-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsi.tex
312 lines (293 loc) · 17.5 KB
/
si.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
\documentclass[amsmath,amssymb,superscriptaddress]{revtex4-1}
\usepackage[latin1]{inputenc}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{float}
\usepackage{graphicx}
\usepackage{hyperref}
\usepackage[detect-all]{siunitx}
\usepackage{xr}
\externaldocument{paper}
\usepackage{rotating}
\usepackage[margin=2cm]{geometry}
\renewcommand{\thefigure}{S\arabic{figure}}
\renewcommand{\theequation}{S\arabic{equation}}
\renewcommand{\thesection}{S\arabic{section}}
\renewcommand{\thetable}{S\Roman{table}}
\begin{document}
\title{SI for ``Bayesian determination of the effect of a deep eutectic solvent on the
structure of lipid monolayers''}% Force line breaks with \\%
\author{A.~R.~McCluskey}
\thanks{A.R.M. and A.S.-F. contributed equally to this work}
\email{[email protected]/[email protected]}
\affiliation{Department of Chemistry, University of Bath, Claverton Down,
Bath, BA2 7AY, UK}
\affiliation{Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK}
\author{A.~Sanchez-Fernandez}
\thanks{A.R.M. and A.S.-F. contributed equally to this work}
\altaffiliation[Present address: ]{Department of Food Technology, Lund
University, SE-211 00 Lund, Sweden.}
\affiliation{Department of Chemistry, University of Bath, Claverton Down,
Bath, BA2 7AY, UK}
\affiliation{European Spallation Source, SE-211 00 Lund, Sweden}
\author{K.~J.~Edler}
\affiliation{Department of Chemistry, University of Bath, Claverton Down,
Bath, BA2 7AY, UK}
\author{S.~C.~Parker}
\affiliation{Department of Chemistry, University of Bath, Claverton Down,
Bath, BA2 7AY, UK}
\author{A.~J.~Jackson}
\affiliation{European Spallation Source, SE-211 00 Lund, Sweden}
\affiliation{Department of Physical Chemistry, Lund University, SE-211 00
Lund, Sweden}
\author{R.~A.~Campbell}
\affiliation{Division of Pharmacy and Optometry, University of Manchester,
Manchester, UK}
\affiliation{Institut Laue-Langevin, 71 avenue des Martyrs, 38000, Grenoble,
France}
\author{T.~Arnold}
\email{[email protected]}
\affiliation{Department of Chemistry, University of Bath, Claverton Down,
Bath, BA2 7AY, UK}
\affiliation{Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, UK}
\affiliation{European Spallation Source, SE-211 00 Lund, Sweden}
\affiliation{ISIS Neutron and Muon Source, Science and Technology Facilities
Council, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX,
UK}
\date{\today}
\maketitle
This Supplementary Information document is only a part of a fully reproducible analysis workflow. The complete workflow, along with all datasets, figure files, and analysis/plotting scripts is available at \url{https://github.com/arm61/lipids_at_airdes} (DOI: 10.5281/zenodo.2538002) under a CC BY-SA 4.0 license.
\section{XRR parameters at each surface pressure}
\label{sec:xrrpara}
Tables \ref{tab:liptab1}-\ref{tab:liptab4} give the best fit values for the custom model that were fitted to each surface pressure, for each lipid. These values were used for comparison to assess the effect of the choline chloride:glycerol on the lipid.
\section{Neutron reflectometry and SLD profiles}
Figure \ref{fig:neutron} shows the neutron reflectomery and scattering length density profiles for DMPC at \SI{25}{\milli\newton\per\meter} (two contrasts) and DPPC at \SI{15}{\milli\newton\per\meter} (two contrasts).
\section{Grazing incident X-ray diffraction (GIXD)}
\label{sec:gixd}
The surface pressure was measured using an Aluminium Wilhelmy plate because the standard paper plates did not wet properly. This method did allow us to measure Langmuir isotherms, but these were inconsistent and as such, not a reliable method for determining the phase of the lipid monolayers.
Instead we were able to measure GIXD for DPPC and DMPC over a range of different surface pressures and temperatures and representative data from these measurements are shown in Figure \ref{fig:gixd} for \SI{30}{\milli\newton\per\meter} and \SI{22}{\celsius} (and \SI{7}{\celsius} for DMPC).
Unfortunately, despite our best efforts, the quality of GIXD data obtained was not entirely satisfactory.
