-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
199 lines (173 loc) · 7.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import pickle
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from scipy import sparse
from numba import vectorize
# Learning hyperparameters (choice is random)
LAMDA = 0.1 # loss hyperparamter
D = 128 # dimension of the embeddings
ETA = 0.1 # learning rate (My own choice)
NITER = 20 # number of iterations over all training data
EPSILON = 0.10 # termination criteria
# Initialize Wv(bag of vocabulary) and Ws(bag of symbols)
Nv = 170 # size of the vocabulary
Ns = 150 # number of entities and relationships (see subjects.txt)
# Initialize weights
# Wv = np.zeros((D, Nv))
# Wv = 0.01* np.random.randn(D,Nv)
# # Ws = np.zeros((D, Ns))
# Ws = 0.01* np.random.randn(D,Ns)
with open('f_y_matrixfact.pkl', 'rb') as pfile:
f_y_matrix = pickle.load(pfile)
with open('g_q_matrix.pkl', 'rb') as pfile:
g_q_matrix = pickle.load(pfile)
def S_qy(Wv, g_q, Ws, f_y):
# S(q,y) = cos(Wv*g(q), Ws*f(y)), Wv and Ws are to be learned by SGD
g_q_vec = np.transpose(g_q.toarray())
f_y_vec = np.transpose(f_y.toarray())
Wv_g_q = np.transpose(Wv.dot(g_q_vec))
Ws_f_y = np.transpose(Ws.dot(f_y_vec))
return cosine_similarity(Wv_g_q, Ws_f_y)[0]
# l(q,y,y') = max(0, [lamda - S(q,y) + S(q,y')])
def loss(Wv, g_q, Ws, f_y, f_y_prime):
return max(0, LAMDA - S_qy(Wv, g_q, Ws, f_y) + S_qy(Wv, g_q, Ws, f_y_prime))
@vectorize(['float64(float64, float64)'], target='parallel')
def Add(a, b):
return a + b
@vectorize(['float64(float64, int64)'], target='parallel')
def Multiply(a, b):
return a * b
def d_Wv_cossim(Wv_g_q_norm, Ws_f_y_norm, S_qy, ws, wv, f, g, j):
ws_fy_i = 0
wv_g_q_i = 0
# for i in range(Ns):
# ws_fy_i += ws[i] * f[i]
ws_fy_i = cuda_innsum(ws, f)
# for i in range(Nv):
# wv_g_q_i += wv[i] *g[i]
wv_g_q_i = cuda_innsum(wv, g)
partial_derv = (ws_fy_i/(Wv_g_q_norm*Ws_f_y_norm) - S_qy*(wv_g_q_i)/(Wv_g_q_norm*Wv_g_q_norm))*g[j]
return partial_derv
def d_Wv_cossim_innsum(ws, f):
p = Multiply(ws, f)
return np.sum(p)
def d_Ws_cossim_innsum(wv, g):
p = Multiply(wv, g)
return np.sum(p)
def cuda_innsum(w, x):
p = Multiply(w, x)
return np.sum(p)
def d_Ws_cossim(Ws_f_y_norm, Wv_g_q_norm, S_qy, wv, ws, g, f, j):
ws_fy_i = 0
wv_g_q_i = 0
# for i in range(Nv):
# wv_g_q_i += wv[i] *g[i]
wv_g_q_i = cuda_innsum(wv, g)
# for i in range(Ns):
# ws_fy_i += ws[i] * f[i]
ws_fy_i = cuda_innsum(ws, f)
partial_derv = (wv_g_q_i/(Wv_g_q_norm*Ws_f_y_norm) - S_qy*(ws_fy_i)/(Ws_f_y_norm*Ws_f_y_norm))*f[j]
return partial_derv
def update_Wv_cuda(Wv, g_q, f_y, f_y_prime, Ws):
f = f_y.toarray()[0]
f_prime = f_y_prime.toarray()[0]
g = g_q.toarray()[0]
for i in range(D):
Wv[i] = Add(Wv[i], ETA * Add(Multiply(d_Wv_cossim_innsum(Ws[i], f), g), -1*Multiply(d_Wv_cossim_innsum(Ws[i], f_prime), g)))
return Wv
def update_Wv(Wv, g_q, f_y, f_y_prime, Ws):
print("sum Wv before update:", sum(sum(Wv)))
f = f_y.toarray()[0]
f_prime = f_y_prime.toarray()[0]
g = g_q.toarray()[0]
g_q_vec = np.transpose(g_q.toarray())
f_y_vec = np.transpose(f_y.toarray())
f_y_prime_vec = np.transpose(f_y_prime.toarray())
Wv_g_q = np.transpose(Wv.dot(g_q_vec))
Ws_f_y = np.transpose(Ws.dot(f_y_vec))
Ws_f_y_prime = np.transpose(Ws.dot(f_y_prime_vec))
Wv_g_q_norm = np.linalg.norm(Wv_g_q)
Ws_f_y_norm = np.linalg.norm(Ws_f_y)
Ws_f_y_prime_norm = np.linalg.norm(Ws_f_y_prime)
