-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy patheventpy.py
executable file
·480 lines (385 loc) · 15.8 KB
/
eventpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
#############################################################################################################
#This library is made to work with event data from the DVS sensor in the Address Event representation format
# Author: Ashish Rao M
# email: [email protected]
##################################################################################################################
import math
import time
import utils
import numba
import pickle
import numpy as np
import matplotlib.pyplot as plt
from functools import wraps
from scipy.signal import correlate
def timing(f):
'''
Wrapper function to calculate execution times of other functions
'''
@wraps(f)
def wrapper(*args, **kwargs):
start = time.time()
result = f(*args, **kwargs)
end = time.time()
print('Elapsed time for function {} : {}'.format(str(f), end-start))
return result
return wrapper
def init_phase_map(camera_dims):
'''
Function to define the intial size of the depth map matrix. Based on the size of the camera dimensions.
Parameters:
-----------
camera_dims: <int tuple>
Species resolution of the camera the event data comes from
Return:
-------
phase_map_list: <np.array of dimensions cam_width x cam_height with each index containing a list>
Matrix of said dimensions containing empty lists at all positions
'''
phase_map_list = [[[] for j in range(camera_dims[1])] for i in range(camera_dims[0])] # investigate if this can be made a numpy array later(list need because need to average out noisy measurements may be there)
return phase_map_list
def compute_firing_rate(events, del_t, pixel_location):
'''
Compute and plot the firing rate of a particular pixel for a time interval defined by del_t. The pixel under observation is defined by the pixel_location.
Parameters:
-----------
events: <list>
List of event tuples
del_t: <float>
binning interval (in microseconds)
pixel_location: <tuple>
Specify the location of the pixel whose firing rate has to be observed
Return:
--------
firing_rates: <dict>
Dictionary of firing rates of all events for different time indices of resolution del_t starting from 0.
pos_firing_rates: <dict>
Dictionary of firing rates of positive events for different time indices of resolution del_t starting from 0.
neg_firing_rates: <dict>
Dictionary of firing rates of negative events for different time indices of resolution del_t starting from 0.
'''
time, rate, pos_firing_rate, neg_firing_rate = events[0][0], 0, 0, 0
firing_rates = dict()
pos_firing_rate_dict = dict()
neg_firing_rate_dict = dict()
for event in events:
if event[1]==pixel_location[1] and event[2]==pixel_location[0]:
#print(event)
if event[0] < (time + del_t):
if event[3] == 1:
pos_firing_rate+= 1
else:
neg_firing_rate+= 1
rate += 1
else:
print(rate)
firing_rates[time] = rate # assign to previous bin or to current bin??
pos_firing_rate_dict[time] = pos_firing_rate
neg_firing_rate_dict[time] = neg_firing_rate
# reset counters and move to next time bin
rate, pos_firing_rate, neg_firing_rate = 0, 0, 0
time = time + del_t
if event[0] < (time + del_t):
if event[3] == 1:
pos_firing_rate+= 1
else:
neg_firing_rate+= 1
rate += 1
print(rate)
# assigment for the last time bin
firing_rates[time] = rate
pos_firing_rate_dict[time] = pos_firing_rate
neg_firing_rate_dict[time] = neg_firing_rate
return firing_rates, pos_firing_rate_dict, neg_firing_rate_dict
def compute_phase_change(event, ref_time, P_signal):
'''
Compute phase change at each pixel in the image sensor due to moving
patterns which generate events at varying rates
Parameters:
-----------
event:<list>
A single event in [time, x, y, polarity] format
ref_time:<float>
Start time of the signal to be used as reference
P_signal: <int>
The time period of the signal changing at one pixel
Return:
--------
phase_change: <float>
Return the wrapped phase computed by the formula defined in the function
'''
time, y, x, _ = event #x and y are interchanged because the convention followed is different in code and in the dvs_drivers
phase_change = 2*np.pi*((time - ref_time) % P_signal) / P_signal
return phase_change
@timing
def dict_single_pixel_events(events, pixel_location):
'''
Compute the firing rate of a particular pixel for a time interval defined by del_t. The pixel under observation is defined by the pixel_location.
Parameters:
-----------
events: <list>
List of event tuples
pixel_location: <tuple>
Specify the location of the pixel which has to be observed
Return:
--------
pixel_event_dict: <dict>
Dictionary of events happening at pixel location given in the input parameters
'''
pixel_event_dict = dict()
for event in events:
if event[1]==pixel_location[1] and event[2]==pixel_location[0]:
if event[3] == 1:
pixel_event_dict[event[0]] = event[3]
else:
pixel_event_dict[event[0]] = -1
return pixel_event_dict
def get_wrapped_phase_map(events, phase_map, P_signal=20, ref_x=10):
'''
Compute and plot the firing rate of a particular pixel for a time interval defined by del_t. The pixel under observation is defined by the pixel_location.
