This is a collection of multistable systems with the code to simulate their basins of attraction. Each file can be executed independently or there is a file called 'produce_basins.jl' to compute all the basins. This may take several days for some basins so be warned. Anyway, most basins will compute in some minutes for a 1200x1200 resolution.
The code is under MIT License, please cite the this repository or the companion article to this repo:
https://arxiv.org/abs/2504.01580
Alexandre Wagemakers
To (locally) reproduce this project, do the following:
- Download this code base. Notice that raw data are typically not included in the git-history and may need to be downloaded independently.
- Open a Julia console and do:
julia> using Pkg julia> Pkg.add(DrWatson) # install globally, for using `quickactivate` julia> Pkg.activate(path/to/this/project) julia> Pkg.instantiate()
This will install all necessary packages for you to be able to run the scripts and everything should work out of the box, including correctly finding local paths.
-
Basins for the Newton root finding algorithm
-
Riddled basins
ott_basins.jl
: https://doi.org/10.1016/0167-2789(94)90047-7 -
Riddled Basins from
sommerer_basins.jl
: Sommerer, John C. "The end of classical determinism." Johns Hopkins APL Technical Digest 16.4 (1995): 333. -
Duffing oscillator basins
duffing_basins.jl
-
Forced pendulum basins
pendulum_basins.jl
-
Hénon map
map_henon.jl
: https://doi.org/10.1016/j.physrep.2014.02.007 -
Henon Heiles open Hamiltonian escape basins
cuencas_hh.jl
-
4D kicked map rotor (1998)
4d_kicked.jl
: https://doi.org/10.1016/S0960-0779(97)00058-1 -
A map with hundred of attractors:
kicked_rotor.jl
: https://doi.org/10.1103/PhysRevE.54.71 -
4D kicked map rotor from
kicked_ott.jl
: https://doi.org/10.1016/0167-2789(87)90108-4 -
A map with Wada
map_feudel.jl
: https://doi.org/10.1103/PhysRevE.58.3060 -
Map with fractal boundary
map_grebogi.jl
: https://doi.org/10.1016/0375-9601(83)90945-3 -
Fractal boundary in the josephson junction
josephson_junction.jl
: https://doi.org/10.1103/PhysRevA.36.2455 -
Fractal Boundary from the magnetic pendulum
magnetic_pendulum.jl
: https://doi.org/10.1103/PhysRevLett.111.194101 -
Rikitake oscillator basins
rikitake.jl
, unpublished. -
Thomas cyclical oscillator basins
thomas.jl
, unpublished -
Kuramoto oscillators on the UK power grid
kur_halekotte.jl
: https://doi.org/10.1088/2632-072X/ac080f -
Lorenz 84 system
lorenz84.jl
: https://doi.org/10.1063/1.2953589 -
Slim fractals
slim_fractals.jl
: https://doi.org/10.1103/PhysRevX.7.021040 -
Sporadical map
sporadical_map.jl
: https://doi.org/10.1103/PhysRevLett.82.3597 -
Cold atoms
cold_atoms.jl
: https://doi.org/10.1103/PhysRevA.95.013629 -
Competition ecology plancton
competition_ecology_plancton.jl
: https://doi.org/10.1086/319929 -
Open Sinai billiard
open_billiard_sinai.jl
: https://doi.org/10.1103/PhysRevA.38.930 -
Aguirre billiard
aguirre_billiard.jl
: https://doi.org/10.1103/PhysRevE.67.056201 -
Poon billiard
poon_billiard.jl
: https://doi.org/10.1142/S0218127496000035 -
Hidden attractors in Chua oscillators
hidden_chua.jl
: https://doi.org/10.1016/j.physleta.2011.04.037 -
Li Sprott oscillator
li_sprott.jl
: https://doi.org/10.1142/S0218127416502333 -
Binary Black Holes escape basins
black_holes.jl
: https://doi.org/10.1103/PhysRevD.98.084050 -
Discrete predator Prey system
predator_prey_discrete.jl
: https://doi.org/10.1016/j.chaos.2022.112833 -
Disipative nontwist map
dsnm.jl
: https://doi.org/10.1103/PhysRevE.107.024216 -
6D Shear Flow model
lebovitz_mariotti.jl
: https://doi.org/10.1017/jfm.2013.38 -
9D model of Fluid dynamics
eckhardt_9D.jl
: https://doi.org/10.1088/1367-2630/6/1/056 and https://doi.org/10.1103/PhysRevE.91.052903 (this last paper has a basins that I cannot reproduce) -
Wada basins in the cubic 2D map (
map_cbic.jl
): http://dx.doi.org/10.1016/j.physleta.2013.03.027 -
Riddled basins of discrete 2D system
map_kapitaniak.jl
: https://doi.org/10.1103/PhysRevE.57.R6253 -
Coupled logistic maps with riddled basins (Fig 15 of the paper has an error)
