Skip to content

Files

Latest commit

98010f1 · Jul 1, 2020

History

History
This branch is 5 commits ahead of, 1113 commits behind open-mmlab/mmdetection:master.

gcnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
Jul 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020
Apr 1, 2020
Apr 1, 2020
Mar 24, 2020
Apr 1, 2020
Apr 1, 2020
May 1, 2020
May 1, 2020
May 1, 2020

GCNet for Object Detection

By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu.

We provide config files to reproduce the results in the paper for "GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond" on COCO object detection.

Introduction

GCNet is initially described in arxiv. Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.

Citing GCNet

@article{cao2019GCNet,
  title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
  author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
  journal={arXiv preprint arXiv:1904.11492},
  year={2019}
}

Results and models

The results on COCO 2017val are shown in the below table.

Backbone Model Context Lr schd Mem (GB) Inf time (fps) box AP mask AP Download
R-50-FPN Mask GC(c3-c5, r16) 1x 5.0 39.7 35.9 model | log
R-50-FPN Mask GC(c3-c5, r4) 1x 5.1 15.0 39.9 36.0 model | log
R-101-FPN Mask GC(c3-c5, r16) 1x 7.6 11.4 41.3 37.2 model | log
R-101-FPN Mask GC(c3-c5, r4) 1x 7.8 11.6 42.2 37.8 model | log
Backbone Model Context Lr schd Mem (GB) Inf time (fps) box AP mask AP Download
R-50-FPN Mask - 1x 4.4 16.6 38.4 34.6 model | log
R-50-FPN Mask GC(c3-c5, r16) 1x 5.0 15.5 40.4 36.2 model | log
R-50-FPN Mask GC(c3-c5, r4) 1x 5.1 15.1 40.7 36.5 model | log
R-101-FPN Mask - 1x 6.4 13.3 40.5 36.3 model | log
R-101-FPN Mask GC(c3-c5, r16) 1x 7.6 12.0 42.2 37.8 model | log
R-101-FPN Mask GC(c3-c5, r4) 1x 7.8 11.8 42.2 37.8 model | log
X-101-FPN Mask - 1x 7.6 11.3 42.4 37.7 model | log
X-101-FPN Mask GC(c3-c5, r16) 1x 8.8 9.8 43.5 38.6 model | log
X-101-FPN Mask GC(c3-c5, r4) 1x 9.0 9.7 43.9 39.0 model | log
X-101-FPN Cascade Mask - 1x 9.2 8.4 44.7 38.6 model | log
X-101-FPN Cascade Mask GC(c3-c5, r16) 1x 10.3 7.7 46.2 39.7 modle | log
X-101-FPN Cascade Mask GC(c3-c5, r4) 1x 45.9 39.6
X-101-FPN DCN Cascade Mask - 1x 44.9 38.9 modle | log
X-101-FPN DCN Cascade Mask GC(c3-c5, r16) 1x 44.6 modle | log
X-101-FPN DCN Cascade Mask GC(c3-c5, r4) 1x 45.7 39.5 modle | log

Notes:

  • The SyncBN is added in the backbone for all models in Table 2.
  • GC denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
  • DCN denotes replace 3x3 conv with 3x3 Deformable Convolution in c3-c5 stages of backbone.
  • r4 and r16 denote ratio 4 and ratio 16 in GC block respectively.