Parameters:
-----------
events: <list>
List of event tuples
phase_map: <np.array of dimensions cam_width x cam_height with each index containing a list>
Matrix of said dimensions containing empty lists at all positions
P_signal: <int>
The time period of the signal changing at one pixel
ref_x: <int>
Reference row for phase unwrapping
Return:
--------
phase_map_mat: <np.array of dimensions cam_width x cam_height>
The matrix containing the wrapped phase values at each location
'''
ref_time = 0
print('calculating Wrapped Phase')
for event in events:
if event[2] == ref_x:
phase_map[int(event[2])][int(event[1])].append(0)
ref_time = event[0]
else:
phase_map[int(event[2])][int(event[1])].append(compute_phase_change(event, ref_time, P_signal))
phase_map_new = [[sum(np.array(phase_map[i][j])) / len(phase_map[i][j]) if len(phase_map[i][j])!= 0 else 0 for j in range(346)] for i in range(260)]
phase_map_mat = np.array(phase_map_new)
print('Wrapped phase Calculation Completed')
return phase_map_mat
def resampled_signal_lists_with_zeros(events_dict, xlimits):
'''
Resamples the given signal with precision determined by the round function of the math library and pads the signal with zeros wherever the signal is not present
Parameters:
-----------
events_dict: <dict>
Events_dict is a dictionary with timestamp as key and signal magnitude is the value of the key.
xlimits: <list>
xlimits is an array containing the start and stop time of the signal.
Return:
-------
t_list: <list>
The resampled time indices
s_list: <list>
The resampled signal values corresponding to time indices in t_list
'''
t_stamps_list = list(events_dict.keys())
t_list = list(np.arange(int(math.floor(xlimits[0])), int(math.ceil(xlimits[1])), 0.005))
t_list = [round(t, 2) for t in t_list]
s_list = list()
time_keys = [round(t, 2) for t in t_stamps_list]
i = 0
for t in t_list:
if i < len(t_stamps_list):
if t==time_keys[i]:
s_list.append(events_dict[t_stamps_list[i]])
i+=1
else:
s_list.append(0)
else:
s_list.append(0)
return t_list, s_list
def fill_shadows_in_phase_map(phase_map, shadow_indices_list, ref_row, sig_period, scan_speed):
'''
Some regions of the phase map record zero phase because of shadows. This function fills the shadowy regions of the phase map by computing row where fringes were supposed to be
Parameters:
-----------
phase_map: <np.array>
Matrix containing wrapped phase values
shadow_indices_list: <list>
A list containing tuples of shadow indices in the image
ref_row: <int>
Reference row for phase unwrapping
sig_period : <float>
Time period of the signal
scan_speed: <int>
Scanning speed of the pattern in pixels per second
Return:
-------
phase_map: <np.array>
Matrix containing wrapped phase values compensated for shadows
'''
# sort indices list by row number
sorted_shadow_list = sorted(shadow_indices_list, key = lambda x: x[0])
shadow_vals = np.zeros(phase_map.shape)
# take first value, take value of preceding row in the same column of the phase map/reference row, add standard estimated phase difference(from ref row to the current row) to this value and iterate through all indices in the list in the same fashion
for index in sorted_shadow_list:
shadow_vals[index[0], index[1]] = 2*np.pi*(((ref_row - index[0])/scan_speed)%sig_period)/sig_period
shadow_comp_phase_map = phase_map + shadow_vals
return shadow_comp_phase_map
def convert_to_xyz_and_store(filename, depth_map_matrix):
'''
Convert the depth map values to xyz file and store in the current directory
Parameters:
-----------
filename: <string>
Name of the file to be saved
depth_map_matrix: <np.array>
Matrix containing depth values at all position of the image
'''
f = open(filename,"w+")
for x in range(depth_map_matrix.shape[0]):
for y in range(depth_map_matrix.shape[1]):
if depth_map_matrix[x][y]:
f.write("{}\t{}\t{}\n".format(x, y, depth_map_matrix[x][y]))
num_lines = np.sum([1 for line in f])
f.close()
print("finished preparing {}. It has {} lines".format(filename, num_lines))
def calculate_shadows(directory, filename, trial_num, object_type, camera_dims):
'''
Identify shadows in the image and store their indices in a pickle and text file.
