Skip to content

Latest commit

 

History

History
executable file
·
78 lines (59 loc) · 3.65 KB

README.md

File metadata and controls

executable file
·
78 lines (59 loc) · 3.65 KB

GitHub release (latest by date) install with bioconda Platforms Downloads License

Medial Tractography Analysis (MeTA)

workflow

MeTA is a workflow implemented to minimize microstructural heterogeneity in diffusion MRI (dMRI) metrics by extracting and parcellating the core volume along the bundle length in the voxel-space directly while effectively preserving bundle shape and efficiently capturing the regional variation within and along white matter (WM) bundles.

Contact: Iyad Ba Gari [email protected]

If you use MeTA code, please cite the following publication:

Installation

There are two options to use the package: via Conda or Docker/Singularity.

Conda Installation

Create an environment with Python version >=3.9 and <3.12. For example:

conda config --add channels bioconda
conda create -n meta python==3.10
conda install bioconda::meta-neuro

NOTE: Use meta --help to see the package options.

Docker/Singularity Installation

To pull the Singularity image:

singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py310haf7471d_0
singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py311h1752f0f_0
singularity pull docker://quay.io/biocontainers/meta-neuro:1.0.0--py39hc022aa2_0

To execute the package with Singularity:

singularity exec meta-neuro_1.0.0--py310haf7471d_0.sif meta --help

How to use the package:

  • Convert streamlines in TRK format to a binary image:
meta_bundle_density --bundle CST.trk --reference dti_FA.nii.gz --output CST.nii.gz
  • Generate a 3D Medial Surface for WM Bundle Using the CMREP Method:
vtklevelset CST.nii.gz CST.vtk 0.1
cmrep_vskel -c 3 -p 1.5 -g CST.vtk CST_skeleton.vtk
  • Run Medial Tractography Analysis (MeTA):
meta --subject 1234 --bundle CST --medial_surface CST_skeleton.vtk --volume CST.vtk --sbundle CST.trk --mbundle CST_model.trk --mask CST.nii.gz --num_segments 15 --output CST
  • Extract Segment Features:
meta_segment_features --subject 1234 --bundle CST --mask CST_segments_local_core.nii.gz --map FA.nii.gz --output CST_FA_15_segments_local_core_metrics.csv
  • Extract Streamline Features:
meta_streamlines_features --subject 1234 --bundle CST --mask CST.nii.gz --tractogram CST.trk --output CST_streamlines_metrics.csv