-
Notifications
You must be signed in to change notification settings - Fork 16
/
train.py
69 lines (55 loc) · 2.14 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# ==============================================================================
# Copyright 2018 The TensorFlow Authors aud Paul Balanca. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Training script for TensorFlow.
See the README for more information.
"""
from __future__ import print_function
import tensorflow as tf
import models
import datasets
import parameters
import deploy
# Define the training tf.flags.FLAGS
parameters.define_flags()
def set_model_params(model, params):
"""Set model parameters, using FLAGS.
"""
model.set_batch_size(params.batch_size)
model.set_label_smoothing(params.label_smoothing)
model.set_weight_decay(params.weight_decay)
def main(extra_flags):
# Check no unknown flags was passed.
assert len(extra_flags) >= 1
if len(extra_flags) > 1:
raise ValueError('Received unknown flags: %s' % extra_flags[1:])
# Get parameters from FLAGS passed.
params = parameters.make_params_from_flags()
deploy.setup_env(params)
parameters.save_params(params, params.train_dir)
# TF log...
tfversion = deploy.tensorflow_version_tuple()
deploy.log_fn('TensorFlow: %i.%i' % (tfversion[0], tfversion[1]))
# Create model and dataset.
dataset = datasets.create_dataset(
params.data_dir, params.data_name, params.data_subset)
model = models.create_model(params.model, dataset)
set_model_params(model, params)
# Run CNN trainer.
trainer = deploy.TrainerCNN(dataset, model, params)
trainer.print_info()
trainer.run()
if __name__ == '__main__':
tf.app.run()