@@ -23,7 +23,7 @@ are handled transparently for the user.
23
23
In addition, the deep learning frameworks have multiple data pre-processing implementations,
24
24
resulting in challenges such as portability of training and inference workflows, and code
25
25
maintainability. Data processing pipelines implemented using DALI are portable because they
26
- can easily be retargeted to TensorFlow, PyTorch, MXNet and PaddlePaddle.
26
+ can easily be retargeted to TensorFlow, PyTorch, and PaddlePaddle.
27
27
28
28
.. image :: /dali.png
29
29
:width: 800
@@ -95,7 +95,7 @@ Highlights
95
95
----------
96
96
- Easy-to-use functional style Python API.
97
97
- Multiple data formats support - LMDB, RecordIO, TFRecord, COCO, JPEG, JPEG 2000, WAV, FLAC, OGG, H.264, VP9 and HEVC.
98
- - Portable across popular deep learning frameworks: TensorFlow, PyTorch, MXNet, PaddlePaddle, JAX.
98
+ - Portable across popular deep learning frameworks: TensorFlow, PyTorch, PaddlePaddle, JAX.
99
99
- Supports CPU and GPU execution.
100
100
- Scalable across multiple GPUs.
101
101
- Flexible graphs let developers create custom pipelines.
@@ -147,7 +147,6 @@ to be installed.
147
147
148
148
DALI comes preinstalled in the `TensorFlow <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tensorflow >`__,
149
149
`PyTorch <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/pytorch >`__,
150
- `NVIDIA Optimized Deep Learning Framework, powered by Apache MXNet <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/mxnet >`__,
151
150
and `PaddlePaddle <https://catalog.ngc.nvidia.com/orgs/nvidia/containers/paddlepaddle >`__
152
151
containers on `NVIDIA GPU Cloud <https://ngc.nvidia.com >`__.
153
152
0 commit comments