All of data contains a weak artefact which we believe is due to scattering from the Teflon trough, which is probably due to the relatively low meniscus of the DES (due to its low surface tension compared to water).
In addition we cannot see the expected (1,1) peak observed for these lipids on water.
It is unclear whether this is because these peaks are absent or too weak to be measured.
Nonetheless, Figure \ref{fig:gixd} shows clear diffraction peaks (which we assume to be the (2, 0)) for DPPC at \SI{22}{\celsius} and for DMPC at \SI{7}{\celsius}.
These peaks are also visible at lower surface pressures (data not shown).
The presence of any diffraction feature indicates the presence of an LC phase at these temperatures.
Importantly there is no such peak observed for DMPC at \SI{22}{\celsius} (see Figure \ref{fig:gixd}), indicating that DMPC is in the LE phase at this temperature.
The position of the (2,0) peak, approx \SI{1.48}{\per\angstrom}, is similar to that found under the same conditions in water \cite{watkins_structure_2009}.
We therefore assume that the phase behaviour on the DES is similar to that observed on water and that the phases observed at \SI{30}{\milli\newton\per\meter} are the same at the other surface pressures measured with XRR and NR.
While we have no direct evidence, we have extended this assumption to DLPC and DMPG since there is no reason to believe that the phases of these molecules should be different from that observed for DMPC.
\section{Probability distribution functions}
The two-dimensional probability distribution functions (PDFs) for all parameters and all lipids from the X-ray reflectometry models are given in Figures \ref{fig:dlpc1}-\ref{fig:dmpg4}.
The two-dimensional probability distribution functions (PDFs) for all parameters and all lipids from the neutron reflectometry models are given in Figures \ref{fig:dmpcn1}-\ref{fig:dppcn2}.
%
\begin{table}
\centering
\caption{\ The best-fit values, and associated 95 \% confidence intervals for the varying parameters in the XRR models, at the highest surface pressure (SP) measured. The values for $\phi_h$ were obtained from the use of Eqn. \ref{equ:phih}}
\label{tab:liptab1}
\begin{tabular}{l|l|l|l|l}
Lipid & DLPC & DMPC & DPPC & DMPG \\
SP/mNm$^{-1}$ & 30 & 30 & 25 & 25 \\
\hline
$\sigma_{t,h,s}$/\AA & \input{../output/dlpc/rough35.txt} & \input{../output/dmpc/rough40.txt} & \input{../output/dppc/rough30.txt} & \input{../output/dmpg/rough30.txt} \\
$d_t$/\AA & \input{../output/dlpc/tail35.txt} & \input{../output/dmpc/tail40.txt} & \input{../output/dppc/tail30.txt} & \input{../output/dmpg/tail30.txt} \\
\hline
$V_t$/\AA$^3$ & \input{../output/dlpc/vt.txt} & \input{../output/dmpc/vt.txt} & \input{../output/dppc/vt.txt} & \input{../output/dmpg/vt.txt} \\
$V_h$/\AA$^3$ & \input{../output/dlpc/vh.txt} & \input{../output/dmpc/vh.txt} & \input{../output/dppc/vh.txt} & \input{../output/dmpg/vh.txt} \\
$d_h$/\AA & \input{../output/dlpc/head.txt} & \input{../output/dmpc/head.txt} & \input{../output/dppc/head.txt} & \input{../output/dmpg/head.txt} \\
\hline
$\phi_h$/$\times10^{-2}$ & \input{../output/dlpc/solh35.txt} & \input{../output/dmpc/solh40.txt} & \input{../output/dppc/solh30.txt} & \input{../output/dmpg/solh30.txt} \\
\end{tabular}
\end{table}
%
%
\begin{table}
\centering
\caption{\ The best-fit values, and associated 95 \% confidence intervals for the varying parameters in the XRR models, at the second highest surface pressure (SP) measured. The values for $\phi_h$ were obtained from the use of Eqn. \ref{equ:phih}}
\label{tab:liptab2}
\begin{tabular}{l|l|l|l|l}
Lipid & DLPC & DMPC & DPPC & DMPG \\
SP/mNm$^{-1}$ & 30 & 30 & 25 & 25 \\
\hline
$\sigma_{t,h,s}$/\AA & \input{../output/dlpc/rough30.txt} & \input{../output/dmpc/rough30.txt} & \input{../output/dppc/rough25.txt} & \input{../output/dmpg/rough25.txt} \\
$d_t$/\AA & \input{../output/dlpc/tail30.txt} & \input{../output/dmpc/tail30.txt} & \input{../output/dppc/tail25.txt} & \input{../output/dmpg/tail25.txt} \\
\hline