Sqy = S_qy(Wv, g_q, Ws, f_y)[0]
Sqy_prime = S_qy(Wv, g_q, Ws, f_y_prime)[0]
for i in range(D):
for j in range(Nv):
delta_w = -1 * ETA*(-1* d_Wv_cossim(Wv_g_q_norm, Ws_f_y_norm, Sqy, Ws[i], Wv[i], f, g, j)+ d_Wv_cossim(Wv_g_q_norm, Ws_f_y_prime_norm, Sqy_prime, Ws[i], Wv[i], f_prime, g, j))
Wv[i][j] = Wv[i][j] + delta_w
print("sum Wv after update:", sum(sum(Wv)))
return Wv
def update_Ws_cuda(Ws, g_q, f_y, f_y_prime, Wv):
f = f_y.toarray()[0]
f_prime = f_y_prime.toarray()[0]
g = g_q.toarray()[0]
for i in range(D):
Ws[i] = Add(Ws[i], ETA * Add(Multiply(d_Ws_cossim_innsum(Wv[i], g), f), -1*Multiply(d_Ws_cossim_innsum(Wv[i], g), f_prime)))
return Ws
def update_Ws(Ws, g_q, f_y, f_y_prime, Wv):
print("sum Ws before update:", sum(sum(Ws)))
f = f_y.toarray()[0]
f_prime = f_y_prime.toarray()[0]
g = g_q.toarray()[0]
g_q_vec = np.transpose(g_q.toarray())
f_y_vec = np.transpose(f_y.toarray())
f_y_prime_vec = np.transpose(f_y_prime.toarray())
Wv_g_q = np.transpose(Wv.dot(g_q_vec))
Ws_f_y = np.transpose(Ws.dot(f_y_vec))
Ws_f_y_prime = np.transpose(Ws.dot(f_y_prime_vec))
Wv_g_q_norm = np.linalg.norm(Wv_g_q)
Ws_f_y_norm = np.linalg.norm(Ws_f_y)
Ws_f_y_prime_norm = np.linalg.norm(Ws_f_y_prime)
Sqy = S_qy(Wv, g_q, Ws, f_y)[0]
Sqy_prime = S_qy(Wv, g_q, Ws, f_y_prime)[0]
for i in range(D):
for j in range(Ns):
delta_w = -1 * ETA*(-1* d_Ws_cossim(Ws_f_y_norm, Wv_g_q_norm, Sqy, Wv[i], Ws[i], g, f, j)+ d_Ws_cossim(Ws_f_y_prime_norm, Wv_g_q_norm, Sqy_prime, Wv[i], Ws[i], g, f_prime, j))
Ws[i][j] = Ws[i][j] + delta_w
print("sum Ws after update:", sum(sum(Ws)))
return Ws
def alternate_sgd(Wv, Ws, g_q_matrix, f_y_matrix):
train_loss = 0
for idx, [g_q, f_y] in enumerate(zip(g_q_matrix, f_y_matrix)):
for idy, f_y_prime in enumerate(f_y_matrix):
if idx != idy:
train_loss += loss(Wv, g_q, Ws, f_y, f_y_prime)
sumWv = sum(sum(Wv))
# Wv = update_Wv_cuda(Wv, g_q, f_y, f_y_prime, Ws)
if loss(Wv, g_q, Ws, f_y, f_y_prime) > 0:
Wv = update_Wv(Wv, g_q, f_y, f_y_prime, Ws)
sumWs = sum(sum(Ws))
if np.linalg.norm(Wv) > 1:
Wv = Wv/np.linalg.norm(Wv, axis=0)
# Ws = update_Ws_cuda(Ws, g_q, f_y, f_y_prime, Wv)
if loss(Wv, g_q, Ws, f_y, f_y_prime) > 0:
Ws = update_Ws(Ws, g_q, f_y, f_y_prime, Wv)
if np.linalg.norm(Ws) > 1:
Ws = Ws/np.linalg.norm(Ws, axis=0)
with open("TrainingQuestionLoss.txt", "a") as loss_file:
print("training loss after question {}".format(idx), train_loss, file=loss_file)
print("training loss after question {}".format(idx), train_loss)
return train_loss, Wv, Ws
if __name__=='__main__':
# Initialize weights
# Wv = np.zeros((D, Nv))
Wv = np.random.randn(D,Nv)
if np.linalg.norm(Wv) > 1:
Wv = Wv/np.linalg.norm(Wv, axis=0)
# Ws = np.zeros((D, Ns))
Ws = np.random.randn(D,Ns)
if np.linalg.norm(Ws) > 1:
Ws = Ws/np.linalg.norm(Ws, axis=0)
for iteration in range(NITER):
iteration_loss, Wv, Ws = alternate_sgd(Wv, Ws, g_q_matrix, f_y_matrix)
np.save('Wv' + str(iteration) + '.npy', Wv)
np.save('Ws' + str(iteration) + '.npy', Ws)
with open("TrainingIterationLoss.txt", "a") as loss_file:
print("iteration loss after iteration {}:".format(iteration), iteration_loss, file=loss_file)
print("iteration loss after iteration {}:".format(iteration), iteration_loss)
print("f_y_matrix shape", f_y_matrix.shape)
print("g_q_matrix shape", g_q_matrix.shape)
print("f_y[4]", f_y_matrix[4])
print("g_q[4]", g_q_matrix[4])
print("train_loss")
print("OK")