It is useful to record data sources, annotation source and version, experimental parameters…</li> <li><code>time</code> - (str) Date and time for the run. This does not represent the exact time the run started.</li> @@ -408,9 +408,10 @@ <h2>Parameters</h2> <li><code>rep_reprod_thresh</code> - (num) The value passed to the <code>rrep_thresh</code> parameter, if <code>rboot==TRUE</code>..</li> <li><code>rep_boot</code> - (bool) The value passed to the <code>rboot</code> parameter.</li> <li><code>rep_bootnum</code> - (int) The number of replicate bootstrapping iterations (currently M*N, where M and N are the numbers of samples in the two conditions), if <code>rboot==TRUE</code>.</li> -<li><code>seed</code> - (int) Custom seed for the random generator.</li> +<li><code>seed</code> - (int) Custom seed for the random generator. <code>NA</code> if none was specified.</li> +<li><code>reckless</code> - (bool) The value passed to the <code>reckless</code> parameter.</li> </ul> -<p><strong>Note:</strong> If bootstraps are disabled, the bootstrap-related fields may have <code>NA</code> values despite any values that were passed to their respective parameters.</p> +<p><strong>Note:</strong> If bootstraps are disabled, the bootstrap-related fields may be <code>NA</code>, regardless of supplied values, to reflect the fact that they were not used.</p> </div> <div id="genes" class="section level2"> <h2>Genes</h2> @@ -521,7 +522,7 @@ <h2>Abundances</h2> ## 1: 84.33333 132.5 1A1B.a 1A1B ## 2: 0.00000 0.0 1A1B.b 1A1B ## 3: 19.66667 15.5 1A1N-2 1A1N -## 4: NA NA 1B1C.1 1B1C +## 4: 0.00000 0.0 1B1C.1 1B1C ## 5: 52.33333 53.5 1B1C.2 1B1C ## 6: 0.00000 0.0 1D1C:one 1D1C</code></pre> <hr /> diff --git a/inst/doc/plots.R b/inst/doc/plots.R index 87f4705..9128d0d 100644 --- a/inst/doc/plots.R +++ b/inst/doc/plots.R @@ -9,7 +9,7 @@ library(rats) ## ------------------------------------------------------------------------ # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. diff --git a/inst/doc/plots.Rmd b/inst/doc/plots.Rmd index 88cd16a..5bd2580 100644 --- a/inst/doc/plots.Rmd +++ b/inst/doc/plots.Rmd @@ -35,7 +35,7 @@ Set up an example. ```{r} # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. diff --git a/inst/doc/plots.html b/inst/doc/plots.html index a26a0cd..bfa8c81 100644 --- a/inst/doc/plots.html +++ b/inst/doc/plots.html @@ -228,7 +228,7 @@ <h4 class="date"><em>09 FEB 2018</em></h4> <pre class="r"><code>library(rats)</code></pre> <p>Set up an example.</p> <pre class="r"><code># Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. @@ -259,7 +259,7 @@ <h2>Isoform abundances for a given gene</h2> <p>When there are many replicates or many isoforms, it may be preferable to group abundances by isoform, making individual comparisons easier:</p> <pre class="r"><code># Grouping by isoform: plot_gene(mydtu, "MIX6", style="byisoform")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> </div> <div id="overview-plots" class="section level2"> <h2>Overview plots</h2> @@ -292,7 +292,7 @@ <h2>Diagnostic plots</h2> <p>Currently there is only one plot type in this category.</p> <pre class="r"><code># Matrix of pairwise Pearson's correlations among samples. plot_diagnostics(mydtu, type='cormat') # Default type.</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>What you want to see here, is a nice separation between the samples of different conditions. Anomalies in this plot may indicate batch effects or mislabelled samples.</p> </div> <div id="interactive-plots" class="section level2"> @@ -316,7 +316,7 @@ <h3>Change information layers</h3> <p>The <code>fillby</code>, <code>colourby</code> and <code>shapeby</code> parameters can be respectively used to control which information layers are encoded as fill, line/point colour, and point shape. Possible values are <code>c("isoform", "condition", "DTU", "none", "replicate")</code>. Be aware that some combinations of plot style and information layers are not possible. If safe to do so these will be silently ignored, otherwise an error message will appear.</p> <pre class="r"><code># For a less busy look, any of the information layers can be disabled. plot_gene(mydtu, "MIX6", style="byisoform", colourby="none", shapeby="none")</code></pre> -<p><img src="" /><!-- --></p> +<p><img src="" /><!-- --></p> <p>The following command will approximate the older version of the gene plot (where DTU determined the fill colour):</p> <pre class="r"><code>plot_gene(mydtu, "MIX6", fillby="DTU", shapeby="none")</code></pre> <p><img src="" /><!-- --></p> diff --git a/man/call_DTU.Rd b/man/call_DTU.Rd index 16fa9ed..4df817a 100644 --- a/man/call_DTU.Rd +++ b/man/call_DTU.Rd @@ -11,7 +11,7 @@ call_DTU(annot = NULL, TARGET_COL = "target_id", PARENT_COL = "parent_id", dprop_thresh = 0.2, correction = "BH", scaling = 1, testmode = "both", qboot = TRUE, qbootnum = 0L, qrep_thresh = 0.95, rboot = TRUE, rrep_thresh = 0.85, description = NA_character_, verbose = TRUE, - threads = 1L, seed = NA_integer_, dbg = "0") + threads = 1L, seed = NA_integer_, reckless = FALSE, dbg = "0") } \arguments{ \item{annot}{A data.table matching transcript identifiers to gene identifiers. Any additional columns are allowed but ignored.} @@ -64,7 +64,9 @@ call_DTU(annot = NULL, TARGET_COL = "target_id", PARENT_COL = "parent_id", \item{seed}{A numeric integer used to initialise the random number engine. Use this only if reproducible bootstrap selections are required. (Default NA)} -\item{dbg}{Debugging mode. Interrupt execution at the specified flag-point. Used to speed up code-tests by avoiding irrelevant downstream processing. (Default 0: do not interrupt)} +\item{reckless}{RATs normally aborts if any inconsistency is detected among the transcript IDs found in the annotation and the quantifications. Enabling reckless mode will downgrade this error to a warning and allow RATs to continue the run. Not recommended unless you know why the inconsistency exists and how it will affect the results. (Default FALSE)} + +\item{dbg}{Debugging mode only. Interrupt execution at the specified flag-point. Used to speed up code-tests by avoiding irrelevant downstream processing. (Default 0: do not interrupt)} } \value{ List of mixed types. Contains a list of runtime settings, a table of gene-level results, a table of transcript-level results, and a list of two tables with the transcript abundaces. diff --git a/man/combine_sim_dtu.Rd b/man/combine_sim_dtu.Rd deleted file mode 100644 index 7ac8e7f..0000000 --- a/man/combine_sim_dtu.Rd +++ /dev/null @@ -1,19 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data_simulators.R -\name{combine_sim_dtu} -\alias{combine_sim_dtu} -\title{Combine simulation details with DTU calls, in preparation for plotting.