$V_t$/\AA$^3$ & \input{../output/dlpc/vt.txt} & \input{../output/dmpc/vt.txt} & \input{../output/dppc/vt.txt} & \input{../output/dmpg/vt.txt} \\
$V_h$/\AA$^3$ & \input{../output/dlpc/vh.txt} & \input{../output/dmpc/vh.txt} & \input{../output/dppc/vh.txt} & \input{../output/dmpg/vh.txt} \\
$d_h$/\AA & \input{../output/dlpc/head.txt} & \input{../output/dmpc/head.txt} & \input{../output/dppc/head.txt} & \input{../output/dmpg/head.txt} \\
\hline
$\phi_h$/$\times10^{-2}$ & \input{../output/dlpc/solh30.txt} & \input{../output/dmpc/solh30.txt} & \input{../output/dppc/solh25.txt} & \input{../output/dmpg/solh25.txt} \\
\end{tabular}
\end{table}
%
%
\begin{table}
\centering
\caption{\ The best-fit values, and associated 95 \% confidence intervals for the varying parameters in the XRR models, at the second lowest surface pressure (SP) measured. The values for $\phi_h$ were obtained from the use of Eqn. \ref{equ:phih}}
\label{tab:liptab3}
\begin{tabular}{l|l|l|l|l}
Lipid & DLPC & DMPC & DPPC & DMPG \\
SP/mNm$^{-1}$ & 25 & 25 & 20 & 20 \\
\hline
$\sigma_{t,h,s}$/\AA & \input{../output/dlpc/rough25.txt} & \input{../output/dmpc/rough25.txt} & \input{../output/dppc/rough20.txt} & \input{../output/dmpg/rough20.txt} \\
$d_t$/\AA & \input{../output/dlpc/tail25.txt} & \input{../output/dmpc/tail25.txt} & \input{../output/dppc/tail20.txt} & \input{../output/dmpg/tail20.txt} \\
\hline
$V_t$/\AA$^3$ & \input{../output/dlpc/vt.txt} & \input{../output/dmpc/vt.txt} & \input{../output/dppc/vt.txt} & \input{../output/dmpg/vt.txt} \\
$V_h$/\AA$^3$ & \input{../output/dlpc/vh.txt} & \input{../output/dmpc/vh.txt} & \input{../output/dppc/vh.txt} & \input{../output/dmpg/vh.txt} \\
$d_h$/\AA & \input{../output/dlpc/head.txt} & \input{../output/dmpc/head.txt} & \input{../output/dppc/head.txt} & \input{../output/dmpg/head.txt} \\
\hline
$\phi_h$/$\times10^{-2}$ & \input{../output/dlpc/solh25.txt} & \input{../output/dmpc/solh25.txt} & \input{../output/dppc/solh20.txt} & \input{../output/dmpg/solh20.txt} \\
\end{tabular}
\end{table}
%
%
\begin{table}
\centering
\caption{\ The best-fit values, and associated 95 \% confidence intervals for the varying parameters in the XRR models, at the lowest surface pressure (SP) measured. The values for $\phi_h$ were obtained from the use of Eqn. \ref{equ:phih}}
\label{tab:liptab4}
\begin{tabular}{l|l|l|l|l}
Lipid & DLPC & DMPC & DPPC & DMPG \\
SP/mNm$^{-1}$ & 20 & 20 & 15 & 15 \\
\hline
$\sigma_{t,h,s}$/\AA & \input{../output/dlpc/rough20.txt} & \input{../output/dmpc/rough20.txt} & \input{../output/dppc/rough15.txt} & \input{../output/dmpg/rough15.txt} \\
$d_t$/\AA & \input{../output/dlpc/tail20.txt} & \input{../output/dmpc/tail20.txt} & \input{../output/dppc/tail15.txt} & \input{../output/dmpg/tail15.txt} \\
\hline
$V_t$/\AA$^3$ & \input{../output/dlpc/vt.txt} & \input{../output/dmpc/vt.txt} & \input{../output/dppc/vt.txt} & \input{../output/dmpg/vt.txt} \\
$V_h$/\AA$^3$ & \input{../output/dlpc/vh.txt} & \input{../output/dmpc/vh.txt} & \input{../output/dppc/vh.txt} & \input{../output/dmpg/vh.txt} \\
$d_h$/\AA & \input{../output/dlpc/head.txt} & \input{../output/dmpc/head.txt} & \input{../output/dppc/head.txt} & \input{../output/dmpg/head.txt} \\
\hline
$\phi_h$/$\times10^{-2}$ & \input{../output/dlpc/solh20.txt} & \input{../output/dmpc/solh20.txt} & \input{../output/dppc/solh15.txt} & \input{../output/dmpg/solh15.txt} \\
\end{tabular}
\end{table}
%
\begin{figure}[H]
\centering
\includegraphics[width=0.9\textwidth]{figures/dmpc_25n_ref_sld}
\includegraphics[width=0.9\textwidth]{figures/dppc_15n_ref_sld}
\caption{The NR and SLD profiles at a surface pressure of (a) 25 mNm$^{-1}$ for two contrasts of DMPC, and (b) 15 mNm$^{-1}$ for two contrasts of DPPC. The NR profiles have been offset in the $y$-axis by an order of magnitude and SLD profiles offset in the $y$-axis by \SI{5e-6}{\per\square\angstrom}, for clarity.}
\label{fig:sineutron}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/gixd}
\caption{The GIXD pattern for (a) DPPC at \SI{30}{\milli\newton\per\meter} at \SI{22}{\celsius}, (b) DMPC at \SI{30}{\milli\newton\per\meter} at \SI{22}{\celsius}, and (c) DMPC at \SI{30}{\milli\newton\per\meter} at \SI{7}{\celsius}.}