map_cpled_logstc.jl
: https://doi.org/10.1103/PhysRevE.57.2713 -
Sprott-memristor model
sprott_memristive.jl
: https://doi.org/10.1016/j.chaos.2022.111834 -
Parametrically forced pendulum
para_pendulum.jl
: http://dx.doi.org/10.1142/S0218127411030167 -
Bogdanov map
map_bogdanov.jl
: https://doi.org/10.1142/S021812749300074X -
Coupled Lorenz systems
coupled_lorenz.jl
: https://doi.org/10.1103/PhysRevE.96.062203 -
Rock-Paper-Scisors competition model
cyclic_competition.j
: https://doi.org/10.1063/1.5045366 -
Split Ring Resonator model
split_ring_resonator.jl
: https://doi.org/10.1063/5.0157489 -
Alfven Complexity
alfven_complexity.jl
: https://doi.org/10.1142/S0218127402005303 -
Pump modulation erbium doped fiber laser (basins are slightly different)
pumped_laser_dynamics.jl
: https://doi.org/10.1016/j.physleta.2009.10.061 -
CO2 modulated laser model (the basins in the paper are wrong due to numerical instabilities in the model)
co2_modulated_laser.jl
: https://doi.org/10.1063/5.0093727 -
Threshold-Linear Networks with multistable patterns
TLNs_network.jl
: https://doi.org/10.1371/journal.pone.0264456 -
Basins with tentacles
kuramoto_basins_with_tentacles.jl
: https://doi.org/10.1103/PhysRevLett.127.194101 -
Riddled basins in coupled cuadratic map
map_ashwin.jl
: https://doi.org/10.1088/0951-7715/9/3/006 -
Active Photonic Couplers
photonic_coupler.jl
: https://doi.org/10.1103/PhysRevA.100.043834 -
Multistable Chimera in reduced Kuramoto model (two coupled populations)
chimera_reduced_model.jl
: https://doi.org/10.1088/1367-2630/18/2/022002 -
Carpet oscillator
carpet_oscillator.jl
: https://doi.org/10.1007/s12043-018-1581-6 -
Megastability: nested attractors:
megastability_sprott.jl
: https://doi.org/10.1140/epjst/e2017-70037-1 -
Matryoshka multistability:
matryoshka.jl
: https://doi.org/10.1016/j.chaos.2024.115412 -
Bairstow application:
map_bairstow.jl
: https://doi.org/10.1063/1.166158 -
Quadratic map for basin bifurcations:
map_mira.jl
: https://doi.org/10.1142/S0218127494000241 -
Geographic Economic competition model:
economic_geographic_model.jl
: http://dx.doi.org/10.1016/j.matcom.2014.01.004 -
Multistability in a dynamic Cournot game:
map_nash_eq.jl
: -
Nonsmooth models of gear rattle oscilator:
gear_rattle.jl
: https://doi.org/10.1142/S021812740902283X -
Piecewise Smooth Dynamical System:
map_lai.jl
: https://doi.org/10.1063/1.2985853 -
Basin bifurcations in quasiperiodically forced coupled systems:
map_shrimali.jl
: https://doi.org/10.1103/PhysRevE.72.036215 -
Basins of attraction in a gear ratlle oscillator:
gear_rattle_souza.jl
: https://doi.org/10.1177/107754630100700605 -
Basins of attraction of different ringing schemes of the church bell:
bell_yoke2.jl
: https://doi.org/10.1016/j.ijimpeng.2015.06.008 -
Basins of a multiply regulated biochemical system:
decroly_biorhythm.jl
: https://doi.org/10.1073/pnas.79.22.6917 -
Multistability in discrete chaotic systems using numerical integration with variable symmetry:
map_vcsd_chen.jl
: https://doi.org/10.1016/j.chaos.2022.112794 -
Adaptive synapse-based neuron model with heterogeneous multistability and riddled basins:
neuron_synapse.jl
: https://doi.org/10.1063/5.0125611 -
Grazing chaos in impacting system:
souza_impacting.jl
: https://doi.org/10.1016/j.chaos.2007.01.022 -
Simplified discretized Lorenz model:
lorenz_computational_chaos.jl
: https://doi.org/10.1016/0167-2789(89)90072-9 -
Cournot economic game in 2D:
map_bischi_cournot.jl
: https://doi.org/10.1016/S0960-0779(98)00130-1 -
Chaotic Gyrostat basins:
gyrostat.jl
: https://doi.org/10.3390/math10111914 -
Intermingled basins in a triangular map:
map_intermingled.jl
: https://doi.org/10.1017/S0143385700009020, -
Ricker-Gatto competition model:
map_ricker_gatto.jl
: https://doi.org/10.1016/S0960-0779(00)00047-3 -
Dynamics of random neural networks with bistable units:
multistable_rand_net.jl
https://doi.org/10.1103/PhysRevE.90.062710 -
Earth magnetic field reversal model:
earth_field_reversal.jl
https://10.1140/epjb/e2012-20799-5