} -\usage{ -combine_sim_dtu(sim, dtuo) -} -\arguments{ -\item{sim}{An object generated with countrange_sim(), containing the simulated data details with which the \code{dtu} object was calculated.} - -\item{dtuo}{The object with the DTU results corresponding to the \code{sim} object's data.} -} -\value{ -dataframe -} -\description{ -Combine simulation details with DTU calls, in preparation for plotting. -} diff --git a/man/countrange_sim.Rd b/man/countrange_sim.Rd deleted file mode 100644 index 2ad76a3..0000000 --- a/man/countrange_sim.Rd +++ /dev/null @@ -1,26 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data_simulators.R -\name{countrange_sim} -\alias{countrange_sim} -\title{Generate artificial read-count data for simulated 2-transcript genes, -systematically covering a broad range of proportions and magnitudes.} -\usage{ -countrange_sim(proportions = seq(0, 1, 0.01), magnitudes = c(1, 5, 10, 30, - 100, 500, 1000)) -} -\arguments{ -\item{proportions}{Range and step of proportions for 1st transcript. Sibling transcript complemented from these.} - -\item{magnitudes}{vector of read-count sizes to use.} -} -\value{ -list containing: \code{data} a minimal sleuth-like object. - \code{anno} a dataframe matching \code{target_id} to \code{parent_id}. - \code{sim} a dataframe with the simulation parameters per transcript. -} -\description{ -For each level of transcript proportions in condition A, all proportion levels are -generated for condition B as possible new states. Therefore the number of transcripts -generated is 2 * N^2 * M, where 2 is the number of gene isoforms per paramater combination, -N is the number of proportion levels and M the number of magnitude levels. -} diff --git a/man/parameters_are_good.Rd b/man/parameters_are_good.Rd index 7f2d27b..1ec7bc7 100644 --- a/man/parameters_are_good.Rd +++ b/man/parameters_are_good.Rd @@ -7,7 +7,7 @@ parameters_are_good(annot, count_data_A, count_data_B, boot_data_A, boot_data_B, TARGET_COL, PARENT_COL, correction, testmode, scaling, threads, seed, p_thresh, abund_thresh, dprop_thresh, qboot, qbootnum, qrep_thresh, rboot, - rrep_thresh) + rrep_thresh, reckless) } \arguments{ \item{annot}{Annotation dataframe.} @@ -49,6 +49,8 @@ parameters_are_good(annot, count_data_A, count_data_B, boot_data_A, boot_data_B, \item{rboot}{Whether to bootstrap against samples.} \item{rrep_thresh}{Confidence threshold.} + +\item{reckless}{whether to ignore detected annotation discrepancies} } \value{ List: \itemize{ diff --git a/man/plot_sim.Rd b/man/plot_sim.Rd deleted file mode 100644 index 7c5c160..0000000 --- a/man/plot_sim.Rd +++ /dev/null @@ -1,16 +0,0 @@ -% Generated by roxygen2: do not edit by hand -% Please edit documentation in R/data_simulators.R -\name{plot_sim} -\alias{plot_sim} -\title{Plot relationship of parameters.} -\usage{ -plot_sim(data, type = "AvBvM") -} -\arguments{ -\item{data}{the output from combine_sim_dtu()} - -\item{type}{(str) "AvBvM", "B/AvM", "AvBvMprop", "B/AvMprop", "B-AvM"} -} -\description{ -Plot relationship of parameters. -} diff --git a/man/sim_boot_data.Rd b/man/sim_boot_data.Rd index b78c3fc..c17f343 100644 --- a/man/sim_boot_data.Rd +++ b/man/sim_boot_data.Rd @@ -5,7 +5,7 @@ \title{Generate an artificial dataset of bootstrapped abundance estimates, for code-testing or examples.} \usage{ sim_boot_data(errannot_inconsistent = FALSE, PARENT_COL = "parent_id", - TARGET_COL = "target_id") + TARGET_COL = "target_id", clean = FALSE) } \arguments{ \item{errannot_inconsistent}{Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE)} @@ -13,6 +13,8 @@ sim_boot_data(errannot_inconsistent = FALSE, PARENT_COL = "parent_id", \item{PARENT_COL}{Name for the bootdtraps column containing counts.} \item{TARGET_COL}{Name for annotation column containing transcript identification.} + +\item{clean}{Logical. Remove the intentional inconsistency of IDs between annotation and abundances.} } \value{ A list with 3 elements. First a data.frame with the corresponding annotation. diff --git a/man/sim_count_data.Rd b/man/sim_count_data.Rd index 094c672..22b7e8f 100644 --- a/man/sim_count_data.Rd +++ b/man/sim_count_data.Rd @@ -5,7 +5,7 @@ \title{Generate an artificial dataset of abundance estimates, for code-testing or examples.} \usage{ sim_count_data(errannot_inconsistent = FALSE, PARENT_COL = "parent_id", - TARGET_COL = "target_id") + TARGET_COL = "target_id", clean = FALSE) } \arguments{ \item{errannot_inconsistent}{Logical. Introduces an inconsistency in the transcript IDs, for testing of sanity checks. (FALSE)} @@ -13,6 +13,8 @@ sim_count_data(errannot_inconsistent = FALSE, PARENT_COL = "parent_id", \item{PARENT_COL}{Name for the bootdtraps column containing counts.} \item{TARGET_COL}{Name for annotation column containing transcript identification.} + +\item{clean}{Logical. Remove the intentional inconsistency of IDs between annotation and abundances.} } \value{ A list with 3 elements. First, a data.frame with the corresponding annotation table. diff --git a/tests/testthat/test_1_internal-structures.R b/tests/testthat/test_1_internal-structures.R index da012bc..4d2e067 100644 --- a/tests/testthat/test_1_internal-structures.R +++ b/tests/testthat/test_1_internal-structures.R @@ -17,13 +17,13 @@ test_that("The reporting structures are created correctly", { expect_type(full$Parameters, "list") expect_true(typeof(full$Parameters) == typeof(short$Parameters)) - expect_length(full$Parameters, 25) + expect_length(full$Parameters, 26) expect_length(short$Parameters, 2) expect_named(full$Parameters, c("description", "time", "rats_version", "R_version", "var_name", "cond_A", "cond_B", "data_type", "num_replic_A", "num_replic_B", "num_genes", "num_transc", "tests", "p_thresh", "abund_thresh", "dprop_thresh", "correction", "abund_scaling", "quant_boot", "quant_reprod_thresh", "quant_bootnum", - "rep_boot", "rep_reprod_thresh", "rep_bootnum", "seed")) + "rep_boot", "rep_reprod_thresh", "rep_bootnum", "seed", "reckless")) expect_named(short$Parameters, c("num_replic_A", "num_replic_B")) expect_true(is.data.frame(full$Genes)) diff --git a/tests/testthat/test_3_input-checks.R b/tests/testthat/test_3_input-checks.R index 5343bc6..6d434ab 100644 --- a/tests/testthat/test_3_input-checks.R +++ b/tests/testthat/test_3_input-checks.R @@ -3,146 +3,202 @@ context("DTU Input checks") #============================================================================== -test_that("The input checks work", { +test_that("No false alarms", { name_A <- "one" name_B <- "two" - wrong_name <- "RUBBISH_COLUMN_NAME" - # Emulate bootstrap data. - sim1 <- sim_boot_data() - sim2 <- sim_boot_data(errannot_inconsistent=FALSE, PARENT_COL="parent", TARGET_COL="target") - # Emulate non-bootstrap data. - counts_A <- sim1$boots_A[[1]] - counts_B <- sim1$boots_B[[1]] - - # No false alarms with valid calls. - expect_silent(call_DTU(annot= sim2$annot, boot_data_A= sim2$boots_A, boot_data_B= sim2$boots_B, name_A = "AAAA", name_B = "BBBB", varname= "waffles", p_thresh= 0.01, abund_thresh= 10, + sim <- sim_boot_data(clean=TRUE, errannot_inconsistent=FALSE, TARGET_COL= "target", PARENT_COL= "parent") + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A = "AAAA", name_B = "BBBB", varname= "waffles", p_thresh= 0.01, abund_thresh= 10, rrep_thresh = 0.6, qrep_thresh = 0.8, testmode= "transc", correction= "bonferroni", verbose= FALSE, rboot= FALSE, qboot=TRUE, qbootnum= 100, TARGET_COL= "target", PARENT_COL= "parent", threads= 2, dbg= "prep", scaling=c(10, 11, 20, 21))) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=30)) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, rboot=FALSE, qboot= FALSE, verbose = FALSE, dbg= "prep")) - - # Mixed input formats. - expect_silent(call_DTU(annot= sim1$annot, name_A= name_A, name_B= name_B, verbose = FALSE, - boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, count_data_A= counts_A, count_data_B= counts_B, dbg= "prep")) - expect_warning(call_DTU(annot= sim1$annot, verbose = TRUE, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, - count_data_A= counts_A, count_data_B= counts_B, qbootnum= 100, dbg= "prep"), - "Only the bootstrapped data will be used", fixed= TRUE) + + sim <- sim_boot_data(clean=TRUE, errannot_inconsistent=FALSE) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=30)) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, rboot=FALSE, qboot= FALSE, verbose = FALSE, dbg= "prep")) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep")) + expect_silent(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]], verbose = FALSE, dbg= "prep")) +}) + +#============================================================================== +test_that("Feature ID inconsistencies abort or warn", { + sim <- sim_boot_data(clean=TRUE, errannot_inconsistent=TRUE) + + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep"), + "Inconsistent set of transcript IDs across samples", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]], verbose = FALSE, dbg= "prep"), + "Transcript IDs do not match completely between conditions", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_B, boot_data_B= sim$boots_A, verbose = FALSE, dbg= "prep"), + "The transcript IDs in the quantifications and the annotation do not match", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, count_data_A= sim$boots_B[[1]], count_data_B= sim$boots_A[[1]], verbose = FALSE, dbg= "prep"), + "The transcript IDs in the quantifications and the annotation do not match", fixed= TRUE) + + expect_warning(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = TRUE, dbg= "prep", reckless=TRUE), + "Inconsistent set of transcript IDs across samples", fixed= TRUE) + expect_warning(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]], verbose = TRUE, dbg= "prep", reckless=TRUE), + "Transcript IDs do not match completely between conditions", fixed= TRUE) + expect_warning(call_DTU(annot= sim$annot, boot_data_A= sim$boots_B, boot_data_B= sim$boots_A, verbose = TRUE, dbg= "prep", reckless=TRUE), + "The transcript IDs in the quantifications and the annotation do not match", fixed= TRUE) + expect_warning(call_DTU(annot= sim$annot, count_data_A= sim$boots_B[[1]], count_data_B= sim$boots_A[[1]], verbose = TRUE, dbg= "prep", reckless=TRUE), + "The transcript IDs in the quantifications and the annotation do not match", fixed= TRUE) + + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", reckless=TRUE)) + expect_silent(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]], verbose = FALSE, dbg= "prep", reckless=TRUE)) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_B, boot_data_B= sim$boots_A, verbose = FALSE, dbg= "prep", reckless=TRUE)) + expect_silent(call_DTU(annot= sim$annot, count_data_A= sim$boots_B[[1]], count_data_B= sim$boots_A[[1]], verbose = FALSE, dbg= "prep", reckless=TRUE)) +}) + +#============================================================================== +test_that("Annotation format is checked", { + sim <- sim_boot_data(clean=TRUE) # Annotation is not a dataframe. - expect_error(call_DTU(annot= list("not", "a", "dataframe"), boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, verbose = FALSE, dbg= "prep"), "annot is not a data.frame") + expect_error(call_DTU(annot= list("not", "a", "dataframe"), boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, verbose = FALSE, dbg= "prep"), + "annot is not a data.frame") # Annotation field names. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, TARGET_COL= wrong_name, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, TARGET_COL= "wrong_name", verbose = FALSE, dbg= "prep"), "target and/or parent IDs field names do not exist in annot", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, PARENT_COL= wrong_name, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, PARENT_COL= "wrong_name", verbose = FALSE, dbg= "prep"), "target and/or parent IDs field names do not exist in annot", fixed= TRUE) - # Inconsistent annotation. - sim3 <- sim_boot_data(errannot_inconsistent= TRUE) - expect_error(call_DTU(annot= sim3$annot, boot_data_A= sim3$boots_A, boot_data_B= sim3$boots_B, name_A= name_A, name_B= name_B, verbose = FALSE, dbg= "prep"), - "Inconsistent set of transcript IDs", fixed= TRUE) - # Non unique IDs. - a <- copy(sim1$annot) + + # Non unique transcript IDs. + a <- copy(sim$annot) a[1, "target_id"] <- a[2, "target_id"] - expect_error(call_DTU(annot= a, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, verbose = FALSE, dbg= "prep"), "transcript identifiers are not unique") + expect_error(call_DTU(annot= a, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, verbose = FALSE, dbg= "prep"), + "transcript identifiers are not unique") +}) + +#============================================================================== +test_that("Quantification formats are checked", { + sim <- sim_boot_data(clean=TRUE) + + # Redundant quantification formats. + expect_silent(call_DTU(annot= sim$annot, verbose = FALSE, dbg= "prep", boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]])) + expect_warning(call_DTU(annot= sim$annot, verbose = TRUE, dbg= "prep", boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]]), + "Only the bootstrapped data will be used", fixed= TRUE) # Boot data is not a list of datatables. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= c("not", "a", "list"), boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= c("not", "a", "list"), verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") - expect_error(call_DTU(annot= sim1$annot, boot_data_A= list( list("not"), list("a"), list("table")), boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= list( list("not"), list("a"), list("table")), verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") - expect_error(call_DTU(annot= sim1$annot, boot_data_A= list(data.frame(a="not", b="a", c="table")), boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep"), "not lists of data.tables") - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= list(data.frame(a="not", b="a", c="table")), verbose = FALSE, dbg= "prep"), "not lists of data.tables") + expect_error(call_DTU(annot= sim$annot, boot_data_A= c("not", "a", "list"), boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= c("not", "a", "list"), verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") + expect_error(call_DTU(annot= sim$annot, boot_data_A= list( list("not"), list("a"), list("table")), boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= list( list("not"), list("a"), list("table")), verbose = FALSE, dbg= "prep"), "bootstrap data are not lists") + expect_error(call_DTU(annot= sim$annot, boot_data_A= list(data.frame(a="not", b="a", c="table")), boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep"), "not lists of data.tables") + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= list(data.frame(a="not", b="a", c="table")), verbose = FALSE, dbg= "prep"), "not lists of data.tables") # Counts data is not datatables. - expect_error(call_DTU(annot= sim1$annot, count_data_A= c("not", "a", "list"), count_data_B= counts_B, verbose = FALSE, dbg= "prep"), "counts data are not data.tables") - expect_error(call_DTU(annot= sim1$annot, count_data_A= counts_A, count_data_B= c("not", "a", "list"), verbose = FALSE, dbg= "prep"), "counts data are not data.tables") - expect_error(call_DTU(annot= sim1$annot, count_data_A= data.frame(a="not", b="a", c="table"), count_data_B= counts_B, verbose = FALSE, dbg= "prep"), "counts data are not data.tables") - expect_error(call_DTU(annot= sim1$annot, count_data_A= counts_A, count_data_B= data.frame(a="not", b="a", c="table"), verbose = FALSE, dbg= "prep"), "counts data are not data.tables") + expect_error(call_DTU(annot= sim$annot, count_data_A= c("not", "a", "list"), count_data_B= sim$boots_B[[1]], verbose = FALSE, dbg= "prep"), "counts data are not data.tables") + expect_error(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= c("not", "a", "list"), verbose = FALSE, dbg= "prep"), "counts data are not data.tables") + expect_error(call_DTU(annot= sim$annot, count_data_A= data.frame(a="not", b="a", c="table"), count_data_B= sim$boots_B[[1]], verbose = FALSE, dbg= "prep"), "counts data are not data.tables") + expect_error(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= data.frame(a="not", b="a", c="table"), verbose = FALSE, dbg= "prep"), "counts data are not data.tables") +}) + +#============================================================================== +test_that("Bootstrap parameters are checked", { + sim <- sim_boot_data(clean=TRUE) # Number of bootstraps. - expect_warning(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, verbose = TRUE, dbg= "prep"), + expect_warning(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, verbose = TRUE, dbg= "prep"), "few bootstrap iterations", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qbootnum = -5, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qbootnum = -5, verbose = FALSE, dbg= "prep"), "Invalid number of bootstraps", fixed= TRUE) - expect_warning(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5, verbose = TRUE, dbg= "prep"), + expect_warning(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5, verbose = TRUE, dbg= "prep"), "qbootnum is low", fixed= TRUE) - expect_warning(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5000, verbose = TRUE, dbg= "prep"), + expect_warning(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5000, verbose = TRUE, dbg= "prep"), "number of quantification bootstraps is very high", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5000000000000, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qbootnum = 5000000000000, verbose = FALSE, dbg= "prep"), "number of quantification bootstraps would exceed the maximum capacity", fixed= TRUE) # Bootstraps without boot data. - expect_warning(call_DTU(annot= sim1$annot, count_data_A= counts_A, count_data_B= counts_B, qboot=TRUE, qbootnum=2, verbose= TRUE, dbg= "prep"), + expect_warning(call_DTU(annot= sim$annot, count_data_A= sim$boots_A[[1]], count_data_B= sim$boots_B[[1]], qboot=TRUE, qbootnum=2, verbose= TRUE, dbg= "prep"), "qboot is TRUE but no bootstrapped estimates", fixed= TRUE) + # Confidence threshold. + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, rrep_thresh = -2, verbose = FALSE, dbg= "prep"), + "Invalid reproducibility threshold", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, rrep_thresh = 2, verbose = FALSE, dbg= "prep"), + "Invalid reproducibility threshold", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qrep_thresh = -2, verbose = FALSE, dbg= "prep"), + "Invalid reproducibility threshold", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qrep_thresh = 2, verbose = FALSE, dbg= "prep"), + "Invalid reproducibility threshold", fixed= TRUE) +}) + +#============================================================================== +test_that("Testing parameters are checked", { + sim <- sim_boot_data(clean=TRUE) + # Correction method. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, correction= wrong_name, verbose= FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, correction= "wrong_name", verbose= FALSE, dbg= "prep"), "Invalid p-value correction method name", fixed= TRUE) - # Verbose is bool. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, verbose="yes", dbg= "prep"), - "not interpretable as logical", fixed= TRUE) - # Tests. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, testmode="GCSE", verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, testmode="GCSE", verbose = FALSE, dbg= "prep"), "Unrecognized value for testmode", fixed= TRUE) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, testmode="genes", verbose = FALSE, rboot=FALSE, qboot = FALSE, dbg= "prep")) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, testmode="transc", verbose = FALSE, rboot=FALSE, qboot = FALSE, dbg= "prep")) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, testmode="genes", verbose = FALSE, rboot=FALSE, qboot = FALSE, dbg= "prep")) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, testmode="transc", verbose = FALSE, rboot=FALSE, qboot = FALSE, dbg= "prep")) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qboot="GCSE", verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, qboot="GCSE", verbose = FALSE, dbg= "prep"), "Unrecognized value for qboot", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, rboot="GCSE", verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, rboot="GCSE", verbose = FALSE, dbg= "prep"), "Unrecognized value for rboot", fixed= TRUE) +}) - # Probability threshold. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, p_thresh = 666, verbose = FALSE, dbg= "prep"), +#============================================================================== +test_that("Thresholds are checked", { + sim <- sim_boot_data(clean=TRUE) + + # Probability threshold. + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, p_thresh = 666, verbose = FALSE, dbg= "prep"), "Invalid p-value threshold", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, p_thresh = -0.05, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, p_thresh = -0.05, verbose = FALSE, dbg= "prep"), "Invalid p-value threshold", fixed= TRUE) # Read counts threshold. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, abund_thresh = -5, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, abund_thresh = -5, verbose = FALSE, dbg= "prep"), "Invalid abundance threshold", fixed= TRUE) # Proportion change threshold. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, dprop_thresh = -2, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, dprop_thresh = -2, verbose = FALSE, dbg= "prep"), "Invalid proportion difference threshold", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, dprop_thresh = 2, verbose = FALSE, dbg= "prep"), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, dprop_thresh = 2, verbose = FALSE, dbg= "prep"), "Invalid proportion difference threshold", fixed= TRUE) +}) - # Confidence threshold. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, rrep_thresh = -2, verbose = FALSE, dbg= "prep"), - "Invalid reproducibility threshold", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, rrep_thresh = 2, verbose = FALSE, dbg= "prep"), - "Invalid reproducibility threshold", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qrep_thresh = -2, verbose = FALSE, dbg= "prep"), - "Invalid reproducibility threshold", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, qrep_thresh = 2, verbose = FALSE, dbg= "prep"), - "Invalid reproducibility threshold", fixed= TRUE) - - # Number of threads. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, threads = 0, verbose= FALSE, dbg= "prep"), - "Invalid number of threads", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, threads = -4, verbose= FALSE, dbg= "prep"), - "Invalid number of threads", fixed= TRUE) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=FALSE), verbose= FALSE, dbg= "prep")) - expect_silent(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=TRUE), verbose= FALSE, dbg= "prep")) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=TRUE) + 1, verbose= FALSE, dbg= "prep"), - "threads exceed", fixed= TRUE) - +#============================================================================== +test_that("Scaling parameters are checked", { + sim <- sim_boot_data(clean=TRUE) + # Scaling of abundances. - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=0), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=0), "Invalid scaling factor", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=-33), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=-33), "Invalid scaling factor", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=c(2,3,4)), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=c(2,3,4)), "Invalid scaling factor", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,2,3,4,5)), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,2,3,4,5)), "Invalid scaling factor", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,0,2,3,4)), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,0,2,3,4)), "Invalid scaling factor", fixed= TRUE) - expect_error(call_DTU(annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,2,-3,4,5)), + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, dbg= "prep", scaling=c(1,2,-3,4,5)), "Invalid scaling factor", fixed= TRUE) }) +#============================================================================== +test_that("General behaviour parameters are checked", { + sim <- sim_boot_data(clean=TRUE) + + # Number of threads. + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, threads = 0, verbose= FALSE, dbg= "prep"), + "Invalid number of threads", fixed= TRUE) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, threads = -4, verbose= FALSE, dbg= "prep"), + "Invalid number of threads", fixed= TRUE) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=FALSE), verbose= FALSE, dbg= "prep")) + expect_silent(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=TRUE), verbose= FALSE, dbg= "prep")) + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, threads = parallel::detectCores(logical=TRUE) + 1, verbose= FALSE, dbg= "prep"), + "threads