Parameters:
-----------
directory: <string>
Directory name
filename: <string>
filename of the stored file
trial_num: <string>
the trial num at which data was captured
object_type : <string>
Describe the object eg: Teddy, righthand, swan, etc
camera_dims: <tuple>
A tuple containg the dimensions of the camera
'''
events = utils.read_data('data/' + directory + filename + '.txt')
event_mat = create_event_matrix(events, camera_dims)
shadow_indices_list = extract_shadow_indices(event_mat)
with open('shadows/' + object_type + '/' + trial_num + filename +'_shadow_pickle', 'wb') as fp:
pickle.dump(shadow_indices_list, fp)
with open('shadows/' + object_type + '/' + trial_num + filename +'_shadow_tuple.txt', 'w') as f:
for shadow_indices_tuple in shadow_indices_list:
f.write("{}\n".format(str(shadow_indices_tuple)))
def create_reference_signal(camera_dims, ref_row, scan_speed, sig_period):
'''
Synthetically create the wrapped phase of reference signal(pattern without object placed) of camera dimensions
Parameters:
-----------
camera_dims: <tuple>
A tuple containg the dimensions of the camera
ref_row: <int>
Reference row for phase unwrapping
scan_speed: <int>
Speed in pixels per second at which the pattern moves
sig_period : <float>
Time period of the signal
Return:
--------
ref_map: <np.array>
Wrapped phase of a reference signal
'''
ref_map = np.zeros(camera_dims)
for col in range(camera_dims[1]):
for row in range(camera_dims[0]):
ref_map[row, col] = 2*np.pi*(((ref_row - row)/scan_speed)%sig_period)/sig_period
return ref_map
#fix this function
def circular_shift_reference_signal(ref_map, offset):
'''
Circularly shift the pattern in the direction defined by 'axis' in the implementation
Parameter:
----------
ref_map: <np.array>
The matrix to perform circular shift on
offset: <int>
The number of pixels by which the matrix has to be shifted
Return:
-------
ref_map: <np.array>
The circularly shifted matrix
'''
ref_map= np.roll(ref_map, offset, axis=0)
return ref_map
@timing
def create_event_matrix(events, camera_dims):
'''
Function to create matrix containing events at each pixel stored in the form of a list.
This makes the compute phase function faster by converting the problem to a simple lookup
Parameter:
---------
events: <list>
A list of events
camera_dims: <tuple>
A tuple containg the dimensions of the camera
Return:
-------
event_mat_of_dict: <np.array containng lists>
A matrix of camera dimensions containing events corresponding to that location of the camera
'''
event_mat_of_dict = [[{} for j in range(camera_dims[1])] for i in range(camera_dims[0])]
for event in events:
event_mat_of_dict[int(event[2])][int(event[1])].update({event[0]:event[3]}) # The event list is [timestamp, y, x, polarity]
return event_mat_of_dict
@timing
def calc_wrapped_phase_list_in_matrix(event_mat_of_dict, phase_map, camera_dims, ref_row, Period_signal, exp_time_lim):
'''
Calculate wrapped phase as a list element for each matrix. (While each element is calculated only once,
it was made a list entry because of some design decisions taken prior. Not a good choice :(. However,
things are restored to normal later using another function)
Parameter:
---------
event_mat_of_dict: <np.array containng lists>
A matrix of camera dimensions containing events corresponding to that location of the camera
phase_map: <np.array of dimensions cam_width x cam_height with each index containing a list>
A matrix of camera dimensions containing empty lists at each location
camera_dims: <tuple>
A tuple containg the dimensions of the camera
ref_row: <int>
The reference row to calculate phase w.r.t
Period_signal: <float>
Time period of the signal
exp_time_lim: <list>
start and end times of the signal
Return:
-------
phase_map: <np.array containng lists>
A matrix of camera dimensions containing a single element list of wrapped phase corresponding to that location of the camera
'''
for col in range(camera_dims[1]):
ref_pixel_events = event_mat_of_dict[ref_row][col]
t_ref, s_ref = resampled_signal_lists_with_zeros(ref_pixel_events, xlimits=exp_time_lim)
t = time.time()
print('starting calculations for column {}'.format(col))
for row in range(camera_dims[0]):
cur_pixel_events = event_mat_of_dict[row][col]
t_cur, s_cur = resampled_signal_lists_with_zeros(cur_pixel_events, xlimits=exp_time_lim)
output = correlate(s_ref, s_cur, mode='same')
maxpos = np.argmax(output)
phase = 2*np.pi*((t_ref[maxpos] - t_cur[0]) % Period_signal)/Period_signal
phase_map[row][col].append(phase)
print('Finished calculations for column {} in {} seconds '.format(col, time.time() - t))
return phase_map
def extract_shadow_indices(event_mat_of_dict):
'''
Get the indices of values in the matrix which have an empty dictionary and return those values
Parameters:
-----------
event_mat_of_dict: <np.array containing lists>
A matrix of camera dimensions containing events corresponding to that location of the camera
Return:
-------
shadow_indices_list: <list>
list of shadow indices (tuples) in the image
'''
shadow_indices_list = []
for row in range(len(event_mat_of_dict)):
for col in range(len(event_mat_of_dict[0])):
if not bool(event_mat_of_dict[row][col]):
shadow_indices_list.append((row, col))
return shadow_indices_list