\label{fig:gixd}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dlpc1_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DLPC X-ray reflectometry data at \SI{20}{\milli\newton\per\meter}.}
\label{fig:dlpc1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dlpc2_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DLPC X-ray reflectometry data at \SI{25}{\milli\newton\per\meter}.}
\label{fig:dlpc2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dlpc3_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DLPC X-ray reflectometry data at \SI{30}{\milli\newton\per\meter}.}
\label{fig:dlpc3}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dlpc4_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DLPC X-ray reflectometry data at \SI{35}{\milli\newton\per\meter}.}
\label{fig:dlpc4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpc1_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPC X-ray reflectometry data at \SI{20}{\milli\newton\per\meter}.}
\label{fig:dmpc1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpc2_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPC X-ray reflectometry data at \SI{25}{\milli\newton\per\meter}.}
\label{fig:dmpc2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpc4_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPC X-ray reflectometry data at \SI{40}{\milli\newton\per\meter}.}
\label{fig:dmpc4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc1_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DPPC X-ray reflectometry data at \SI{15}{\milli\newton\per\meter}.}
\label{fig:dppc1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc2_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DPPC X-ray reflectometry data at \SI{20}{\milli\newton\per\meter}.}
\label{fig:dppc2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc3_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DPPC X-ray reflectometry data at \SI{25}{\milli\newton\per\meter}.}
\label{fig:dppc3}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc4_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DPPC X-ray reflectometry data at \SI{30}{\milli\newton\per\meter}.}
\label{fig:dppc4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpg1_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPG X-ray reflectometry data at \SI{15}{\milli\newton\per\meter}.}
\label{fig:dmpg1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpg2_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPG X-ray reflectometry data at \SI{20}{\milli\newton\per\meter}. }
\label{fig:dmpg2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpg3_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPG X-ray reflectometry data at \SI{25}{\milli\newton\per\meter}.}
\label{fig:dmpg3}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpg4_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of DMPG X-ray reflectometry data at \SI{30}{\milli\newton\per\meter}.}
\label{fig:dmpg4}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpc_20n_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of two contrast DMPC neutron reflectometry data at \SI{20}{\milli\newton\per\meter}.}
\label{fig:dmpcn1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dmpc_25n_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of two contrast DMPC neutron reflectometry data at \SI{25}{\milli\newton\per\meter}.}
\label{fig:dmpcn2}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc_15n_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of two contrast DPPC neutron reflectometry data at \SI{15}{\milli\newton\per\meter}.}
\label{fig:dppcn1}
\end{figure}
\begin{figure}[H]
\centering
\includegraphics[width=0.50\textwidth]{figures/dppc_20n_all_corner}
\caption{The multi-parameter PDFs for the chemically-consistent model of two contrast DMPC neutron reflectometry data at \SI{20}{\milli\newton\per\meter}.}
\label{fig:dppcn2}
\end{figure}
%%%REFERENCES%%%
\bibliography{bibi} %You need to replace "rsc" on this line with the name of your .bib file
\bibliographystyle{rsc} %the RSC's .bst file
\end{document}