exceed", fixed= TRUE) + + # Verbose is bool. + expect_error(call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= name_A, name_B= name_B, verbose="yes", dbg= "prep"), + "not interpretable as logical", fixed= TRUE) +}) +#EOF diff --git a/tests/testthat/test_4_steps.R b/tests/testthat/test_4_steps.R index a1c064e..7a012b8 100644 --- a/tests/testthat/test_4_steps.R +++ b/tests/testthat/test_4_steps.R @@ -4,8 +4,8 @@ context("RATs main") #============================================================================== test_that("The paramater interpretations are correct", { - sim1 <- sim_boot_data() - sim2 <- sim_count_data() + sim1 <- sim_boot_data(clean=TRUE) + sim2 <- sim_count_data(clean=TRUE) # Bootstraps or counts? expect_equal(2, call_DTU(dbg='prep', annot= sim1$annot, boot_data_A= sim1$boots_A, boot_data_B= sim1$boots_B, verbose = FALSE)[[1]]) @@ -33,7 +33,7 @@ test_that("The index is received", { sim <- sim_boot_data() # tidy_annot() should be tested separately. expect_equal(tidy_annot(sim$annot), - call_DTU(dbg='indx', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE)) + call_DTU(dbg='indx', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, reckless=TRUE)) }) @@ -43,9 +43,9 @@ test_that("Scaling is applied", { # Single factor. S <- 10 - bdt <- call_DTU(dbg='bootin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) - cdt <- call_DTU(dbg='countin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) - sdt <- call_DTU(dbg='scale', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) + bdt <- call_DTU(dbg='bootin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) + cdt <- call_DTU(dbg='countin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) + sdt <- call_DTU(dbg='scale', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) expect_equal(S * cdt[[1]], sdt[[1]]) expect_equal(S * cdt[[2]], sdt[[2]]) for (b in 1:length(bdt$bootA)) { @@ -57,9 +57,9 @@ test_that("Scaling is applied", { # Vector. S <- c(10, 20, 30, 40) - bdt <- call_DTU(dbg='bootin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) - cdt <- call_DTU(dbg='countin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) - sdt <- call_DTU(dbg='scale', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S) + bdt <- call_DTU(dbg='bootin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) + cdt <- call_DTU(dbg='countin', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) + sdt <- call_DTU(dbg='scale', annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, verbose = FALSE, scaling=S, reckless=TRUE) expect_equal(S[1] * cdt[[1]]$V1, sdt[[1]]$V1) expect_equal(S[2] * cdt[[1]]$V2, sdt[[1]]$V2) @@ -78,7 +78,7 @@ test_that("Parameters are recorded", { description='Test.',name_A='cA', name_B='cB', varname='testing', p_thresh=0.001, abund_thresh=1, dprop_thresh=0.15, correction='bonferroni', qboot=TRUE, qbootnum=99, qrep_thresh=0.8, rboot=TRUE, rrep_thresh=0.6, - testmode="genes", seed=666, verbose = FALSE)$Parameters + testmode="genes", seed=666, verbose = FALSE, reckless=TRUE)$Parameters expect_equal(param$description, 'Test.') expect_true(!is.na(param$time)) diff --git a/tests/testthat/test_5_output.R b/tests/testthat/test_5_output.R index 2ddccfc..bdc7810 100644 --- a/tests/testthat/test_5_output.R +++ b/tests/testthat/test_5_output.R @@ -4,7 +4,7 @@ context("DTU Output") #============================================================================== test_that("The output structure is correct", { - sim <- sim_boot_data() + sim <- sim_boot_data(clean=TRUE) mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qbootnum=2, qboot=TRUE, rboot=TRUE, verbose = FALSE) expect_type(mydtu, "list") @@ -12,12 +12,12 @@ test_that("The output structure is correct", { expect_named(mydtu, c("Parameters", "Genes", "Transcripts", "Abundances")) expect_type(mydtu$Parameters, "list") - expect_length(mydtu$Parameters, 25) + expect_length(mydtu$Parameters, 26) expect_named(mydtu$Parameters, c("description", "time", "rats_version", "R_version", "var_name", "cond_A", "cond_B", "data_type", "num_replic_A", "num_replic_B", "num_genes", "num_transc", "tests", "p_thresh", "abund_thresh", "dprop_thresh", "correction", "abund_scaling", "quant_boot", "quant_reprod_thresh", "quant_bootnum", - "rep_boot", "rep_reprod_thresh", "rep_bootnum", "seed")) + "rep_boot", "rep_reprod_thresh", "rep_bootnum", "seed", "reckless")) expect_true(is.data.frame(mydtu$Genes)) expect_equal(dim(mydtu$Genes)[2], 26) @@ -126,8 +126,8 @@ test_that("The output content is complete", { counts_A <- data_A[[2]] counts_B <- data_B[[1]] - mydtu <- list(call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE, description="test"), - call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=TRUE, qboot=TRUE, qbootnum=2, verbose = FALSE, description="test") + mydtu <- list(call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE, description="test", reckless=TRUE), + call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=TRUE, qboot=TRUE, qbootnum=2, verbose = FALSE, description="test", reckless=TRUE) ) for (x in length(mydtu)) { @@ -150,6 +150,8 @@ test_that("The output content is complete", { expect_false(is.na(mydtu[[x]]$Parameters$"time")) expect_false(is.na(mydtu[[x]]$Parameters$"rep_boot")) expect_false(is.na(mydtu[[x]]$Parameters$"quant_boot")) + # expect_false(is.na(mydtu[[x]]$Parameters$"seed")) # Actually it may be NA, if no specific seed is given. + expect_false(is.na(mydtu[[x]]$Parameters$"reckless")) if (x>1) { expect_false(is.na(mydtu[[x]]$Parameters$"rep_bootnum")) expect_false(is.na(mydtu[[x]]$Parameters$"quant_bootnum")) @@ -234,8 +236,8 @@ test_that("The result is consistent across input data formats", { counts_A <- data_A[[2]] counts_B <- data_B[[1]] - mydtu <- list(call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=FALSE, qboot=FALSE, verbose = FALSE), - call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE)) + mydtu <- list(call_DTU(annot= sim$annot, boot_data_A = data_A, boot_data_B = data_B, rboot=FALSE, qboot=FALSE, verbose = FALSE, reckless=TRUE), + call_DTU(annot= sim$annot, count_data_A = counts_A, count_data_B = counts_B, rboot=FALSE, qboot=FALSE, verbose = FALSE, reckless=TRUE)) expect_equal(mydtu[[1]][[2]][, seq(1,7), with=FALSE], mydtu[[2]][[2]][, seq(1,7), with=FALSE]) expect_equal(mydtu[[1]][[3]][, seq(1,4), with=FALSE], mydtu[[2]][[3]][, seq(1,4), with=FALSE]) @@ -248,7 +250,7 @@ test_that("Filters work correctly", { # !!! ensure correct response to specific scenarios. sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A=sim$boots_A, boot_data_B=sim$boots_B, name_A= "ONE", name_B= "TWO", abund_thresh=8, dprop_thresh=0.1, verbose = FALSE, rboot=FALSE, qboot = FALSE, seed=666) + mydtu <- call_DTU(annot= sim$annot, boot_data_A=sim$boots_A, boot_data_B=sim$boots_B, name_A= "ONE", name_B= "TWO", abund_thresh=8, dprop_thresh=0.1, verbose = FALSE, rboot=FALSE, qboot = FALSE, seed=666, reckless=TRUE) expect_equivalent(as.list(mydtu$Genes["1A1B", list(known_transc, detect_transc, elig_transc, elig, elig_fx)]), list(2, 2, 2, TRUE, TRUE)) diff --git a/tests/testthat/test_6_reports.R b/tests/testthat/test_6_reports.R index 4ab0f39..0e1fce5 100644 --- a/tests/testthat/test_6_reports.R +++ b/tests/testthat/test_6_reports.R @@ -5,7 +5,7 @@ context("DTU Reports") #============================================================================== test_that("The summaries work", { sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, reckless=TRUE) expect_silent(ids <- get_dtu_ids(mydtu)) expect_type(ids, "list") @@ -40,7 +40,7 @@ test_that("The summaries work", { expect_false(any(is.na(tally))) # Lower effect size threshold to verify that DTU changes accordingly. - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1, reckless=TRUE) expect_silent(ids <- get_dtu_ids(mydtu)) expect_equal(ids[[1]], c("1A1B", "MIX6", "CC")) @@ -64,7 +64,7 @@ test_that("The summaries work", { #============================================================================== test_that("The isoform switching summaries work", { sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1, reckless=TRUE) expect_silent(ids <- get_switch_ids(mydtu)) expect_type(ids, "list") @@ -90,7 +90,7 @@ test_that("The isoform switching summaries work", { #============================================================================== test_that("The plurality summaries work", { sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.1, reckless=TRUE) expect_silent(ids <- get_plurality_ids(mydtu)) expect_type(ids, "list") @@ -107,7 +107,7 @@ test_that("The plurality summaries work", { expect_equal(tally[[2]], c(2, 1)) expect_equal(tally[[2]], as.vector(sapply(ids, length))) - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.3) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qboot=FALSE, rboot=FALSE, verbose = FALSE, dprop_thresh=0.3, reckless=TRUE) expect_silent(ids <- get_plurality_ids(mydtu)) expect_silent(tally <- dtu_plurality_summary(mydtu)) expect_named(ids, c("2", "1")) @@ -119,7 +119,7 @@ test_that("The plurality summaries work", { #============================================================================== test_that("The gene plotting commands work", { sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qbootnum=2, verbose = FALSE) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qbootnum=2, verbose = FALSE, reckless=TRUE) expect_silent(plot_gene(dtuo=mydtu, pid="MIX6")) expect_silent(plot_gene(dtuo=mydtu, pid="MIX6", style="bycondition")) @@ -155,10 +155,28 @@ test_that("The gene plotting commands work", { expect_silent(plot_gene(dtuo=mydtu, pid="MIX6", style="byisoform", shapeby="none")) }) +#============================================================================== +test_that("The all gene scenarios can be plotted", { + sim <- sim_boot_data() + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, qbootnum=2, verbose = FALSE, reckless=TRUE) + + expect_silent(plot_gene(dtuo=mydtu, pid="1A1B")) + expect_silent(plot_gene(dtuo=mydtu, pid="1A1N")) # + expect_silent(plot_gene(dtuo=mydtu, pid="1B1C")) ## + expect_silent(plot_gene(dtuo=mydtu, pid="1D1C")) + expect_silent(plot_gene(dtuo=mydtu, pid="ALLA")) + expect_silent(plot_gene(dtuo=mydtu, pid="ALLB")) + expect_silent(plot_gene(dtuo=mydtu, pid="CC")) + expect_silent(plot_gene(dtuo=mydtu, pid="LC")) + expect_silent(plot_gene(dtuo=mydtu, pid="MIX6")) + expect_silent(plot_gene(dtuo=mydtu, pid="NIB")) ## + expect_silent(plot_gene(dtuo=mydtu, pid="NN")) +}) + #============================================================================== test_that("The overview plotting commands work", { sim <- sim_boot_data() - mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qbootnum=2, verbose = FALSE) + mydtu <- call_DTU(annot= sim$annot, boot_data_A= sim$boots_A, boot_data_B= sim$boots_B, name_A= "ONE", name_B= "TWO", qbootnum=2, verbose = FALSE, reckless=TRUE) expect_silent(plot_overview(mydtu)) expect_silent(plot_overview(dtuo=mydtu, type="tvolcano")) diff --git a/vignettes/input.Rmd b/vignettes/input.Rmd index 8bbba78..be59177 100644 --- a/vignettes/input.Rmd +++ b/vignettes/input.Rmd @@ -103,8 +103,8 @@ RATs comes with data emulators, intended to be used for testing the code. Howeve use for showcasing how RATs works. By default, RATs reports on its progress and produces a summary report. These can be suppressed using the -`verbose = FALSE` parameter to the call. To prevent cluttering this tutorial with verbose output, we will use this -option in all the examples. +`verbose = FALSE` parameter. This also suppresses some warnings generated by RATs when checking the sanity of its input, +so we do not recommend it for general use. However, to prevent cluttering this tutorial with verbose output, we will use this option in our examples. If you choose to allow verbose output when trying out the examples below using the emulated data, you will get some **warnings** about the number of bootstraps. The warning is triggered because the emulated dataset used in the examples immitates only the structure of @@ -120,7 +120,7 @@ First, let's emulate some data to work with: ```{r, eval=FALSE} # Simulate some data. -simdat <- sim_count_data() +simdat <- sim_count_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated abundances for one condition. mycond_B <- simdat[[3]] # Simulated abundances for other condition. @@ -162,7 +162,7 @@ First, let's emulate some data, as we did before. ```{r} # Simulate some data. (Notice it is a different function than before.) -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. @@ -501,22 +501,29 @@ You can mix and match scaling options as per your needs, so take care to ensure on TPM values, which is extremely underpowered and not recommended. Please, provide appropriate scaling factors for your data. -*** - - -# Annotation discrepancies +## Annotation discrepancies Different annotation versions often preserve transcript IDs, despite altering the details of the transcript model. +They also tend to include more or fewer transcripts, affecting the result of quantification. It is important to use the same annotation throughout the workflow, otherwise the abundances will not be comparable in a meaningful way. -All internal operations and the output of RATs are based on the annotation provided: +RATs will abort the run if the set of feature IDs in the provided annotation does not match fully the set of IDs in the quantifications. +If this happens, ensure you are using the exact same annotation throughout your workflow. + +For special use cases, RATs provides the option to ignore the discrepancy and pretend everything is OK. Do this at your own risk. + +```{r, eval=FALSE} +mydtu <- call_DTU(annot= myannot, boot_data_A= mydata$boot_data_A, + boot_data_B= mydata$boot_data_B, + reckless=TRUE, verbose=TRUE) +``` + -* Any transcript IDs present in the data but missing from the annotation will be silently ignored and -will not show up in the output, as they cannot be matched to the gene IDs. -* Any transcript/gene ID present in the annotation but missing from the data will be included in the output as zero expression. -* If the samples appear to have been quantified with different annotations from one another, RATs will abort. +In reckless mode, all internal operations and the output of RATs are based on the annotation provided: +* Any transcript IDs present in the data but missing from the annotation will be ignored and will not show up in the output at all, as they cannot be matched to the gene IDs. +* Any transcript ID present in the annotation but missing from the data will be included in the output as zero expression. They can be identified later as `NA` values in `$Transcripts[, .(stdevA, stdevB)]` as these fields are not used downstream by RATs. `NA` values in other numeric fields are explicitly overwritten with `0` to allow downstream interoperability. *** diff --git a/vignettes/output.Rmd b/vignettes/output.Rmd index 2d91416..16f6b28 100644 --- a/vignettes/output.Rmd +++ b/vignettes/output.Rmd @@ -1,7 +1,7 @@ --- title: 'RATs: Raw Output' author: "Kimon Froussios" -date: "05 JAN 2018" +date: "09 MAR 2018" output: html_document: keep_md: yes @@ -31,7 +31,7 @@ Set up an example. ```{r} # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. @@ -168,9 +168,10 @@ print( names(mydtu$Parameters) ) * `rep_reprod_thresh` - (num) The value passed to the `rrep_thresh` parameter, if `rboot==TRUE`.. * `rep_boot` - (bool) The value passed to the `rboot` parameter. * `rep_bootnum` - (int) The number of replicate bootstrapping iterations (currently M*N, where M and N are the numbers of samples in the two conditions), if `rboot==TRUE`. -* `seed` - (int) Custom seed for the random generator. +* `seed` - (int) Custom seed for the random generator. `NA` if none was specified. +* `reckless` - (bool) The value passed to the `reckless` parameter. -**Note:** If bootstraps are disabled, the bootstrap-related fields may have `NA` values despite any values that were passed to their respective parameters. +**Note:** If bootstraps are disabled, the bootstrap-related fields may be `NA`, regardless of supplied values, to reflect the fact that they were not used. ## Genes diff --git a/vignettes/plots.Rmd b/vignettes/plots.Rmd index 88cd16a..5bd2580 100644 --- a/vignettes/plots.Rmd +++ b/vignettes/plots.Rmd @@ -35,7 +35,7 @@ Set up an example. ```{r} # Simulate some data. -simdat <- sim_boot_data() +simdat <- sim_boot_data(clean=TRUE) # For convenience let's assign the contents of the list to separate variables mycond_A <- simdat[[2]] # Simulated bootstrapped data for one condition. mycond_B <- simdat[[3]] # Simulated bootstrapped data for other condition. From f1adf02aad8ac74211074be00aa08294961fc7ee Mon Sep 17 00:00:00 2001 From: fruce-ki <jack_ohara_097@hotmail.com> Date: Fri, 9 Mar 2018 17:53:57 +0000 Subject: [PATCH 3/5] 0.6.2-2 --- DESCRIPTION | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index aeb2231..0d8190f 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: rats -Version: 0.6.2-1 -Date: 2018-03-07 +Version: 0.6.2-2 +Date: 2018-03-09 Title: Relative Abundance of Transcripts Encoding: UTF-8 Authors: c(person("Kimon Froussios", role=c("aut"), email="k.froussios@dundee.ac.uk"), From e997a79ed0e2b5c02d8f6b8618d9ddfe9769d870 Mon Sep 17 00:00:00 2001 From: fruce-ki <jack_ohara_097@hotmail.com> Date: Tue, 13 Mar 2018 10:17:59 +0000 Subject: [PATCH 4/5] returning min valid abund_thresh to 0 instead of 1 Initially changed as an idea towards fixing the filtering bug, but additional explicit checks have been put in place since then, thus changed range of valid values no longer needed. --- R/func.R | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/R/func.R b/R/func.R index bca65ba..830fe67 100644 --- a/R/func.R +++ b/R/func.R @@ -67,8 +67,8 @@ parameters_are_good <- function(annot, count_data_A, count_data_B, boot_data_A, return(list("error"=TRUE, "message"="Invalid p-value threshold!")) if ((!is.numeric(dprop_thresh)) || dprop_thresh < 0 || dprop_thresh > 1) return(list("error"=TRUE, "message"="Invalid proportion difference threshold! Must be between 0 and 1.")) - if ((!is.numeric(abund_thresh)) || abund_thresh < 1) - return(list("error"=TRUE, "message"="Invalid abundance threshold! Must be a count >= 1.")) + if ((!is.numeric(abund_thresh)) || abund_thresh < 0) + return(list("error"=TRUE, "message"="Invalid abundance threshold! Must be a count >= 0.")) if ((!is.numeric(qbootnum)) || qbootnum < 0) return(list("error"=TRUE, "message"="Invalid number of bootstraps! Must be a positive integer number.")) if (!is.logical(qboot)) From 1c4ff4da379ffa4d4b7087e768dcd419256105fe Mon Sep 17 00:00:00 2001 From: fruce-ki <jack_ohara_097@hotmail.com> Date: Tue, 13 Mar 2018 17:56:27 +0000 Subject: [PATCH 5/5] 0.6.3 --- DESCRIPTION | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/DESCRIPTION b/DESCRIPTION index 0d8190f..779f6d0 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,7 +1,7 @@ Type: Package Package: rats -Version: 0.6.2-2 -Date: 2018-03-09 +Version: 0.6.3 +Date: 2018-03-13 Title: Relative Abundance of Transcripts Encoding: UTF-8 Authors: c(person("Kimon Froussios", role=c("aut"), email="k.froussios@dundee.ac.uk"),